Structured nonnegative matrix factorization for traffic flow estimation of large cloud networks
Network traffic matrix estimation is an ill-posed linear inverse problem: it requires to estimate the unobservable origin destination traffic flows, X , given the observable link traffic flows, Y , and a binary routing matrix,...
Ausführliche Beschreibung
Autor*in: |
Atif, Syed Muhammad [verfasserIn] Gillis, Nicolas [verfasserIn] Qazi, Sameer [verfasserIn] Naseem, Imran [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
Network traffic matrix estimation |
---|
Übergeordnetes Werk: |
Enthalten in: Computer networks - Amsterdam [u.a.] : Elsevier, 1976, 201 |
---|---|
Übergeordnetes Werk: |
volume:201 |
DOI / URN: |
10.1016/j.comnet.2021.108564 |
---|
Katalog-ID: |
ELV006982557 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV006982557 | ||
003 | DE-627 | ||
005 | 20230524145035.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230506s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.comnet.2021.108564 |2 doi | |
035 | |a (DE-627)ELV006982557 | ||
035 | |a (ELSEVIER)S1389-1286(21)00477-1 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |a 620 |q DE-600 |
084 | |a 54.32 |2 bkl | ||
084 | |a 53.76 |2 bkl | ||
100 | 1 | |a Atif, Syed Muhammad |e verfasserin |0 (orcid)0000-0001-8490-4426 |4 aut | |
245 | 1 | 0 | |a Structured nonnegative matrix factorization for traffic flow estimation of large cloud networks |
264 | 1 | |c 2021 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Network traffic matrix estimation is an ill-posed linear inverse problem: it requires to estimate the unobservable origin destination traffic flows, X , given the observable link traffic flows, Y , and a binary routing matrix, A , which are such that Y = A X . This is a challenging but vital problem as accurate estimation of OD flows is required for several network management tasks. In this paper, we propose a novel model for the network traffic matrix estimation problem which maps high-dimension OD flows to low-dimension latent flows with the following three constraints: (1) nonnegativity constraint on the estimated OD flows, (2) autoregression constraint that enables the proposed model to effectively capture temporal patterns of the OD flows, and (3) orthogonality constraint that ensures the mapping between low-dimensional latent flows and the corresponding link flows to be distance preserving. The parameters of the proposed model are estimated with a training algorithm based on Nesterov accelerated gradient and generally shows fast convergence. We validate the proposed traffic flow estimation model on two real backbone IP network datasets, namely Internet2 and GÉANT. Empirical results show that the proposed model outperforms the state-of-the-art models not only in terms of tracking the individual OD flows but also in terms of standard performance metrics. The proposed model is also found to be highly scalable compared to the existing state-of-the-art approaches. | ||
650 | 4 | |a Network traffic matrix estimation | |
650 | 4 | |a Nonnegative matrix factorization | |
650 | 4 | |a Nesterov accelerated gradient | |
650 | 4 | |a Autoregressive model | |
650 | 4 | |a Graph embedding | |
650 | 4 | |a Distance preserving transformation | |
700 | 1 | |a Gillis, Nicolas |e verfasserin |4 aut | |
700 | 1 | |a Qazi, Sameer |e verfasserin |0 (orcid)0000-0003-3332-889X |4 aut | |
700 | 1 | |a Naseem, Imran |e verfasserin |0 (orcid)0000-0003-4429-0049 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Computer networks |d Amsterdam [u.a.] : Elsevier, 1976 |g 201 |h Online-Ressource |w (DE-627)306652749 |w (DE-600)1499744-7 |w (DE-576)081954360 |7 nnns |
773 | 1 | 8 | |g volume:201 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 54.32 |j Rechnerkommunikation |
936 | b | k | |a 53.76 |j Kommunikationsdienste |j Fernmeldetechnik |
951 | |a AR | ||
952 | |d 201 |
author_variant |
s m a sm sma n g ng s q sq i n in |
---|---|
matchkey_str |
atifsyedmuhammadgillisnicolasqazisameern:2021----:tutrdongtvmtifcoiainotafclwsiai |
hierarchy_sort_str |
2021 |
bklnumber |
54.32 53.76 |
publishDate |
2021 |
allfields |
