Microstructure regulation of porous polybenzimidazole proton conductive membranes for high-performance vanadium redox flow battery
As one of the important parts of vanadium redox flow battery (VRFB), the proton conductive membrane (PCM) should have high proton selectivity (PS) of H+ to VO2+ in addition to the specific properties, such as outstanding oxidative stability, long lifetime and low price. However, polybenzimidazole PC...
Ausführliche Beschreibung
Autor*in: |
Ding, Liming [verfasserIn] Wang, Yahui [verfasserIn] Wang, Lihua [verfasserIn] Han, Xutong [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
Vapor induced phase separation (VIPS) |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of membrane science - New York, NY [u.a.] : Elsevier, 1976, 642 |
---|---|
Übergeordnetes Werk: |
volume:642 |
DOI / URN: |
10.1016/j.memsci.2021.119934 |
---|
Katalog-ID: |
ELV006987540 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV006987540 | ||
003 | DE-627 | ||
005 | 20230524133518.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230506s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.memsci.2021.119934 |2 doi | |
035 | |a (DE-627)ELV006987540 | ||
035 | |a (ELSEVIER)S0376-7388(21)00877-2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 570 |q DE-600 |
084 | |a 58.11 |2 bkl | ||
100 | 1 | |a Ding, Liming |e verfasserin |4 aut | |
245 | 1 | 0 | |a Microstructure regulation of porous polybenzimidazole proton conductive membranes for high-performance vanadium redox flow battery |
264 | 1 | |c 2021 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a As one of the important parts of vanadium redox flow battery (VRFB), the proton conductive membrane (PCM) should have high proton selectivity (PS) of H+ to VO2+ in addition to the specific properties, such as outstanding oxidative stability, long lifetime and low price. However, polybenzimidazole PCMs usually have lower proton transference resulting in lower PS. In this study, three kinds of porous poly (oxyphenylene benzimidazole) (OPBI) membrane, such as OPBI-MSA-VIPS membrane, OPBI-DMAc-VIPS membrane and OPBI-DMAc-NIPS membrane, formed respectively by vapor induced phase separation (VIPS) and non-solvent induced phase separation (NIPS) method, using methanesulfonic acid (MSA) and N,N-dimethylacetamide (DMAc) as solvent separately, are investigated to prepare a kind of high performance PCM with high PS. The OPBI-DMAc-NIPS membrane has a fingerlike microstructure with two dense skin layers. The OPBI-MSA-VIPS membrane has a uniform cellular-like microstructure with single dense skin layer, which endows the membrane's excellent vanadium resistance and high PS. The PS of OPBI-MSA-VIPS membrane is one order higher than that of OPBI-DMAc-VIPS membrane which has a spongy-like structure without dense skin layer. Furthermore, we study the effect of the polymer concentration on the structure and the corresponding battery properties of OPBI-MSA-VIPS membrane in detail. When the casting solution concentration is 6 wt % (P6 membrane),the PS reaches the highest, about 7.74 times higher than that of commercial Nafion 115. More importantly, P6 membrane displays relatively long cycling stability. The EE value of the VRFB equipped with P6 membrane maintains stability after 3000 cycles at the current density of 160 mA/cm2. This work highlights an excellent porous OPBI membrane that has the potential to be used as high performance PCM for new energy battery. | ||
650 | 4 | |a Polybenzimidazole | |
650 | 4 | |a Porous membrane | |
650 | 4 | |a Vapor induced phase separation (VIPS) | |
650 | 4 | |a Non-solvent induced phase separation (NIPS) | |
650 | 4 | |a Vanadium redox flow battery | |
700 | 1 | |a Wang, Yahui |e verfasserin |4 aut | |
700 | 1 | |a Wang, Lihua |e verfasserin |4 aut | |
700 | 1 | |a Han, Xutong |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of membrane science |d New York, NY [u.a.] : Elsevier, 1976 |g 642 |h Online-Ressource |w (DE-627)302468927 |w (DE-600)1491419-0 |w (DE-576)259483907 |x 0376-7388 |7 nnns |
773 | 1 | 8 | |g volume:642 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 58.11 |j Mechanische Verfahrenstechnik |
951 | |a AR | ||
952 | |d 642 |
author_variant |
l d ld y w yw l w lw x h xh |
---|---|
matchkey_str |
article:03767388:2021----::irsrcueeuainfoosoyezmdzlpoocnutvmmrnsohgpro |
hierarchy_sort_str |
2021 |
bklnumber |
58.11 |
publishDate |
2021 |
allfields |
