Precisely engineering a carrier-free hybrid nanoassembly for multimodal DNA damage-augmented photodynamic therapy
Photodynamic therapy (PDT) has been extensively explored for cancer treatment. There is growing evidence showing that oxidative DNA damage caused by the vast accumulation of reactive oxygen species (ROS) in tumor cells plays a dominant role in accelerating cell apoptosis. Nevertheless, the repair pa...
Ausführliche Beschreibung
Autor*in: |
Li, Shumeng [verfasserIn] Yang, Fujun [verfasserIn] Sun, Xinxin [verfasserIn] Wang, Yuequan [verfasserIn] Zhang, Xuanbo [verfasserIn] Zhang, Shenwu [verfasserIn] Zhang, Haotian [verfasserIn] Kan, Qiming [verfasserIn] Sun, Jin [verfasserIn] He, Zhonggui [verfasserIn] Luo, Cong [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: The chemical engineering journal - Amsterdam : Elsevier, 1997, 426 |
---|---|
Übergeordnetes Werk: |
volume:426 |
DOI / URN: |
10.1016/j.cej.2021.130838 |
---|
Katalog-ID: |
ELV006874592 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV006874592 | ||
003 | DE-627 | ||
005 | 20230524131738.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230506s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.cej.2021.130838 |2 doi | |
035 | |a (DE-627)ELV006874592 | ||
035 | |a (ELSEVIER)S1385-8947(21)02423-2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | |a 660.05 |q DE-101 | |
082 | 0 | 4 | |a 660 |q DE-101 |
082 | 0 | 4 | |a 660 |q DE-600 |
084 | |a 58.10 |2 bkl | ||
100 | 1 | |a Li, Shumeng |e verfasserin |4 aut | |
245 | 1 | 0 | |a Precisely engineering a carrier-free hybrid nanoassembly for multimodal DNA damage-augmented photodynamic therapy |
264 | 1 | |c 2021 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Photodynamic therapy (PDT) has been extensively explored for cancer treatment. There is growing evidence showing that oxidative DNA damage caused by the vast accumulation of reactive oxygen species (ROS) in tumor cells plays a dominant role in accelerating cell apoptosis. Nevertheless, the repair pathways of aberrant DNA in tumor cells help reduce and reverse such damage. Thus, a precise combination of photodynamic photosensitizers and DNA repair inhibitors is expected to significantly augment the PDT efficacy. But it remains challenging to achieve accurate co-delivery of two drugs into the target sites. Herein, an ingenious dual-drug assembly modality is developed to precisely engineer a novel co-delivery nanomedicine. For proof-of-concept, a carrier-free hybrid nanoassembly of etoposide (VP-16) and pyropheophorbide a (PPa) is elaborately fabricated for multimodal DNA damage-mediated synergistic cancer therapy. Generally, this study exhibits a facile and practical dual-drug co-assembly engineering strategy, constructs an efficient and versatile co-delivery nanoplatform, and enables significant combination anticancer efficacy in vitro and in vivo. Such a dual-drug hybrid nanoassembly has the potential to be utilized as a promising nanomedicine for clinical multimodal cancer therapy. | ||
650 | 4 | |a DNA repair inhibitor | |
650 | 4 | |a Photosensitizer | |
650 | 4 | |a Hybrid nanoassembly | |
650 | 4 | |a Photodynamic therapy | |
650 | 4 | |a Multimodal cancer treatment | |
700 | 1 | |a Yang, Fujun |e verfasserin |4 aut | |
700 | 1 | |a Sun, Xinxin |e verfasserin |4 aut | |
700 | 1 | |a Wang, Yuequan |e verfasserin |4 aut | |
700 | 1 | |a Zhang, Xuanbo |e verfasserin |4 aut | |
700 | 1 | |a Zhang, Shenwu |e verfasserin |4 aut | |
700 | 1 | |a Zhang, Haotian |e verfasserin |4 aut | |
700 | 1 | |a Kan, Qiming |e verfasserin |4 aut | |
700 | 1 | |a Sun, Jin |e verfasserin |4 aut | |
700 | 1 | |a He, Zhonggui |e verfasserin |4 aut | |
700 | 1 | |a Luo, Cong |e verfasserin |0 (orcid)0000-0002-0506-9598 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t The chemical engineering journal |d Amsterdam : Elsevier, 1997 |g 426 |h Online-Ressource |w (DE-627)320500322 |w (DE-600)2012137-4 |w (DE-576)098330152 |x 1873-3212 |7 nnns |
773 | 1 | 8 | |g volume:426 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 58.10 |j Verfahrenstechnik: Allgemeines |
951 | |a AR | ||
952 | |d 426 | ||
953 | |2 045F |a 660.05 |
author_variant |
s l sl f y fy x s xs y w yw x z xz s z sz h z hz q k qk j s js z h zh c l cl |
---|---|
matchkey_str |
article:18733212:2021----::rcslegneigcrirreyrdaosebyomlioadaaaeu |
hierarchy_sort_str |
2021 |
bklnumber |
58.10 |
publishDate |
2021 |
allfields |