10.1016/j.comnet.2021.108564 doi (DE-627)ELV006982557 (ELSEVIER)S1389-1286(21)00477-1 DE-627 ger DE-627 rda eng 004 620 DE-600 54.32 bkl 53.76 bkl Atif, Syed Muhammad verfasserin (orcid)0000-0001-8490-4426 aut Structured nonnegative matrix factorization for traffic flow estimation of large cloud networks 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Network traffic matrix estimation is an ill-posed linear inverse problem: it requires to estimate the unobservable origin destination traffic flows, X , given the observable link traffic flows, Y , and a binary routing matrix, A , which are such that Y = A X . This is a challenging but vital problem as accurate estimation of OD flows is required for several network management tasks. In this paper, we propose a novel model for the network traffic matrix estimation problem which maps high-dimension OD flows to low-dimension latent flows with the following three constraints: (1) nonnegativity constraint on the estimated OD flows, (2) autoregression constraint that enables the proposed model to effectively capture temporal patterns of the OD flows, and (3) orthogonality constraint that ensures the mapping between low-dimensional latent flows and the corresponding link flows to be distance preserving. The parameters of the proposed model are estimated with a training algorithm based on Nesterov accelerated gradient and generally shows fast convergence. We validate the proposed traffic flow estimation model on two real backbone IP network datasets, namely Internet2 and GÉANT. Empirical results show that the proposed model outperforms the state-of-the-art models not only in terms of tracking the individual OD flows but also in terms of standard performance metrics. The proposed model is also found to be highly scalable compared to the existing state-of-the-art approaches. Network traffic matrix estimation Nonnegative matrix factorization Nesterov accelerated gradient Autoregressive model Graph embedding Distance preserving transformation Gillis, Nicolas verfasserin aut Qazi, Sameer verfasserin (orcid)0000-0003-3332-889X aut Naseem, Imran verfasserin (orcid)0000-0003-4429-0049 aut Enthalten in Computer networks Amsterdam [u.a.] : Elsevier, 1976 201 Online-Ressource (DE-627)306652749 (DE-600)1499744-7 (DE-576)081954360 nnns volume:201 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.32 Rechnerkommunikation 53.76 Kommunikationsdienste Fernmeldetechnik AR 201 |
spelling |
10.1016/j.comnet.2021.108564 doi (DE-627)ELV006982557 (ELSEVIER)S1389-1286(21)00477-1 DE-627 ger DE-627 rda eng 004 620 DE-600 54.32 bkl 53.76 bkl Atif, Syed Muhammad verfasserin (orcid)0000-0001-8490-4426 aut Structured nonnegative matrix factorization for traffic flow estimation of large cloud networks 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Network traffic matrix estimation is an ill-posed linear inverse problem: it requires to estimate the unobservable origin destination traffic flows, X , given the observable link traffic flows, Y , and a binary routing matrix, A , which are such that Y = A X . This is a challenging but vital problem as accurate estimation of OD flows is required for several network management tasks. In this paper, we propose a novel model for the network traffic matrix estimation problem which maps high-dimension OD flows to low-dimension latent flows with the following three constraints: (1) nonnegativity constraint on the estimated OD flows, (2) autoregression constraint that enables the proposed model to effectively capture temporal patterns of the OD flows, and (3) orthogonality constraint that ensures the mapping between low-dimensional latent flows and the corresponding link flows to be distance preserving. The parameters of the proposed model are estimated with a training algorithm based on Nesterov accelerated gradient and generally shows fast convergence. We validate the proposed traffic flow estimation model on two real backbone IP network datasets, namely Internet2 and GÉANT. Empirical results show that the proposed model outperforms the state-of-the-art models not only in terms of tracking the individual OD flows but also in terms of standard performance metrics. The proposed model is also found to be highly scalable compared to the existing state-of-the-art approaches. Network traffic matrix estimation Nonnegative matrix factorization Nesterov accelerated gradient Autoregressive model Graph embedding Distance preserving transformation Gillis, Nicolas verfasserin aut Qazi, Sameer verfasserin (orcid)0000-0003-3332-889X aut Naseem, Imran verfasserin (orcid)0000-0003-4429-0049 aut Enthalten in Computer networks Amsterdam [u.a.] : Elsevier, 1976 201 Online-Ressource (DE-627)306652749 (DE-600)1499744-7 (DE-576)081954360 nnns volume:201 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.32 Rechnerkommunikation 53.76 Kommunikationsdienste Fernmeldetechnik AR 201 |
allfields_unstemmed |