10.1016/j.memsci.2021.119934 doi (DE-627)ELV006987540 (ELSEVIER)S0376-7388(21)00877-2 DE-627 ger DE-627 rda eng 570 DE-600 58.11 bkl Ding, Liming verfasserin aut Microstructure regulation of porous polybenzimidazole proton conductive membranes for high-performance vanadium redox flow battery 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier As one of the important parts of vanadium redox flow battery (VRFB), the proton conductive membrane (PCM) should have high proton selectivity (PS) of H+ to VO2+ in addition to the specific properties, such as outstanding oxidative stability, long lifetime and low price. However, polybenzimidazole PCMs usually have lower proton transference resulting in lower PS. In this study, three kinds of porous poly (oxyphenylene benzimidazole) (OPBI) membrane, such as OPBI-MSA-VIPS membrane, OPBI-DMAc-VIPS membrane and OPBI-DMAc-NIPS membrane, formed respectively by vapor induced phase separation (VIPS) and non-solvent induced phase separation (NIPS) method, using methanesulfonic acid (MSA) and N,N-dimethylacetamide (DMAc) as solvent separately, are investigated to prepare a kind of high performance PCM with high PS. The OPBI-DMAc-NIPS membrane has a fingerlike microstructure with two dense skin layers. The OPBI-MSA-VIPS membrane has a uniform cellular-like microstructure with single dense skin layer, which endows the membrane's excellent vanadium resistance and high PS. The PS of OPBI-MSA-VIPS membrane is one order higher than that of OPBI-DMAc-VIPS membrane which has a spongy-like structure without dense skin layer. Furthermore, we study the effect of the polymer concentration on the structure and the corresponding battery properties of OPBI-MSA-VIPS membrane in detail. When the casting solution concentration is 6 wt % (P6 membrane),the PS reaches the highest, about 7.74 times higher than that of commercial Nafion 115. More importantly, P6 membrane displays relatively long cycling stability. The EE value of the VRFB equipped with P6 membrane maintains stability after 3000 cycles at the current density of 160 mA/cm2. This work highlights an excellent porous OPBI membrane that has the potential to be used as high performance PCM for new energy battery. Polybenzimidazole Porous membrane Vapor induced phase separation (VIPS) Non-solvent induced phase separation (NIPS) Vanadium redox flow battery Wang, Yahui verfasserin aut Wang, Lihua verfasserin aut Han, Xutong verfasserin aut Enthalten in Journal of membrane science New York, NY [u.a.] : Elsevier, 1976 642 Online-Ressource (DE-627)302468927 (DE-600)1491419-0 (DE-576)259483907 0376-7388 nnns volume:642 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 58.11 Mechanische Verfahrenstechnik AR 642 |
spelling |
10.1016/j.memsci.2021.119934 doi (DE-627)ELV006987540 (ELSEVIER)S0376-7388(21)00877-2 DE-627 ger DE-627 rda eng 570 DE-600 58.11 bkl Ding, Liming verfasserin aut Microstructure regulation of porous polybenzimidazole proton conductive membranes for high-performance vanadium redox flow battery 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier As one of the important parts of vanadium redox flow battery (VRFB), the proton conductive membrane (PCM) should have high proton selectivity (PS) of H+ to VO2+ in addition to the specific properties, such as outstanding oxidative stability, long lifetime and low price. However, polybenzimidazole PCMs usually have lower proton transference resulting in lower PS. In this study, three kinds of porous poly (oxyphenylene benzimidazole) (OPBI) membrane, such as OPBI-MSA-VIPS membrane, OPBI-DMAc-VIPS membrane and OPBI-DMAc-NIPS membrane, formed respectively by vapor induced phase separation (VIPS) and non-solvent induced phase separation (NIPS) method, using methanesulfonic acid (MSA) and N,N-dimethylacetamide (DMAc) as solvent separately, are investigated to prepare a kind of high performance PCM with high PS. The OPBI-DMAc-NIPS membrane has a fingerlike microstructure with two dense skin layers. The OPBI-MSA-VIPS membrane has a uniform cellular-like microstructure with single dense skin layer, which endows the membrane's excellent vanadium resistance and high PS. The PS of OPBI-MSA-VIPS membrane is one order higher than that of OPBI-DMAc-VIPS membrane which has a spongy-like structure without dense skin layer. Furthermore, we study the effect of the polymer concentration on the structure and the corresponding battery properties of OPBI-MSA-VIPS membrane in detail. When the casting