Bifunctional core-shell nAlMOF energetic particles with enhanced ignition and combustion performance
With the continuous development of advanced fuel and engine technology, the boundary between liquid and solid fuel is more and more blurred, so the development of new solid-liquid two-phase fuels has become a major opportunity and challenge. Herein, two kinds of nAlMOF energetic particles (nAl@Zn-MO...
Ausführliche Beschreibung
Autor*in: |
Xue, Kang [verfasserIn] Li, Huaiyu [verfasserIn] Pan, Lun [verfasserIn] Liu, Yiran [verfasserIn] Zhang, Xiangwen [verfasserIn] Zou, Ji-Jun [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: The chemical engineering journal - Amsterdam : Elsevier, 1997, 430 |
---|---|
Übergeordnetes Werk: |
volume:430 |
DOI / URN: |
10.1016/j.cej.2021.132909 |
---|
Katalog-ID: |
ELV007101252 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV007101252 | ||
003 | DE-627 | ||
005 | 20230524131748.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230506s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.cej.2021.132909 |2 doi | |
035 | |a (DE-627)ELV007101252 | ||
035 | |a (ELSEVIER)S1385-8947(21)04484-3 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | |a 660.05 |q DE-101 | |
082 | 0 | 4 | |a 660 |q DE-101 |
082 | 0 | 4 | |a 660 |q DE-600 |
084 | |a 58.10 |2 bkl | ||
100 | 1 | |a Xue, Kang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Bifunctional core-shell nAlMOF energetic particles with enhanced ignition and combustion performance |
264 | 1 | |c 2021 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a With the continuous development of advanced fuel and engine technology, the boundary between liquid and solid fuel is more and more blurred, so the development of new solid-liquid two-phase fuels has become a major opportunity and challenge. Herein, two kinds of nAlMOF energetic particles (nAl@Zn-MOF and nAl@Co-MOF) were fabricated by an in-situ electrostatic self-assembly method. The thermal property, ignition and combustion performances of nAl@MOF are characterized by TG-DSC, CO2 laser ignition and constant-volume combustion experiments. The results show that the initial exothermic temperature of nAl@Zn-MOF and nAl@Co-MOF are reduced by about 60 and 110 °C, respectively, compared with nAl (579.6 °C). Moreover, nAl@MOF has a lower ignition delay time, higher peak pressure, and faster pressurization rate than nAl, especially nAl@Zn-MOF-1 and nAl@Co-MOF-1. The combustion process of nAl@MOF is proposed, which can be obviously enhanced by regulating the interfacial reaction and the generation of microexplosions. In the ignition experiment of nanofluid fuel, nAl@MOF energetic particles exhibit the bifunction characteristics, which can simultaneously improve the ignition and combustion performances of solid-phase nAl particles and liquid-phase hydrocarbon fuel. This work provides a new strategy for advanced aerospace fuel by introducing MOF shells to construct bifunctional energetic particles with enhanced ignition and combustion properties. | ||
650 | 4 | |a Metal-organic frameworks | |
650 | 4 | |a Nano aluminum | |
650 | 4 | |a Core-shell structure | |
650 | 4 | |a Nanofluid fuel | |
650 | 4 | |a Ignition and combustion | |
700 | 1 | |a Li, Huaiyu |e verfasserin |4 aut | |
700 | 1 | |a Pan, Lun |e verfasserin |4 aut | |
700 | 1 | |a Liu, Yiran |e verfasserin |4 aut | |
700 | 1 | |a Zhang, Xiangwen |e verfasserin |4 aut | |
700 | 1 | |a Zou, Ji-Jun |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t The chemical engineering journal |d Amsterdam : Elsevier, 1997 |g 430 |h Online-Ressource |w (DE-627)320500322 |w (DE-600)2012137-4 |w (DE-576)098330152 |x 1873-3212 |7 nnns |
773 | 1 | 8 | |g volume:430 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 58.10 |j Verfahrenstechnik: Allgemeines |
951 | |a AR | ||
952 | |d 430 | ||
953 | |2 045F |a 660.05 |
author_variant |
k x kx h l hl l p lp y l yl x z xz j j z jjz |
---|---|
matchkey_str |
article:18733212:2021----::iucinloehlnloeegtcatcewtehneintoa |
hierarchy_sort_str |
2021 |
bklnumber |
58.10 |
publishDate |
2021 |
allfields |