10.1016/j.comnet.2021.108564 doi (DE-627)ELV006982557 (ELSEVIER)S1389-1286(21)00477-1 DE-627 ger DE-627 rda eng 004 620 DE-600 54.32 bkl 53.76 bkl Atif, Syed Muhammad verfasserin (orcid)0000-0001-8490-4426 aut Structured nonnegative matrix factorization for traffic flow estimation of large cloud networks 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Network traffic matrix estimation is an ill-posed linear inverse problem: it requires to estimate the unobservable origin destination traffic flows, X , given the observable link traffic flows, Y , and a binary routing matrix, A , which are such that Y = A X . This is a challenging but vital problem as accurate estimation of OD flows is required for several network management tasks. In this paper, we propose a novel model for the network traffic matrix estimation problem which maps high-dimension OD flows to low-dimension latent flows with the following three constraints: (1) nonnegativity constraint on the estimated OD flows, (2) autoregression constraint that enables the proposed model to effectively capture temporal patterns of the OD flows, and (3) orthogonality constraint that ensures the mapping between low-dimensional latent flows and the corresponding link flows to be distance preserving. The parameters of the proposed model are estimated with a training algorithm based on Nesterov accelerated gradient and generally shows fast convergence. We validate the proposed traffic flow estimation model on two real backbone IP network datasets, namely Internet2 and GÉANT. Empirical results show that the proposed model outperforms the state-of-the-art models not only in terms of tracking the individual OD flows but also in terms of standard performance metrics. The proposed model is also found to be highly scalable compared to the existing state-of-the-art approaches. Network traffic matrix estimation Nonnegative matrix factorization Nesterov accelerated gradient Autoregressive model Graph embedding Distance preserving transformation Gillis, Nicolas verfasserin aut Qazi, Sameer verfasserin (orcid)0000-0003-3332-889X aut Naseem, Imran verfasserin (orcid)0000-0003-4429-0049 aut Enthalten in Computer networks Amsterdam [u.a.] : Elsevier, 1976 201 Online-Ressource (DE-627)306652749 (DE-600)1499744-7 (DE-576)081954360 nnns volume:201 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.32 Rechnerkommunikation 53.76 Kommunikationsdienste Fernmeldetechnik AR 201 |
allfieldsGer |
10.1016/j.comnet.2021.108564 doi (DE-627)ELV006982557 (ELSEVIER)S1389-1286(21)00477-1 DE-627 ger DE-627 rda eng 004 620 DE-600 54.32 bkl 53.76 bkl Atif, Syed Muhammad verfasserin (orcid)0000-0001-8490-4426 aut Structured nonnegative matrix factorization for traffic flow estimation of large cloud networks 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Network traffic matrix estimation is an ill-posed linear inverse problem: it requires to estimate the unobservable origin destination traffic flows, X , given the observable link traffic flows, Y , and a binary routing matrix, A , which are such that Y = A X . This is a challenging but vital problem as accurate estimation of OD flows is required for several network management tasks. In this paper, we propose a novel model for the network traffic matrix estimation problem which maps high-dimension OD flows to low-dimension latent flows with the following three constraints: (1) nonnegativity constraint on the estimated OD flows, (2) autoregression constraint that enables the proposed model to effectively capture temporal patterns of the OD flows, and (3) orthogonality constraint that ensures the mapping between low-dimensional latent flows and the corresponding link flows to be distance preserving. The parameters of the proposed model are estimated with a training algorithm based on Nesterov accelerated gradient and generally shows fast convergence. We validate the proposed traffic flow estimation model on two real backbone IP network datasets, namely Internet2 and GÉANT. Empirical results show that the proposed model outperforms the state-of-the-art models not only in terms of tracking the individual OD flows but also in terms of standard performance metrics. The proposed model is also found to be highly scalable compared to the existing state-of-the-art approaches. Network traffic matrix estimation Nonnegative matrix factorization Nesterov accelerated gradient Autoregressive model Graph embedding Distance preserving transformation Gillis, Nicolas verfasserin aut Qazi, Sameer verfasserin (orcid)0000-0003-3332-889X aut Naseem, Imran verfasserin (orcid)0000-0003-4429-0049 aut Enthalten in Computer networks Amsterdam [u.a.] : Elsevier, 1976 201 Online-Ressource (DE-627)306652749 (DE-600)1499744-7 (DE-576)081954360 nnns volume:201 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.32 Rechnerkommunikation 53.76 Kommunikationsdienste Fernmeldetechnik AR 201 |
allfieldsSound |