solution concentration is 6 wt % (P6 membrane),the PS reaches the highest, about 7.74 times higher than that of commercial Nafion 115. More importantly, P6 membrane displays relatively long cycling stability. The EE value of the VRFB equipped with P6 membrane maintains stability after 3000 cycles at the current density of 160 mA/cm2. This work highlights an excellent porous OPBI membrane that has the potential to be used as high performance PCM for new energy battery. Polybenzimidazole Porous membrane Vapor induced phase separation (VIPS) Non-solvent induced phase separation (NIPS) Vanadium redox flow battery Wang, Yahui verfasserin aut Wang, Lihua verfasserin aut Han, Xutong verfasserin aut Enthalten in Journal of membrane science New York, NY [u.a.] : Elsevier, 1976 642 Online-Ressource (DE-627)302468927 (DE-600)1491419-0 (DE-576)259483907 0376-7388 nnns volume:642 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 58.11 Mechanische Verfahrenstechnik AR 642 |
allfields_unstemmed |
10.1016/j.memsci.2021.119934 doi (DE-627)ELV006987540 (ELSEVIER)S0376-7388(21)00877-2 DE-627 ger DE-627 rda eng 570 DE-600 58.11 bkl Ding, Liming verfasserin aut Microstructure regulation of porous polybenzimidazole proton conductive membranes for high-performance vanadium redox flow battery 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier As one of the important parts of vanadium redox flow battery (VRFB), the proton conductive membrane (PCM) should have high proton selectivity (PS) of H+ to VO2+ in addition to the specific properties, such as outstanding oxidative stability, long lifetime and low price. However, polybenzimidazole PCMs usually have lower proton transference resulting in lower PS. In this study, three kinds of porous poly (oxyphenylene benzimidazole) (OPBI) membrane, such as OPBI-MSA-VIPS membrane, OPBI-DMAc-VIPS membrane and OPBI-DMAc-NIPS membrane, formed respectively by vapor induced phase separation (VIPS) and non-solvent induced phase separation (NIPS) method, using methanesulfonic acid (MSA) and N,N-dimethylacetamide (DMAc) as solvent separately, are investigated to prepare a kind of high performance PCM with high PS. The OPBI-DMAc-NIPS membrane has a fingerlike microstructure with two dense skin layers. The OPBI-MSA-VIPS membrane has a uniform cellular-like microstructure with single dense skin layer, which endows the membrane's excellent vanadium resistance and high PS. The PS of OPBI-MSA-VIPS membrane is one order higher than that of OPBI-DMAc-VIPS membrane which has a spongy-like structure without dense skin layer. Furthermore, we study the effect of the polymer concentration on the structure and the corresponding battery properties of OPBI-MSA-VIPS membrane in detail. When the casting solution concentration is 6 wt % (P6 membrane),the PS reaches the highest, about 7.74 times higher than that of commercial Nafion 115. More importantly, P6 membrane displays relatively long cycling stability. The EE value of the VRFB equipped with P6 membrane maintains stability after 3000 cycles at the current density of 160 mA/cm2. This work highlights an excellent porous OPBI membrane that has the potential to be used as high performance PCM for new energy battery. Polybenzimidazole Porous membrane Vapor induced phase separation (VIPS) Non-solvent induced phase separation (NIPS) Vanadium redox flow battery Wang, Yahui verfasserin aut Wang, Lihua verfasserin aut Han, Xutong verfasserin aut Enthalten in Journal of membrane science New York, NY [u.a.] : Elsevier, 1976 642 Online-Ressource (DE-627)302468927 (DE-600)1491419-0 (DE-576)259483907 0376-7388 nnns volume:642 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 58.11 Mechanische Verfahrenstechnik AR 642 |
allfieldsGer |
10.1016/j.memsci.2021.119934 doi (DE-627)ELV006987540 (ELSEVIER)S0376-7388(21)00877-2 DE-627 ger DE-627 rda eng 570 DE-600 58.11 bkl Ding, Liming verfasserin aut Microstructure regulation of porous polybenzimidazole proton conductive membranes for high-performance vanadium redox flow battery 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier As one of the important parts of vanadium redox flow battery (VRFB), the proton conductive membrane (PCM) should have high proton selectivity (PS) of H+ to VO2+ in addition to the specific properties, such as outstanding oxidative stability, long lifetime and low price. However, polybenzimidazole PCMs usually have lower proton transference resulting in lower