10.1016/j.cej.2021.130838 doi (DE-627)ELV006874592 (ELSEVIER)S1385-8947(21)02423-2 DE-627 ger DE-627 rda eng 660.05 DE-101 660 DE-101 660 DE-600 58.10 bkl Li, Shumeng verfasserin aut Precisely engineering a carrier-free hybrid nanoassembly for multimodal DNA damage-augmented photodynamic therapy 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Photodynamic therapy (PDT) has been extensively explored for cancer treatment. There is growing evidence showing that oxidative DNA damage caused by the vast accumulation of reactive oxygen species (ROS) in tumor cells plays a dominant role in accelerating cell apoptosis. Nevertheless, the repair pathways of aberrant DNA in tumor cells help reduce and reverse such damage. Thus, a precise combination of photodynamic photosensitizers and DNA repair inhibitors is expected to significantly augment the PDT efficacy. But it remains challenging to achieve accurate co-delivery of two drugs into the target sites. Herein, an ingenious dual-drug assembly modality is developed to precisely engineer a novel co-delivery nanomedicine. For proof-of-concept, a carrier-free hybrid nanoassembly of etoposide (VP-16) and pyropheophorbide a (PPa) is elaborately fabricated for multimodal DNA damage-mediated synergistic cancer therapy. Generally, this study exhibits a facile and practical dual-drug co-assembly engineering strategy, constructs an efficient and versatile co-delivery nanoplatform, and enables significant combination anticancer efficacy in vitro and in vivo. Such a dual-drug hybrid nanoassembly has the potential to be utilized as a promising nanomedicine for clinical multimodal cancer therapy. DNA repair inhibitor Photosensitizer Hybrid nanoassembly Photodynamic therapy Multimodal cancer treatment Yang, Fujun verfasserin aut Sun, Xinxin verfasserin aut Wang, Yuequan verfasserin aut Zhang, Xuanbo verfasserin aut Zhang, Shenwu verfasserin aut Zhang, Haotian verfasserin aut Kan, Qiming verfasserin aut Sun, Jin verfasserin aut He, Zhonggui verfasserin aut Luo, Cong verfasserin (orcid)0000-0002-0506-9598 aut Enthalten in The chemical engineering journal Amsterdam : Elsevier, 1997 426 Online-Ressource (DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 1873-3212 nnns volume:426 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 58.10 Verfahrenstechnik: Allgemeines AR 426 045F 660.05 |
spelling |
10.1016/j.cej.2021.130838 doi (DE-627)ELV006874592 (ELSEVIER)S1385-8947(21)02423-2 DE-627 ger DE-627 rda eng 660.05 DE-101 660 DE-101 660 DE-600 58.10 bkl Li, Shumeng verfasserin aut Precisely engineering a carrier-free hybrid nanoassembly for multimodal DNA damage-augmented photodynamic therapy 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Photodynamic therapy (PDT) has been extensively explored for cancer treatment. There is growing evidence showing that oxidative DNA damage caused by the vast accumulation of reactive oxygen species (ROS) in tumor cells plays a dominant role in accelerating cell apoptosis. Nevertheless, the repair pathways of aberrant DNA in tumor cells help reduce and reverse such damage. Thus, a precise combination of photodynamic photosensitizers and DNA repair inhibitors is expected to significantly augment the PDT efficacy. But it remains challenging to achieve accurate co-delivery of two drugs into the target sites. Herein, an ingenious dual-drug assembly modality is developed to precisely engineer a novel co-delivery nanomedicine. For proof-of-concept, a carrier-free hybrid nanoassembly of etoposide (VP-16) and pyropheophorbide a (PPa) is elaborately fabricated for multimodal DNA damage-mediated synergistic cancer therapy. Generally, this study exhibits a facile and practical dual-drug co-assembly engineering strategy, constructs an efficient and versatile co-delivery nanoplatform, and enables significant combination anticancer efficacy in vitro and in vivo. Such a dual-drug hybrid nanoassembly has the potential to be utilized as a promising nanomedicine for clinical multimodal cancer therapy. DNA repair inhibitor Photosensitizer Hybrid nanoassembly Photodynamic therapy Multimodal cancer treatment Yang, Fujun verfasserin aut Sun, Xinxin verfasserin aut Wang, Yuequan verfasserin aut Zhang, Xuanbo verfasserin aut Zhang, Shenwu verfasserin aut Zhang, Haotian verfasserin aut Kan, Qiming verfasserin aut Sun, Jin verfasserin aut He, Zhonggui verfasserin aut Luo, Cong verfasserin (orcid)0000-0002-0506-9598 aut Enthalten in The chemical engineering journal Amsterdam : Elsevier, 1997 426 Online-Ressource (DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 1873-3212 nnns volume:426 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 58.10 Verfahrenstechnik: Allgemeines AR 426 045F 660.05 |
allfields_unstemmed |