10.1016/j.comnet.2021.108564 doi (DE-627)ELV006982557 (ELSEVIER)S1389-1286(21)00477-1 DE-627 ger DE-627 rda eng 004 620 DE-600 54.32 bkl 53.76 bkl Atif, Syed Muhammad verfasserin (orcid)0000-0001-8490-4426 aut Structured nonnegative matrix factorization for traffic flow estimation of large cloud networks 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Network traffic matrix estimation is an ill-posed linear inverse problem: it requires to estimate the unobservable origin destination traffic flows, X , given the observable link traffic flows, Y , and a binary routing matrix, A , which are such that Y = A X . This is a challenging but vital problem as accurate estimation of OD flows is required for several network management tasks. In this paper, we propose a novel model for the network traffic matrix estimation problem which maps high-dimension OD flows to low-dimension latent flows with the following three constraints: (1) nonnegativity constraint on the estimated OD flows, (2) autoregression constraint that enables the proposed model to effectively capture temporal patterns of the OD flows, and (3) orthogonality constraint that ensures the mapping between low-dimensional latent flows and the corresponding link flows to be distance preserving. The parameters of the proposed model are estimated with a training algorithm based on Nesterov accelerated gradient and generally shows fast convergence. We validate the proposed traffic flow estimation model on two real backbone IP network datasets, namely Internet2 and GÉANT. Empirical results show that the proposed model outperforms the state-of-the-art models not only in terms of tracking the individual OD flows but also in terms of standard performance metrics. The proposed model is also found to be highly scalable compared to the existing state-of-the-art approaches. Network traffic matrix estimation Nonnegative matrix factorization Nesterov accelerated gradient Autoregressive model Graph embedding Distance preserving transformation Gillis, Nicolas verfasserin aut Qazi, Sameer verfasserin (orcid)0000-0003-3332-889X aut Naseem, Imran verfasserin (orcid)0000-0003-4429-0049 aut Enthalten in Computer networks Amsterdam [u.a.] : Elsevier, 1976 201 Online-Ressource (DE-627)306652749 (DE-600)1499744-7 (DE-576)081954360 nnns volume:201 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.32 Rechnerkommunikation 53.76 Kommunikationsdienste Fernmeldetechnik AR 201 |
language |
English |
source |
Enthalten in Computer networks 201 volume:201 |
sourceStr |
Enthalten in Computer networks 201 volume:201 |
format_phy_str_mv |
Article |
bklname |
Rechnerkommunikation Kommunikationsdienste Fernmeldetechnik |
institution |
findex.gbv.de |
topic_facet |
Network traffic matrix estimation Nonnegative matrix factorization Nesterov accelerated gradient Autoregressive model Graph embedding Distance preserving transformation |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Computer networks |
authorswithroles_txt_mv |
Atif, Syed Muhammad @@aut@@ Gillis, Nicolas @@aut@@ Qazi, Sameer @@aut@@ Naseem, Imran @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
306652749 |
dewey-sort |
14 |
id |
ELV006982557 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV006982557</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524145035.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230506s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.comnet.2021.108564</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV006982557</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1389-1286(21)00477-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.32</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.76</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Atif, Syed Muhammad</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-8490-4426</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Structured nonnegative matrix factorization for traffic flow estimation of large cloud networks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Network traffic matrix estimation is an ill-posed linear inverse problem: it requires to estimate the unobservable origin destination traffic flows, X , given the observable link traffic flows, Y , and a binary routing matrix, A , which are such that Y = A X . This is a challenging but vital problem as accurate estimation of OD flows is required for several network management tasks. In this paper, we propose a novel model for the network traffic matrix estimation problem which maps high-dimension OD flows to low-dimension latent flows with the following three constraints: (1) nonnegativity constraint on the estimated OD flows, (2) autoregression constraint that enables the proposed model to effectively capture temporal patterns of the OD flows, and (3) orthogonality constraint that ensures the mapping between low-dimensional latent flows and the corresponding link flows to be distance preserving. The parameters of the proposed model are estimated with a training algorithm based on Nesterov accelerated gradient and generally shows fast convergence. We validate the proposed traffic flow estimation model on two real backbone IP network datasets, namely Internet2 and GÉANT. Empirical results show that the proposed model outperforms the state-of-the-art models not only in terms of tracking the individual OD flows but also in terms of standard performance metrics. The proposed model is also found to be highly scalable compared to the existing state-of-the-art approaches.