PS. In this study, three kinds of porous poly (oxyphenylene benzimidazole) (OPBI) membrane, such as OPBI-MSA-VIPS membrane, OPBI-DMAc-VIPS membrane and OPBI-DMAc-NIPS membrane, formed respectively by vapor induced phase separation (VIPS) and non-solvent induced phase separation (NIPS) method, using methanesulfonic acid (MSA) and N,N-dimethylacetamide (DMAc) as solvent separately, are investigated to prepare a kind of high performance PCM with high PS. The OPBI-DMAc-NIPS membrane has a fingerlike microstructure with two dense skin layers. The OPBI-MSA-VIPS membrane has a uniform cellular-like microstructure with single dense skin layer, which endows the membrane's excellent vanadium resistance and high PS. The PS of OPBI-MSA-VIPS membrane is one order higher than that of OPBI-DMAc-VIPS membrane which has a spongy-like structure without dense skin layer. Furthermore, we study the effect of the polymer concentration on the structure and the corresponding battery properties of OPBI-MSA-VIPS membrane in detail. When the casting solution concentration is 6 wt % (P6 membrane),the PS reaches the highest, about 7.74 times higher than that of commercial Nafion 115. More importantly, P6 membrane displays relatively long cycling stability. The EE value of the VRFB equipped with P6 membrane maintains stability after 3000 cycles at the current density of 160 mA/cm2. This work highlights an excellent porous OPBI membrane that has the potential to be used as high performance PCM for new energy battery. Polybenzimidazole Porous membrane Vapor induced phase separation (VIPS) Non-solvent induced phase separation (NIPS) Vanadium redox flow battery Wang, Yahui verfasserin aut Wang, Lihua verfasserin aut Han, Xutong verfasserin aut Enthalten in Journal of membrane science New York, NY [u.a.] : Elsevier, 1976 642 Online-Ressource (DE-627)302468927 (DE-600)1491419-0 (DE-576)259483907 0376-7388 nnns volume:642 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 58.11 Mechanische Verfahrenstechnik AR 642 |
allfieldsSound |
10.1016/j.memsci.2021.119934 doi (DE-627)ELV006987540 (ELSEVIER)S0376-7388(21)00877-2 DE-627 ger DE-627 rda eng 570 DE-600 58.11 bkl Ding, Liming verfasserin aut Microstructure regulation of porous polybenzimidazole proton conductive membranes for high-performance vanadium redox flow battery 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier As one of the important parts of vanadium redox flow battery (VRFB), the proton conductive membrane (PCM) should have high proton selectivity (PS) of H+ to VO2+ in addition to the specific properties, such as outstanding oxidative stability, long lifetime and low price. However, polybenzimidazole PCMs usually have lower proton transference resulting in lower PS. In this study, three kinds of porous poly (oxyphenylene benzimidazole) (OPBI) membrane, such as OPBI-MSA-VIPS membrane, OPBI-DMAc-VIPS membrane and OPBI-DMAc-NIPS membrane, formed respectively by vapor induced phase separation (VIPS) and non-solvent induced phase separation (NIPS) method, using methanesulfonic acid (MSA) and N,N-dimethylacetamide (DMAc) as solvent separately, are investigated to prepare a kind of high performance PCM with high PS. The OPBI-DMAc-NIPS membrane has a fingerlike microstructure with two dense skin layers. The OPBI-MSA-VIPS membrane has a uniform cellular-like microstructure with single dense skin layer, which endows the membrane's excellent vanadium resistance and high PS. The PS of OPBI-MSA-VIPS membrane is one order higher than that of OPBI-DMAc-VIPS membrane which has a spongy-like structure without dense skin layer. Furthermore, we study the effect of the polymer concentration on the structure and the corresponding battery properties of OPBI-MSA-VIPS membrane in detail. When the casting solution concentration is 6 wt % (P6 membrane),the PS reaches the highest, about 7.74 times higher than that of commercial Nafion 115. More importantly, P6 membrane displays relatively long cycling stability. The EE value of the VRFB equipped with P6 membrane maintains stability after 3000 cycles at the current density of 160 mA/cm2. This work highlights an excellent porous OPBI membrane that has the potential to be used as high performance PCM for new energy battery. Polybenzimidazole Porous membrane Vapor induced phase separation (VIPS) Non-solvent induced phase separation (NIPS) Vanadium redox flow battery Wang, Yahui verfasserin aut Wang, Lihua verfasserin aut Han, Xutong verfasserin aut Enthalten in Journal of membrane science New York, NY [u.a.] : Elsevier, 1976 642 Online-Ressource (DE-627)302468927 (DE-600)1491419-0 (DE-576)259483907 0376-7388 nnns volume:642 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 58.11 Mechanische Verfahrenstechnik AR 642 |