10.1016/j.cej.2021.130838 doi (DE-627)ELV006874592 (ELSEVIER)S1385-8947(21)02423-2 DE-627 ger DE-627 rda eng 660.05 DE-101 660 DE-101 660 DE-600 58.10 bkl Li, Shumeng verfasserin aut Precisely engineering a carrier-free hybrid nanoassembly for multimodal DNA damage-augmented photodynamic therapy 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Photodynamic therapy (PDT) has been extensively explored for cancer treatment. There is growing evidence showing that oxidative DNA damage caused by the vast accumulation of reactive oxygen species (ROS) in tumor cells plays a dominant role in accelerating cell apoptosis. Nevertheless, the repair pathways of aberrant DNA in tumor cells help reduce and reverse such damage. Thus, a precise combination of photodynamic photosensitizers and DNA repair inhibitors is expected to significantly augment the PDT efficacy. But it remains challenging to achieve accurate co-delivery of two drugs into the target sites. Herein, an ingenious dual-drug assembly modality is developed to precisely engineer a novel co-delivery nanomedicine. For proof-of-concept, a carrier-free hybrid nanoassembly of etoposide (VP-16) and pyropheophorbide a (PPa) is elaborately fabricated for multimodal DNA damage-mediated synergistic cancer therapy. Generally, this study exhibits a facile and practical dual-drug co-assembly engineering strategy, constructs an efficient and versatile co-delivery nanoplatform, and enables significant combination anticancer efficacy in vitro and in vivo. Such a dual-drug hybrid nanoassembly has the potential to be utilized as a promising nanomedicine for clinical multimodal cancer therapy. DNA repair inhibitor Photosensitizer Hybrid nanoassembly Photodynamic therapy Multimodal cancer treatment Yang, Fujun verfasserin aut Sun, Xinxin verfasserin aut Wang, Yuequan verfasserin aut Zhang, Xuanbo verfasserin aut Zhang, Shenwu verfasserin aut Zhang, Haotian verfasserin aut Kan, Qiming verfasserin aut Sun, Jin verfasserin aut He, Zhonggui verfasserin aut Luo, Cong verfasserin (orcid)0000-0002-0506-9598 aut Enthalten in The chemical engineering journal Amsterdam : Elsevier, 1997 426 Online-Ressource (DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 1873-3212 nnns volume:426 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 58.10 Verfahrenstechnik: Allgemeines AR 426 045F 660.05 |
allfieldsGer |
10.1016/j.cej.2021.130838 doi (DE-627)ELV006874592 (ELSEVIER)S1385-8947(21)02423-2 DE-627 ger DE-627 rda eng 660.05 DE-101 660 DE-101 660 DE-600 58.10 bkl Li, Shumeng verfasserin aut Precisely engineering a carrier-free hybrid nanoassembly for multimodal DNA damage-augmented photodynamic therapy 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Photodynamic therapy (PDT) has been extensively explored for cancer treatment. There is growing evidence showing that oxidative DNA damage caused by the vast accumulation of reactive oxygen species (ROS) in tumor cells plays a dominant role in accelerating cell apoptosis. Nevertheless, the repair pathways of aberrant DNA in tumor cells help reduce and reverse such damage. Thus, a precise combination of photodynamic photosensitizers and DNA repair inhibitors is expected to significantly augment the PDT efficacy. But it remains challenging to achieve accurate co-delivery of two drugs into the target sites. Herein, an ingenious dual-drug assembly modality is developed to precisely engineer a novel co-delivery nanomedicine. For proof-of-concept, a carrier-free hybrid nanoassembly of etoposide (VP-16) and pyropheophorbide a (PPa) is elaborately fabricated for multimodal DNA damage-mediated synergistic cancer therapy. Generally, this study exhibits a facile and practical dual-drug co-assembly engineering strategy, constructs an efficient and versatile co-delivery nanoplatform, and enables significant combination anticancer efficacy in vitro and in vivo. Such a dual-drug hybrid nanoassembly has the potential to be utilized as a promising nanomedicine for clinical multimodal cancer therapy. DNA repair inhibitor Photosensitizer Hybrid nanoassembly Photodynamic therapy Multimodal cancer treatment Yang, Fujun verfasserin aut Sun, Xinxin verfasserin aut Wang, Yuequan verfasserin aut Zhang, Xuanbo verfasserin aut Zhang, Shenwu verfasserin aut Zhang, Haotian verfasserin aut Kan, Qiming verfasserin aut Sun, Jin verfasserin aut He, Zhonggui verfasserin aut Luo, Cong verfasserin (orcid)0000-0002-0506-9598 aut Enthalten in The chemical engineering journal Amsterdam : Elsevier, 1997 426 Online-Ressource (DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 1873-3212 nnns volume:426 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 58.10 Verfahrenstechnik: Allgemeines AR 426 045F 660.05 |