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Network traffic matrix estimation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonnegative matrix factorization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nesterov accelerated gradient</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Autoregressive model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graph embedding</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distance preserving transformation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gillis, Nicolas</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qazi, Sameer</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-3332-889X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Naseem, Imran</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-4429-0049</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Computer networks</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1976</subfield><subfield code="g">201</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306652749</subfield><subfield code="w">(DE-600)1499744-7</subfield><subfield code="w">(DE-576)081954360</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:201</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.32</subfield><subfield code="j">Rechnerkommunikation</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.76</subfield><subfield code="j">Kommunikationsdienste</subfield><subfield code="j">Fernmeldetechnik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">201</subfield></datafield></record></collection>
|
author |
Atif, Syed Muhammad |
spellingShingle |
Atif, Syed Muhammad ddc 004 bkl 54.32 bkl 53.76 misc Network traffic matrix estimation misc Nonnegative matrix factorization misc Nesterov accelerated gradient misc Autoregressive model misc Graph embedding misc Distance preserving transformation Structured nonnegative matrix factorization for traffic flow estimation of large cloud networks |
authorStr |
Atif, Syed Muhammad |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)306652749 |
format |
electronic Article |
dewey-ones |
004 - Data processing & computer science 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
004 620 DE-600 54.32 bkl 53.76 bkl Structured nonnegative matrix factorization for traffic flow estimation of large cloud networks Network traffic matrix estimation Nonnegative matrix factorization Nesterov accelerated gradient Autoregressive model Graph embedding Distance preserving transformation |
topic |
ddc 004 bkl 54.32 bkl 53.76 misc Network traffic matrix estimation misc Nonnegative matrix factorization misc Nesterov accelerated gradient misc Autoregressive model misc Graph embedding misc Distance preserving transformation |
topic_unstemmed |
ddc 004 bkl 54.32 bkl 53.76 misc Network traffic matrix estimation misc Nonnegative matrix factorization misc Nesterov accelerated gradient misc Autoregressive model misc Graph embedding misc Distance preserving transformation |
topic_browse |
ddc 004 bkl 54.32 bkl 53.76 misc Network traffic matrix estimation misc Nonnegative matrix factorization misc Nesterov accelerated gradient misc Autoregressive model misc Graph embedding misc Distance preserving transformation |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Computer networks |
hierarchy_parent_id |
306652749 |
dewey-tens |
000 - Computer science, knowledge & systems 620 - Engineering |
hierarchy_top_title |
Computer networks |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)306652749 (DE-600)1499744-7 (DE-576)081954360 |
title |
Structured nonnegative matrix factorization for traffic flow estimation of large cloud networks |
ctrlnum |
(DE-627)ELV006982557 (ELSEVIER)S1389-1286(21)00477-1 |
title_full |
Structured nonnegative matrix factorization for traffic flow estimation of large cloud networks |
author_sort |
Atif, Syed Muhammad |
journal |
Computer networks |
journalStr |
Computer networks |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works 600 - Technology |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
author_browse |
Atif, Syed Muhammad Gillis, Nicolas Qazi, Sameer Naseem, Imran |
container_volume |
201 |
class |