language |
English |
source |
Enthalten in Journal of membrane science 642 volume:642 |
sourceStr |
Enthalten in Journal of membrane science 642 volume:642 |
format_phy_str_mv |
Article |
bklname |
Mechanische Verfahrenstechnik |
institution |
findex.gbv.de |
topic_facet |
Polybenzimidazole Porous membrane Vapor induced phase separation (VIPS) Non-solvent induced phase separation (NIPS) Vanadium redox flow battery |
dewey-raw |
570 |
isfreeaccess_bool |
false |
container_title |
Journal of membrane science |
authorswithroles_txt_mv |
Ding, Liming @@aut@@ Wang, Yahui @@aut@@ Wang, Lihua @@aut@@ Han, Xutong @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
302468927 |
dewey-sort |
3570 |
id |
ELV006987540 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV006987540</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524133518.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230506s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.memsci.2021.119934</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV006987540</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0376-7388(21)00877-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.11</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ding, Liming</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Microstructure regulation of porous polybenzimidazole proton conductive membranes for high-performance vanadium redox flow battery</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">As one of the important parts of vanadium redox flow battery (VRFB), the proton conductive membrane (PCM) should have high proton selectivity (PS) of H+ to VO2+ in addition to the specific properties, such as outstanding oxidative stability, long lifetime and low price. However, polybenzimidazole PCMs usually have lower proton transference resulting in lower PS. In this study, three kinds of porous poly (oxyphenylene benzimidazole) (OPBI) membrane, such as OPBI-MSA-VIPS membrane, OPBI-DMAc-VIPS membrane and OPBI-DMAc-NIPS membrane, formed respectively by vapor induced phase separation (VIPS) and non-solvent induced phase separation (NIPS) method, using methanesulfonic acid (MSA) and N,N-dimethylacetamide (DMAc) as solvent separately, are investigated to prepare a kind of high performance PCM with high PS. The OPBI-DMAc-NIPS membrane has a fingerlike microstructure with two dense skin layers. The OPBI-MSA-VIPS membrane has a uniform cellular-like microstructure with single dense skin layer, which endows the membrane's excellent vanadium resistance and high PS. The PS of OPBI-MSA-VIPS membrane is one order higher than that of OPBI-DMAc-VIPS membrane which has a spongy-like structure without dense skin layer. Furthermore, we study the effect of the polymer concentration on the structure and the corresponding battery properties of OPBI-MSA-VIPS membrane in detail. When the casting solution concentration is 6 wt % (P6 membrane),the PS reaches the highest, about 7.74 times higher than that of commercial Nafion 115. More importantly, P6 membrane displays relatively long cycling stability. The EE value of the VRFB equipped with P6 membrane maintains stability after 3000 cycles at the current density of 160 mA/cm2. This work highlights an excellent porous OPBI membrane that has the potential to be used as high performance PCM for new energy battery.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polybenzimidazole</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Porous membrane</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vapor induced phase separation (VIPS)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Non-solvent induced phase separation (NIPS)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vanadium redox flow battery</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Yahui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Lihua</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Han, Xutong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of membrane science</subfield><subfield code="d">New York, NY [u.a.] : Elsevier, 1976</subfield><subfield code="g">642</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)302468927</subfield><subfield code="w">(DE-600)1491419-0</subfield><subfield code="w">(DE-576)259483907</subfield><subfield code="x">0376-7388</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:642</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.11</subfield><subfield code="j">Mechanische Verfahrenstechnik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">642</subfield></datafield></record></collection>