allfieldsSound |
10.1016/j.cej.2021.130838 doi (DE-627)ELV006874592 (ELSEVIER)S1385-8947(21)02423-2 DE-627 ger DE-627 rda eng 660.05 DE-101 660 DE-101 660 DE-600 58.10 bkl Li, Shumeng verfasserin aut Precisely engineering a carrier-free hybrid nanoassembly for multimodal DNA damage-augmented photodynamic therapy 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Photodynamic therapy (PDT) has been extensively explored for cancer treatment. There is growing evidence showing that oxidative DNA damage caused by the vast accumulation of reactive oxygen species (ROS) in tumor cells plays a dominant role in accelerating cell apoptosis. Nevertheless, the repair pathways of aberrant DNA in tumor cells help reduce and reverse such damage. Thus, a precise combination of photodynamic photosensitizers and DNA repair inhibitors is expected to significantly augment the PDT efficacy. But it remains challenging to achieve accurate co-delivery of two drugs into the target sites. Herein, an ingenious dual-drug assembly modality is developed to precisely engineer a novel co-delivery nanomedicine. For proof-of-concept, a carrier-free hybrid nanoassembly of etoposide (VP-16) and pyropheophorbide a (PPa) is elaborately fabricated for multimodal DNA damage-mediated synergistic cancer therapy. Generally, this study exhibits a facile and practical dual-drug co-assembly engineering strategy, constructs an efficient and versatile co-delivery nanoplatform, and enables significant combination anticancer efficacy in vitro and in vivo. Such a dual-drug hybrid nanoassembly has the potential to be utilized as a promising nanomedicine for clinical multimodal cancer therapy. DNA repair inhibitor Photosensitizer Hybrid nanoassembly Photodynamic therapy Multimodal cancer treatment Yang, Fujun verfasserin aut Sun, Xinxin verfasserin aut Wang, Yuequan verfasserin aut Zhang, Xuanbo verfasserin aut Zhang, Shenwu verfasserin aut Zhang, Haotian verfasserin aut Kan, Qiming verfasserin aut Sun, Jin verfasserin aut He, Zhonggui verfasserin aut Luo, Cong verfasserin (orcid)0000-0002-0506-9598 aut Enthalten in The chemical engineering journal Amsterdam : Elsevier, 1997 426 Online-Ressource (DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 1873-3212 nnns volume:426 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 58.10 Verfahrenstechnik: Allgemeines AR 426 045F 660.05 |
language |
English |
source |
Enthalten in The chemical engineering journal 426 volume:426 |
sourceStr |
Enthalten in The chemical engineering journal 426 volume:426 |
format_phy_str_mv |
Article |
bklname |
Verfahrenstechnik: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
DNA repair inhibitor Photosensitizer Hybrid nanoassembly Photodynamic therapy Multimodal cancer treatment |
dewey-raw |
660.05 |
isfreeaccess_bool |
false |
container_title |
The chemical engineering journal |
authorswithroles_txt_mv |
Li, Shumeng @@aut@@ Yang, Fujun @@aut@@ Sun, Xinxin @@aut@@ Wang, Yuequan @@aut@@ Zhang, Xuanbo @@aut@@ Zhang, Shenwu @@aut@@ Zhang, Haotian @@aut@@ Kan, Qiming @@aut@@ Sun, Jin @@aut@@ He, Zhonggui @@aut@@ Luo, Cong @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
320500322 |
dewey-sort |
3660.05 |
id |
ELV006874592 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV006874592</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524131738.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230506s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.cej.2021.130838</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV006874592</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1385-8947(21)02423-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">660.05</subfield><subfield code="q">DE-101</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">DE-101</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.10</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Shumeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Precisely engineering a carrier-free hybrid nanoassembly for multimodal DNA damage-augmented photodynamic therapy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Photodynamic therapy (PDT) has been extensively explored for cancer treatment. There is growing evidence showing that oxidative DNA damage caused by the vast accumulation of reactive oxygen species (ROS) in tumor cells plays a dominant role in accelerating cell apoptosis. Nevertheless, the repair pathways of aberrant DNA in tumor cells help reduce and reverse such damage. Thus, a precise combination of photodynamic photosensitizers and DNA repair inhibitors is expected to significantly augment the PDT efficacy. But it remains challenging