10.1016/j.cej.2021.132909 doi (DE-627)ELV007101252 (ELSEVIER)S1385-8947(21)04484-3 DE-627 ger DE-627 rda eng 660.05 DE-101 660 DE-101 660 DE-600 58.10 bkl Xue, Kang verfasserin aut Bifunctional core-shell nAlMOF energetic particles with enhanced ignition and combustion performance 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier With the continuous development of advanced fuel and engine technology, the boundary between liquid and solid fuel is more and more blurred, so the development of new solid-liquid two-phase fuels has become a major opportunity and challenge. Herein, two kinds of nAlMOF energetic particles (nAl@Zn-MOF and nAl@Co-MOF) were fabricated by an in-situ electrostatic self-assembly method. The thermal property, ignition and combustion performances of nAl@MOF are characterized by TG-DSC, CO2 laser ignition and constant-volume combustion experiments. The results show that the initial exothermic temperature of nAl@Zn-MOF and nAl@Co-MOF are reduced by about 60 and 110 °C, respectively, compared with nAl (579.6 °C). Moreover, nAl@MOF has a lower ignition delay time, higher peak pressure, and faster pressurization rate than nAl, especially nAl@Zn-MOF-1 and nAl@Co-MOF-1. The combustion process of nAl@MOF is proposed, which can be obviously enhanced by regulating the interfacial reaction and the generation of microexplosions. In the ignition experiment of nanofluid fuel, nAl@MOF energetic particles exhibit the bifunction characteristics, which can simultaneously improve the ignition and combustion performances of solid-phase nAl particles and liquid-phase hydrocarbon fuel. This work provides a new strategy for advanced aerospace fuel by introducing MOF shells to construct bifunctional energetic particles with enhanced ignition and combustion properties. Metal-organic frameworks Nano aluminum Core-shell structure Nanofluid fuel Ignition and combustion Li, Huaiyu verfasserin aut Pan, Lun verfasserin aut Liu, Yiran verfasserin aut Zhang, Xiangwen verfasserin aut Zou, Ji-Jun verfasserin aut Enthalten in The chemical engineering journal Amsterdam : Elsevier, 1997 430 Online-Ressource (DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 1873-3212 nnns volume:430 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 58.10 Verfahrenstechnik: Allgemeines AR 430 045F 660.05 |
spelling |
10.1016/j.cej.2021.132909 doi (DE-627)ELV007101252 (ELSEVIER)S1385-8947(21)04484-3 DE-627 ger DE-627 rda eng 660.05 DE-101 660 DE-101 660 DE-600 58.10 bkl Xue, Kang verfasserin aut Bifunctional core-shell nAlMOF energetic particles with enhanced ignition and combustion performance 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier With the continuous development of advanced fuel and engine technology, the boundary between liquid and solid fuel is more and more blurred, so the development of new solid-liquid two-phase fuels has become a major opportunity and challenge. Herein, two kinds of nAlMOF energetic particles (nAl@Zn-MOF and nAl@Co-MOF) were fabricated by an in-situ electrostatic self-assembly method. The thermal property, ignition and combustion performances of nAl@MOF are characterized by TG-DSC, CO2 laser ignition and constant-volume combustion experiments. The results show that the initial exothermic temperature of nAl@Zn-MOF and nAl@Co-MOF are reduced by about 60 and 110 °C, respectively, compared with nAl (579.6 °C). Moreover, nAl@MOF has a lower ignition delay time, higher peak pressure, and faster pressurization rate than nAl, especially nAl@Zn-MOF-1 and nAl@Co-MOF-1. The combustion process of nAl@MOF is proposed, which can be obviously enhanced by regulating the interfacial reaction and the generation of microexplosions. In the ignition experiment of nanofluid fuel, nAl@MOF energetic particles exhibit the bifunction characteristics, which can simultaneously improve the ignition and combustion performances of solid-phase nAl particles and liquid-phase hydrocarbon fuel. This work provides a new strategy for advanced aerospace fuel by introducing MOF shells to construct bifunctional energetic particles with enhanced ignition and combustion properties. Metal-organic frameworks Nano aluminum Core-shell structure Nanofluid fuel Ignition and combustion Li, Huaiyu verfasserin aut Pan, Lun verfasserin aut Liu, Yiran verfasserin aut Zhang, Xiangwen verfasserin aut Zou, Ji-Jun verfasserin aut Enthalten in The chemical engineering journal Amsterdam : Elsevier, 1997 430 Online-Ressource (DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 1873-3212 nnns volume:430 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 58.10 Verfahrenstechnik: Allgemeines AR 430 045F 660.05 |
allfields_unstemmed |