|
author |
Ding, Liming |
spellingShingle |
Ding, Liming ddc 570 bkl 58.11 misc Polybenzimidazole misc Porous membrane misc Vapor induced phase separation (VIPS) misc Non-solvent induced phase separation (NIPS) misc Vanadium redox flow battery Microstructure regulation of porous polybenzimidazole proton conductive membranes for high-performance vanadium redox flow battery |
authorStr |
Ding, Liming |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)302468927 |
format |
electronic Article |
dewey-ones |
570 - Life sciences; biology |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0376-7388 |
topic_title |
570 DE-600 58.11 bkl Microstructure regulation of porous polybenzimidazole proton conductive membranes for high-performance vanadium redox flow battery Polybenzimidazole Porous membrane Vapor induced phase separation (VIPS) Non-solvent induced phase separation (NIPS) Vanadium redox flow battery |
topic |
ddc 570 bkl 58.11 misc Polybenzimidazole misc Porous membrane misc Vapor induced phase separation (VIPS) misc Non-solvent induced phase separation (NIPS) misc Vanadium redox flow battery |
topic_unstemmed |
ddc 570 bkl 58.11 misc Polybenzimidazole misc Porous membrane misc Vapor induced phase separation (VIPS) misc Non-solvent induced phase separation (NIPS) misc Vanadium redox flow battery |
topic_browse |
ddc 570 bkl 58.11 misc Polybenzimidazole misc Porous membrane misc Vapor induced phase separation (VIPS) misc Non-solvent induced phase separation (NIPS) misc Vanadium redox flow battery |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of membrane science |
hierarchy_parent_id |
302468927 |
dewey-tens |
570 - Life sciences; biology |
hierarchy_top_title |
Journal of membrane science |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)302468927 (DE-600)1491419-0 (DE-576)259483907 |
title |
Microstructure regulation of porous polybenzimidazole proton conductive membranes for high-performance vanadium redox flow battery |
ctrlnum |
(DE-627)ELV006987540 (ELSEVIER)S0376-7388(21)00877-2 |
title_full |
Microstructure regulation of porous polybenzimidazole proton conductive membranes for high-performance vanadium redox flow battery |
author_sort |
Ding, Liming |
journal |
Journal of membrane science |
journalStr |
Journal of membrane science |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
author_browse |
Ding, Liming Wang, Yahui Wang, Lihua Han, Xutong |
container_volume |
642 |
class |
570 DE-600 58.11 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Ding, Liming |
doi_str_mv |
10.1016/j.memsci.2021.119934 |
dewey-full |
570 |
author2-role |
verfasserin |
title_sort |
microstructure regulation of porous polybenzimidazole proton conductive membranes for high-performance vanadium redox flow battery |
title_auth |
Microstructure regulation of porous polybenzimidazole proton conductive membranes for high-performance vanadium redox flow battery |
abstract |
As one of the important parts of vanadium redox flow battery (VRFB), the proton conductive membrane (PCM) should have high proton selectivity (PS) of H+ to VO2+ in addition to the specific properties, such as outstanding oxidative stability, long lifetime and low price. However, polybenzimidazole PCMs usually have lower proton transference resulting in lower PS. In this study, three kinds of porous poly (oxyphenylene benzimidazole) (OPBI) membrane, such as OPBI-MSA-VIPS membrane, OPBI-DMAc-VIPS membrane and OPBI-DMAc-NIPS membrane, formed respectively by vapor induced phase separation (VIPS) and non-solvent induced phase separation (NIPS) method, using methanesulfonic acid (MSA) and N,N-dimethylacetamide (DMAc) as solvent separately, are investigated to prepare a kind of high performance PCM with high PS. The OPBI-DMAc-NIPS membrane has a fingerlike microstructure with two dense skin layers. The OPBI-MSA-VIPS membrane has a uniform cellular-like microstructure with single dense skin layer, which endows the membrane's excellent vanadium resistance and high PS. The PS of OPBI-MSA-VIPS