to achieve accurate co-delivery of two drugs into the target sites. Herein, an ingenious dual-drug assembly modality is developed to precisely engineer a novel co-delivery nanomedicine. For proof-of-concept, a carrier-free hybrid nanoassembly of etoposide (VP-16) and pyropheophorbide a (PPa) is elaborately fabricated for multimodal DNA damage-mediated synergistic cancer therapy. Generally, this study exhibits a facile and practical dual-drug co-assembly engineering strategy, constructs an efficient and versatile co-delivery nanoplatform, and enables significant combination anticancer efficacy in vitro and in vivo. Such a dual-drug hybrid nanoassembly has the potential to be utilized as a promising nanomedicine for clinical multimodal cancer therapy.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DNA repair inhibitor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photosensitizer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hybrid nanoassembly</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photodynamic therapy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multimodal cancer treatment</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Fujun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Xinxin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Yuequan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Xuanbo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Shenwu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Haotian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kan, Qiming</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Jin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">He, Zhonggui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Luo, Cong</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-0506-9598</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The chemical engineering journal</subfield><subfield code="d">Amsterdam : Elsevier, 1997</subfield><subfield code="g">426</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320500322</subfield><subfield code="w">(DE-600)2012137-4</subfield><subfield code="w">(DE-576)098330152</subfield><subfield code="x">1873-3212</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:426</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.10</subfield><subfield code="j">Verfahrenstechnik: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">426</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">660.05</subfield></datafield></record></collection>
|
author |
Li, Shumeng |
spellingShingle |
Li, Shumeng ddc 660.05 ddc 660 bkl 58.10 misc DNA repair inhibitor misc Photosensitizer misc Hybrid nanoassembly misc Photodynamic therapy misc Multimodal cancer treatment Precisely engineering a carrier-free hybrid nanoassembly for multimodal DNA damage-augmented photodynamic therapy |
authorStr |
Li, Shumeng |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320500322 |
format |
electronic Article |
dewey-ones |
660 - Chemical engineering |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1873-3212 |
topic_title |
660.05 DE-101 660 DE-101 660 DE-600 58.10 bkl Precisely engineering a carrier-free hybrid nanoassembly for multimodal DNA damage-augmented photodynamic therapy DNA repair inhibitor Photosensitizer Hybrid nanoassembly Photodynamic therapy Multimodal cancer treatment |
topic |
ddc 660.05 ddc 660 bkl 58.10 misc DNA repair inhibitor misc Photosensitizer misc Hybrid nanoassembly misc Photodynamic therapy misc Multimodal cancer treatment |
topic_unstemmed |
ddc 660.05 ddc 660 bkl 58.10 misc DNA repair inhibitor misc Photosensitizer misc Hybrid nanoassembly misc Photodynamic therapy misc Multimodal cancer treatment |
topic_browse |
ddc 660.05 ddc 660 bkl 58.10 misc DNA repair inhibitor misc Photosensitizer misc Hybrid nanoassembly misc Photodynamic therapy misc Multimodal cancer treatment |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
The chemical engineering journal |
hierarchy_parent_id |
320500322 |
dewey-tens |
660 - Chemical engineering |
hierarchy_top_title |
The chemical engineering journal |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 |
title |
Precisely engineering a carrier-free hybrid nanoassembly for multimodal DNA damage-augmented photodynamic therapy |
ctrlnum |
(DE-627)ELV006874592 (ELSEVIER)S1385-8947(21)02423-2 |
title_full |
Precisely engineering a carrier-free hybrid nanoassembly for multimodal DNA damage-augmented photodynamic therapy |
author_sort |
Li, Shumeng |
journal |
The chemical engineering journal |
journalStr |
The chemical engineering journal |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