10.1016/j.cej.2021.132909 doi (DE-627)ELV007101252 (ELSEVIER)S1385-8947(21)04484-3 DE-627 ger DE-627 rda eng 660.05 DE-101 660 DE-101 660 DE-600 58.10 bkl Xue, Kang verfasserin aut Bifunctional core-shell nAlMOF energetic particles with enhanced ignition and combustion performance 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier With the continuous development of advanced fuel and engine technology, the boundary between liquid and solid fuel is more and more blurred, so the development of new solid-liquid two-phase fuels has become a major opportunity and challenge. Herein, two kinds of nAlMOF energetic particles (nAl@Zn-MOF and nAl@Co-MOF) were fabricated by an in-situ electrostatic self-assembly method. The thermal property, ignition and combustion performances of nAl@MOF are characterized by TG-DSC, CO2 laser ignition and constant-volume combustion experiments. The results show that the initial exothermic temperature of nAl@Zn-MOF and nAl@Co-MOF are reduced by about 60 and 110 °C, respectively, compared with nAl (579.6 °C). Moreover, nAl@MOF has a lower ignition delay time, higher peak pressure, and faster pressurization rate than nAl, especially nAl@Zn-MOF-1 and nAl@Co-MOF-1. The combustion process of nAl@MOF is proposed, which can be obviously enhanced by regulating the interfacial reaction and the generation of microexplosions. In the ignition experiment of nanofluid fuel, nAl@MOF energetic particles exhibit the bifunction characteristics, which can simultaneously improve the ignition and combustion performances of solid-phase nAl particles and liquid-phase hydrocarbon fuel. This work provides a new strategy for advanced aerospace fuel by introducing MOF shells to construct bifunctional energetic particles with enhanced ignition and combustion properties. Metal-organic frameworks Nano aluminum Core-shell structure Nanofluid fuel Ignition and combustion Li, Huaiyu verfasserin aut Pan, Lun verfasserin aut Liu, Yiran verfasserin aut Zhang, Xiangwen verfasserin aut Zou, Ji-Jun verfasserin aut Enthalten in The chemical engineering journal Amsterdam : Elsevier, 1997 430 Online-Ressource (DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 1873-3212 nnns volume:430 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 58.10 Verfahrenstechnik: Allgemeines AR 430 045F 660.05 |
allfieldsGer |
10.1016/j.cej.2021.132909 doi (DE-627)ELV007101252 (ELSEVIER)S1385-8947(21)04484-3 DE-627 ger DE-627 rda eng 660.05 DE-101 660 DE-101 660 DE-600 58.10 bkl Xue, Kang verfasserin aut Bifunctional core-shell nAlMOF energetic particles with enhanced ignition and combustion performance 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier With the continuous development of advanced fuel and engine technology, the boundary between liquid and solid fuel is more and more blurred, so the development of new solid-liquid two-phase fuels has become a major opportunity and challenge. Herein, two kinds of nAlMOF energetic particles (nAl@Zn-MOF and nAl@Co-MOF) were fabricated by an in-situ electrostatic self-assembly method. The thermal property, ignition and combustion performances of nAl@MOF are characterized by TG-DSC, CO2 laser ignition and constant-volume combustion experiments. The results show that the initial exothermic temperature of nAl@Zn-MOF and nAl@Co-MOF are reduced by about 60 and 110 °C, respectively, compared with nAl (579.6 °C). Moreover, nAl@MOF has a lower ignition delay time, higher peak pressure, and faster pressurization rate than nAl, especially nAl@Zn-MOF-1 and nAl@Co-MOF-1. The combustion process of nAl@MOF is proposed, which can be obviously enhanced by regulating the interfacial reaction and the generation of microexplosions. In the ignition experiment of nanofluid fuel, nAl@MOF energetic particles exhibit the bifunction characteristics, which can simultaneously improve the ignition and combustion performances of solid-phase nAl particles and liquid-phase hydrocarbon fuel. This work provides a new strategy for advanced aerospace fuel by introducing MOF shells to construct bifunctional energetic particles with enhanced ignition and combustion properties. Metal-organic frameworks Nano aluminum Core-shell structure Nanofluid fuel Ignition and combustion Li, Huaiyu verfasserin aut Pan, Lun verfasserin aut Liu, Yiran verfasserin aut Zhang, Xiangwen verfasserin aut Zou, Ji-Jun verfasserin aut Enthalten in The chemical engineering journal Amsterdam : Elsevier, 1997 430 Online-Ressource (DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 1873-3212 nnns volume:430 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 58.10 Verfahrenstechnik: Allgemeines AR 430 045F 660.05 |
allfieldsSound |