membrane is one order higher than that of OPBI-DMAc-VIPS membrane which has a spongy-like structure without dense skin layer. Furthermore, we study the effect of the polymer concentration on the structure and the corresponding battery properties of OPBI-MSA-VIPS membrane in detail. When the casting solution concentration is 6 wt % (P6 membrane),the PS reaches the highest, about 7.74 times higher than that of commercial Nafion 115. More importantly, P6 membrane displays relatively long cycling stability. The EE value of the VRFB equipped with P6 membrane maintains stability after 3000 cycles at the current density of 160 mA/cm2. This work highlights an excellent porous OPBI membrane that has the potential to be used as high performance PCM for new energy battery. |
abstractGer |
As one of the important parts of vanadium redox flow battery (VRFB), the proton conductive membrane (PCM) should have high proton selectivity (PS) of H+ to VO2+ in addition to the specific properties, such as outstanding oxidative stability, long lifetime and low price. However, polybenzimidazole PCMs usually have lower proton transference resulting in lower PS. In this study, three kinds of porous poly (oxyphenylene benzimidazole) (OPBI) membrane, such as OPBI-MSA-VIPS membrane, OPBI-DMAc-VIPS membrane and OPBI-DMAc-NIPS membrane, formed respectively by vapor induced phase separation (VIPS) and non-solvent induced phase separation (NIPS) method, using methanesulfonic acid (MSA) and N,N-dimethylacetamide (DMAc) as solvent separately, are investigated to prepare a kind of high performance PCM with high PS. The OPBI-DMAc-NIPS membrane has a fingerlike microstructure with two dense skin layers. The OPBI-MSA-VIPS membrane has a uniform cellular-like microstructure with single dense skin layer, which endows the membrane's excellent vanadium resistance and high PS. The PS of OPBI-MSA-VIPS membrane is one order higher than that of OPBI-DMAc-VIPS membrane which has a spongy-like structure without dense skin layer. Furthermore, we study the effect of the polymer concentration on the structure and the corresponding battery properties of OPBI-MSA-VIPS membrane in detail. When the casting solution concentration is 6 wt % (P6 membrane),the PS reaches the highest, about 7.74 times higher than that of commercial Nafion 115. More importantly, P6 membrane displays relatively long cycling stability. The EE value of the VRFB equipped with P6 membrane maintains stability after 3000 cycles at the current density of 160 mA/cm2. This work highlights an excellent porous OPBI membrane that has the potential to be used as high performance PCM for new energy battery. |
abstract_unstemmed |
As one of the important parts of vanadium redox flow battery (VRFB), the proton conductive membrane (PCM) should have high proton selectivity (PS) of H+ to VO2+ in addition to the specific properties, such as outstanding oxidative stability, long lifetime and low price. However, polybenzimidazole PCMs usually have lower proton transference resulting in lower PS. In this study, three kinds of porous poly (oxyphenylene benzimidazole) (OPBI) membrane, such as OPBI-MSA-VIPS membrane, OPBI-DMAc-VIPS membrane and OPBI-DMAc-NIPS membrane, formed respectively by vapor induced phase separation (VIPS) and non-solvent induced phase separation (NIPS) method, using methanesulfonic acid (MSA) and N,N-dimethylacetamide (DMAc) as solvent separately, are investigated to prepare a kind of high performance PCM with high PS. The OPBI-DMAc-NIPS membrane has a fingerlike microstructure with two dense skin layers. The OPBI-MSA-VIPS membrane has a uniform cellular-like microstructure with single dense skin layer, which endows the membrane's excellent vanadium resistance and high PS. The PS of OPBI-MSA-VIPS membrane is one order higher than that of OPBI-DMAc-VIPS membrane which has a spongy-like structure without dense skin layer. Furthermore, we study the effect of the polymer concentration on the structure and the corresponding battery properties of OPBI-MSA-VIPS membrane in detail. When the casting solution concentration is 6 wt % (P6 membrane),the PS reaches the highest, about 7.74 times higher than that of commercial Nafion 115. More importantly, P6 membrane displays relatively long cycling stability. The EE value of the VRFB equipped with P6 membrane maintains stability after 3000 cycles at the current density of 160 mA/cm2. This work highlights an excellent porous OPBI membrane that has the potential to be used as high performance PCM for new energy battery. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Microstructure regulation of porous polybenzimidazole proton conductive membranes for high-performance vanadium redox flow battery |