author_browse |
Li, Shumeng Yang, Fujun Sun, Xinxin Wang, Yuequan Zhang, Xuanbo Zhang, Shenwu Zhang, Haotian Kan, Qiming Sun, Jin He, Zhonggui Luo, Cong |
container_volume |
426 |
class |
660.05 DE-101 660 DE-101 660 DE-600 58.10 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Li, Shumeng |
doi_str_mv |
10.1016/j.cej.2021.130838 |
normlink |
(ORCID)0000-0002-0506-9598 |
normlink_prefix_str_mv |
(orcid)0000-0002-0506-9598 |
dewey-full |
660.05 660 |
author2-role |
verfasserin |
title_sort |
precisely engineering a carrier-free hybrid nanoassembly for multimodal dna damage-augmented photodynamic therapy |
title_auth |
Precisely engineering a carrier-free hybrid nanoassembly for multimodal DNA damage-augmented photodynamic therapy |
abstract |
Photodynamic therapy (PDT) has been extensively explored for cancer treatment. There is growing evidence showing that oxidative DNA damage caused by the vast accumulation of reactive oxygen species (ROS) in tumor cells plays a dominant role in accelerating cell apoptosis. Nevertheless, the repair pathways of aberrant DNA in tumor cells help reduce and reverse such damage. Thus, a precise combination of photodynamic photosensitizers and DNA repair inhibitors is expected to significantly augment the PDT efficacy. But it remains challenging to achieve accurate co-delivery of two drugs into the target sites. Herein, an ingenious dual-drug assembly modality is developed to precisely engineer a novel co-delivery nanomedicine. For proof-of-concept, a carrier-free hybrid nanoassembly of etoposide (VP-16) and pyropheophorbide a (PPa) is elaborately fabricated for multimodal DNA damage-mediated synergistic cancer therapy. Generally, this study exhibits a facile and practical dual-drug co-assembly engineering strategy, constructs an efficient and versatile co-delivery nanoplatform, and enables significant combination anticancer efficacy in vitro and in vivo. Such a dual-drug hybrid nanoassembly has the potential to be utilized as a promising nanomedicine for clinical multimodal cancer therapy. |
abstractGer |
Photodynamic therapy (PDT) has been extensively explored for cancer treatment. There is growing evidence showing that oxidative DNA damage caused by the vast accumulation of reactive oxygen species (ROS) in tumor cells plays a dominant role in accelerating cell apoptosis. Nevertheless, the repair pathways of aberrant DNA in tumor cells help reduce and reverse such damage. Thus, a precise combination of photodynamic photosensitizers and DNA repair inhibitors is expected to significantly augment the PDT efficacy. But it remains challenging to achieve accurate co-delivery of two drugs into the target sites. Herein, an ingenious dual-drug assembly modality is developed to precisely engineer a novel co-delivery nanomedicine. For proof-of-concept, a carrier-free hybrid nanoassembly of etoposide (VP-16) and pyropheophorbide a (PPa) is elaborately fabricated for multimodal DNA damage-mediated synergistic cancer therapy. Generally, this study exhibits a facile and practical dual-drug co-assembly engineering strategy, constructs an efficient and versatile co-delivery nanoplatform, and enables significant combination anticancer efficacy in vitro and in vivo. Such a dual-drug hybrid nanoassembly has the potential to be utilized as a promising nanomedicine for clinical multimodal cancer therapy. |
abstract_unstemmed |
Photodynamic therapy (PDT) has been extensively explored for cancer treatment. There is growing evidence showing that oxidative DNA damage caused by the vast accumulation of reactive oxygen species (ROS) in tumor cells plays a dominant role in accelerating cell apoptosis. Nevertheless, the repair pathways of aberrant DNA in tumor cells help reduce and reverse such damage. Thus, a precise combination of photodynamic photosensitizers and DNA repair inhibitors is expected to significantly augment the PDT efficacy. But it remains challenging to achieve accurate co-delivery of two drugs into the target sites. Herein, an ingenious dual-drug assembly modality is developed to precisely engineer a novel co-delivery nanomedicine. For proof-of-concept, a carrier-free hybrid nanoassembly of etoposide (VP-16) and pyropheophorbide a (PPa) is elaborately fabricated for multimodal DNA damage-mediated synergistic cancer therapy. Generally, this study exhibits a facile and practical dual-drug co-assembly engineering strategy, constructs an efficient and versatile co-delivery nanoplatform, and enables significant combination anticancer efficacy in vitro and in vivo. Such a dual-drug hybrid nanoassembly has the potential to be utilized as a promising nanomedicine for clinical multimodal cancer therapy. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Precisely engineering a carrier-free hybrid nanoassembly for multimodal DNA damage-augmented photodynamic therapy |