004 620 DE-600 54.32 bkl 53.76 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Atif, Syed Muhammad |
doi_str_mv |
10.1016/j.comnet.2021.108564 |
normlink |
(ORCID)0000-0001-8490-4426 (ORCID)0000-0003-3332-889X (ORCID)0000-0003-4429-0049 |
normlink_prefix_str_mv |
(orcid)0000-0001-8490-4426 (orcid)0000-0003-3332-889X (orcid)0000-0003-4429-0049 |
dewey-full |
004 620 |
author2-role |
verfasserin |
title_sort |
structured nonnegative matrix factorization for traffic flow estimation of large cloud networks |
title_auth |
Structured nonnegative matrix factorization for traffic flow estimation of large cloud networks |
abstract |
Network traffic matrix estimation is an ill-posed linear inverse problem: it requires to estimate the unobservable origin destination traffic flows, X , given the observable link traffic flows, Y , and a binary routing matrix, A , which are such that Y = A X . This is a challenging but vital problem as accurate estimation of OD flows is required for several network management tasks. In this paper, we propose a novel model for the network traffic matrix estimation problem which maps high-dimension OD flows to low-dimension latent flows with the following three constraints: (1) nonnegativity constraint on the estimated OD flows, (2) autoregression constraint that enables the proposed model to effectively capture temporal patterns of the OD flows, and (3) orthogonality constraint that ensures the mapping between low-dimensional latent flows and the corresponding link flows to be distance preserving. The parameters of the proposed model are estimated with a training algorithm based on Nesterov accelerated gradient and generally shows fast convergence. We validate the proposed traffic flow estimation model on two real backbone IP network datasets, namely Internet2 and GÉANT. Empirical results show that the proposed model outperforms the state-of-the-art models not only in terms of tracking the individual OD flows but also in terms of standard performance metrics. The proposed model is also found to be highly scalable compared to the existing state-of-the-art approaches. |
abstractGer |
Network traffic matrix estimation is an ill-posed linear inverse problem: it requires to estimate the unobservable origin destination traffic flows, X , given the observable link traffic flows, Y , and a binary routing matrix, A , which are such that Y = A X . This is a challenging but vital problem as accurate estimation of OD flows is required for several network management tasks. In this paper, we propose a novel model for the network traffic matrix estimation problem which maps high-dimension OD flows to low-dimension latent flows with the following three constraints: (1) nonnegativity constraint on the estimated OD flows, (2) autoregression constraint that enables the proposed model to effectively capture temporal patterns of the OD flows, and (3) orthogonality constraint that ensures the mapping between low-dimensional latent flows and the corresponding link flows to be distance preserving. The parameters of the proposed model are estimated with a training algorithm based on Nesterov accelerated gradient and generally shows fast convergence. We validate the proposed traffic flow estimation model on two real backbone IP network datasets, namely Internet2 and GÉANT. Empirical results show that the proposed model outperforms the state-of-the-art models not only in terms of tracking the individual OD flows but also in terms of standard performance metrics. The proposed model is also found to be highly scalable compared to the existing state-of-the-art approaches. |
abstract_unstemmed |
Network traffic matrix estimation is an ill-posed linear inverse problem: it requires to estimate the unobservable origin destination traffic flows, X , given the observable link traffic flows, Y , and a binary routing matrix, A , which are such that Y = A X . This is a challenging but vital problem as accurate estimation of OD flows is required for several network management tasks. In this paper, we propose a novel model for the network traffic matrix estimation problem which maps high-dimension OD flows to low-dimension latent flows with the following three constraints: (1) nonnegativity constraint on the estimated OD flows, (2) autoregression constraint that enables the proposed model to effectively capture temporal patterns of the OD flows, and (3) orthogonality constraint that ensures the mapping between low-dimensional latent flows and the corresponding link flows to be distance preserving. The parameters of the proposed model are estimated with a training algorithm based on Nesterov accelerated gradient and generally shows fast convergence. We validate the proposed traffic flow estimation model on two real backbone IP network datasets, namely Internet2 and GÉANT. Empirical results show that the proposed model outperforms the state-of-the-art models not only in terms of tracking the individual OD flows but also in terms of standard performance metrics. The proposed model is also found to be highly scalable compared to the existing state-of-the-art approaches. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Structured nonnegative matrix factorization for traffic flow estimation of large cloud networks |