remote_bool |
true |
author2 |
Wang, Yahui Wang, Lihua Han, Xutong |
author2Str |
Wang, Yahui Wang, Lihua Han, Xutong |
ppnlink |
302468927 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.memsci.2021.119934 |
up_date |
2024-07-06T23:13:56.973Z |
_version_ |
1803873300749746176 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV006987540</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524133518.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230506s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.memsci.2021.119934</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV006987540</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0376-7388(21)00877-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.11</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ding, Liming</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Microstructure regulation of porous polybenzimidazole proton conductive membranes for high-performance vanadium redox flow battery</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">As one of the important parts of vanadium redox flow battery (VRFB), the proton conductive membrane (PCM) should have high proton selectivity (PS) of H+ to VO2+ in addition to the specific properties, such as outstanding oxidative stability, long lifetime and low price. However, polybenzimidazole PCMs usually have lower proton transference resulting in lower PS. In this study, three kinds of porous poly (oxyphenylene benzimidazole) (OPBI) membrane, such as OPBI-MSA-VIPS membrane, OPBI-DMAc-VIPS membrane and OPBI-DMAc-NIPS membrane, formed respectively by vapor induced phase separation (VIPS) and non-solvent induced phase separation (NIPS) method, using methanesulfonic acid (MSA) and N,N-dimethylacetamide (DMAc) as solvent separately, are investigated to prepare a kind of high performance PCM with high PS. The OPBI-DMAc-NIPS membrane has a fingerlike microstructure with two dense skin layers. The OPBI-MSA-VIPS membrane has a uniform cellular-like microstructure with single dense skin layer, which endows the membrane's excellent vanadium resistance and high PS. The PS of OPBI-MSA-VIPS membrane is one order higher than that of OPBI-DMAc-VIPS membrane which has a spongy-like structure without dense skin layer. Furthermore, we study the effect of the polymer concentration on the structure and the corresponding battery properties of OPBI-MSA-VIPS membrane in detail. When the casting solution concentration is 6 wt % (P6 membrane),the PS reaches the highest, about 7.74 times higher than that of commercial Nafion 115. More importantly, P6 membrane displays relatively long cycling stability. The EE value of the VRFB equipped with P6 membrane maintains stability after 3000 cycles at the current density of 160 mA/cm2. This work highlights an excellent porous OPBI membrane that has the potential to be used as high performance PCM for new energy battery.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polybenzimidazole</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Porous membrane</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vapor induced phase separation (VIPS)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Non-solvent induced phase separation (NIPS)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vanadium redox flow battery</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Yahui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Lihua</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Han, Xutong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of membrane science</subfield><subfield code="d">New York, NY [u.a.] : Elsevier, 1976</subfield><subfield code="g">642</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)302468927</subfield><subfield code="w">(DE-600)1491419-0</subfield><subfield code="w">(DE-576)259483907</subfield><subfield code="x">0376-7388</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:642</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.11</subfield><subfield code="j">Mechanische Verfahrenstechnik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">642</subfield></datafield></record></collection>
|
score |
7.4014616 |