remote_bool |
true |
author2 |
Yang, Fujun Sun, Xinxin Wang, Yuequan Zhang, Xuanbo Zhang, Shenwu Zhang, Haotian Kan, Qiming Sun, Jin He, Zhonggui Luo, Cong |
author2Str |
Yang, Fujun Sun, Xinxin Wang, Yuequan Zhang, Xuanbo Zhang, Shenwu Zhang, Haotian Kan, Qiming Sun, Jin He, Zhonggui Luo, Cong |
ppnlink |
320500322 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.cej.2021.130838 |
up_date |
2024-07-06T22:50:50.830Z |
_version_ |
1803871847272415232 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV006874592</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524131738.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230506s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.cej.2021.130838</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV006874592</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1385-8947(21)02423-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">660.05</subfield><subfield code="q">DE-101</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">DE-101</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.10</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Shumeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Precisely engineering a carrier-free hybrid nanoassembly for multimodal DNA damage-augmented photodynamic therapy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Photodynamic therapy (PDT) has been extensively explored for cancer treatment. There is growing evidence showing that oxidative DNA damage caused by the vast accumulation of reactive oxygen species (ROS) in tumor cells plays a dominant role in accelerating cell apoptosis. Nevertheless, the repair pathways of aberrant DNA in tumor cells help reduce and reverse such damage. Thus, a precise combination of photodynamic photosensitizers and DNA repair inhibitors is expected to significantly augment the PDT efficacy. But it remains challenging to achieve accurate co-delivery of two drugs into the target sites. Herein, an ingenious dual-drug assembly modality is developed to precisely engineer a novel co-delivery nanomedicine. For proof-of-concept, a carrier-free hybrid nanoassembly of etoposide (VP-16) and pyropheophorbide a (PPa) is elaborately fabricated for multimodal DNA damage-mediated synergistic cancer therapy. Generally, this study exhibits a facile and practical dual-drug co-assembly engineering strategy, constructs an efficient and versatile co-delivery nanoplatform, and enables significant combination anticancer efficacy in vitro and in vivo. Such a dual-drug hybrid nanoassembly has the potential to be utilized as a promising nanomedicine for clinical multimodal cancer therapy.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DNA repair inhibitor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photosensitizer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hybrid nanoassembly</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photodynamic therapy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multimodal cancer treatment</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Fujun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Xinxin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Yuequan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Xuanbo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Shenwu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Haotian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kan, Qiming</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Jin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">He, Zhonggui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Luo, Cong</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-0506-9598</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The chemical engineering journal</subfield><subfield code="d">Amsterdam : Elsevier, 1997</subfield><subfield code="g">426</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320500322</subfield><subfield code="w">(DE-600)2012137-4</subfield><subfield code="w">(DE-576)098330152</subfield><subfield code="x">1873-3212</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:426</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.10</subfield><subfield code="j">Verfahrenstechnik: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">426</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">660.05</subfield></datafield></record></collection>
|
score |
7.402669 |