10.1016/j.cej.2021.132909 doi (DE-627)ELV007101252 (ELSEVIER)S1385-8947(21)04484-3 DE-627 ger DE-627 rda eng 660.05 DE-101 660 DE-101 660 DE-600 58.10 bkl Xue, Kang verfasserin aut Bifunctional core-shell nAlMOF energetic particles with enhanced ignition and combustion performance 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier With the continuous development of advanced fuel and engine technology, the boundary between liquid and solid fuel is more and more blurred, so the development of new solid-liquid two-phase fuels has become a major opportunity and challenge. Herein, two kinds of nAlMOF energetic particles (nAl@Zn-MOF and nAl@Co-MOF) were fabricated by an in-situ electrostatic self-assembly method. The thermal property, ignition and combustion performances of nAl@MOF are characterized by TG-DSC, CO2 laser ignition and constant-volume combustion experiments. The results show that the initial exothermic temperature of nAl@Zn-MOF and nAl@Co-MOF are reduced by about 60 and 110 °C, respectively, compared with nAl (579.6 °C). Moreover, nAl@MOF has a lower ignition delay time, higher peak pressure, and faster pressurization rate than nAl, especially nAl@Zn-MOF-1 and nAl@Co-MOF-1. The combustion process of nAl@MOF is proposed, which can be obviously enhanced by regulating the interfacial reaction and the generation of microexplosions. In the ignition experiment of nanofluid fuel, nAl@MOF energetic particles exhibit the bifunction characteristics, which can simultaneously improve the ignition and combustion performances of solid-phase nAl particles and liquid-phase hydrocarbon fuel. This work provides a new strategy for advanced aerospace fuel by introducing MOF shells to construct bifunctional energetic particles with enhanced ignition and combustion properties. Metal-organic frameworks Nano aluminum Core-shell structure Nanofluid fuel Ignition and combustion Li, Huaiyu verfasserin aut Pan, Lun verfasserin aut Liu, Yiran verfasserin aut Zhang, Xiangwen verfasserin aut Zou, Ji-Jun verfasserin aut Enthalten in The chemical engineering journal Amsterdam : Elsevier, 1997 430 Online-Ressource (DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 1873-3212 nnns volume:430 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 58.10 Verfahrenstechnik: Allgemeines AR 430 045F 660.05 |
language |
English |
source |
Enthalten in The chemical engineering journal 430 volume:430 |
sourceStr |
Enthalten in The chemical engineering journal 430 volume:430 |
format_phy_str_mv |
Article |
bklname |
Verfahrenstechnik: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Metal-organic frameworks Nano aluminum Core-shell structure Nanofluid fuel Ignition and combustion |
dewey-raw |
660.05 |
isfreeaccess_bool |
false |
container_title |
The chemical engineering journal |
authorswithroles_txt_mv |
Xue, Kang @@aut@@ Li, Huaiyu @@aut@@ Pan, Lun @@aut@@ Liu, Yiran @@aut@@ Zhang, Xiangwen @@aut@@ Zou, Ji-Jun @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
320500322 |
dewey-sort |
3660.05 |
id |
ELV007101252 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV007101252</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524131748.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230506s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.cej.2021.132909</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV007101252</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1385-8947(21)04484-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">660.05</subfield><subfield code="q">DE-101</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">DE-101</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.10</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Xue, Kang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Bifunctional core-shell nAlMOF energetic particles with enhanced ignition and combustion performance</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">With the continuous development of advanced fuel and engine technology, the boundary between liquid and solid fuel is more and more blurred, so the development of new solid-liquid two-phase fuels has become a major opportunity and challenge. Herein, two kinds of nAlMOF energetic particles (nAl@Zn-MOF and nAl@Co-MOF) were fabricated by an in-situ electrostatic self-assembly method. The thermal property, ignition and combustion performances of nAl@MOF are characterized by TG-DSC, CO2 laser ignition and constant-volume combustion experiments. The results show that the initial exothermic temperature of nAl@Zn-MOF and nAl@Co-MOF are reduced by about 60 and 110 °C, respectively, compared