remote_bool |
true |
author2 |
Gillis, Nicolas Qazi, Sameer Naseem, Imran |
author2Str |
Gillis, Nicolas Qazi, Sameer Naseem, Imran |
ppnlink |
306652749 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.comnet.2021.108564 |
up_date |
2024-07-06T23:12:55.479Z |
_version_ |
1803873236266516480 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV006982557</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524145035.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230506s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.comnet.2021.108564</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV006982557</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1389-1286(21)00477-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.32</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.76</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Atif, Syed Muhammad</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-8490-4426</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Structured nonnegative matrix factorization for traffic flow estimation of large cloud networks</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Network traffic matrix estimation is an ill-posed linear inverse problem: it requires to estimate the unobservable origin destination traffic flows, X , given the observable link traffic flows, Y , and a binary routing matrix, A , which are such that Y = A X . This is a challenging but vital problem as accurate estimation of OD flows is required for several network management tasks. In this paper, we propose a novel model for the network traffic matrix estimation problem which maps high-dimension OD flows to low-dimension latent flows with the following three constraints: (1) nonnegativity constraint on the estimated OD flows, (2) autoregression constraint that enables the proposed model to effectively capture temporal patterns of the OD flows, and (3) orthogonality constraint that ensures the mapping between low-dimensional latent flows and the corresponding link flows to be distance preserving. The parameters of the proposed model are estimated with a training algorithm based on Nesterov accelerated gradient and generally shows fast convergence. We validate the proposed traffic flow estimation model on two real backbone IP network datasets, namely Internet2 and GÉANT. Empirical results show that the proposed model outperforms the state-of-the-art models not only in terms of tracking the individual OD flows but also in terms of standard performance metrics. The proposed model is also found to be highly scalable compared to the existing state-of-the-art approaches.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Network traffic matrix estimation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonnegative matrix factorization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nesterov accelerated gradient</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Autoregressive model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graph embedding</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distance preserving transformation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gillis, Nicolas</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qazi, Sameer</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-3332-889X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Naseem, Imran</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-4429-0049</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Computer networks</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1976</subfield><subfield code="g">201</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306652749</subfield><subfield code="w">(DE-600)1499744-7</subfield><subfield code="w">(DE-576)081954360</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:201</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.32</subfield><subfield code="j">Rechnerkommunikation</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.76</subfield><subfield code="j">Kommunikationsdienste</subfield><subfield code="j">Fernmeldetechnik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">201</subfield></datafield></record></collection>
|
score |
7.4020147 |