with nAl (579.6 °C). Moreover, nAl@MOF has a lower ignition delay time, higher peak pressure, and faster pressurization rate than nAl, especially nAl@Zn-MOF-1 and nAl@Co-MOF-1. The combustion process of nAl@MOF is proposed, which can be obviously enhanced by regulating the interfacial reaction and the generation of microexplosions. In the ignition experiment of nanofluid fuel, nAl@MOF energetic particles exhibit the bifunction characteristics, which can simultaneously improve the ignition and combustion performances of solid-phase nAl particles and liquid-phase hydrocarbon fuel. This work provides a new strategy for advanced aerospace fuel by introducing MOF shells to construct bifunctional energetic particles with enhanced ignition and combustion properties.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metal-organic frameworks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nano aluminum</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Core-shell structure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanofluid fuel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ignition and combustion</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Huaiyu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pan, Lun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Yiran</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Xiangwen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zou, Ji-Jun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The chemical engineering journal</subfield><subfield code="d">Amsterdam : Elsevier, 1997</subfield><subfield code="g">430</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320500322</subfield><subfield code="w">(DE-600)2012137-4</subfield><subfield code="w">(DE-576)098330152</subfield><subfield code="x">1873-3212</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:430</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.10</subfield><subfield code="j">Verfahrenstechnik: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">430</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">660.05</subfield></datafield></record></collection>
|
author |
Xue, Kang |
spellingShingle |
Xue, Kang ddc 660.05 ddc 660 bkl 58.10 misc Metal-organic frameworks misc Nano aluminum misc Core-shell structure misc Nanofluid fuel misc Ignition and combustion Bifunctional core-shell nAlMOF energetic particles with enhanced ignition and combustion performance |
authorStr |
Xue, Kang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320500322 |
format |
electronic Article |
dewey-ones |
660 - Chemical engineering |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1873-3212 |
topic_title |
660.05 DE-101 660 DE-101 660 DE-600 58.10 bkl Bifunctional core-shell nAlMOF energetic particles with enhanced ignition and combustion performance Metal-organic frameworks Nano aluminum Core-shell structure Nanofluid fuel Ignition and combustion |
topic |
ddc 660.05 ddc 660 bkl 58.10 misc Metal-organic frameworks misc Nano aluminum misc Core-shell structure misc Nanofluid fuel misc Ignition and combustion |
topic_unstemmed |
ddc 660.05 ddc 660 bkl 58.10 misc Metal-organic frameworks misc Nano aluminum misc Core-shell structure misc Nanofluid fuel misc Ignition and combustion |
topic_browse |
ddc 660.05 ddc 660 bkl 58.10 misc Metal-organic frameworks misc Nano aluminum misc Core-shell structure misc Nanofluid fuel misc Ignition and combustion |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
The chemical engineering journal |
hierarchy_parent_id |
320500322 |
dewey-tens |
660 - Chemical engineering |
hierarchy_top_title |
The chemical engineering journal |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 |
title |
Bifunctional core-shell nAlMOF energetic particles with enhanced ignition and combustion performance |
ctrlnum |
(DE-627)ELV007101252 (ELSEVIER)S1385-8947(21)04484-3 |
title_full |
Bifunctional core-shell nAlMOF energetic particles with enhanced ignition and combustion performance |
author_sort |
Xue, Kang |
journal |
The chemical engineering journal |
journalStr |
The chemical engineering journal |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
author_browse |
Xue, Kang Li, Huaiyu Pan, Lun Liu, Yiran Zhang, Xiangwen Zou, Ji-Jun |
container_volume |
430 |
class |
660.05 DE-101 660 DE-101 660 DE-600 58.10 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Xue, Kang |
doi_str_mv |
10.1016/j.cej.2021.132909 |
dewey-full |
660.05 660 |
author2-role |
verfasserin |
title_sort |
bifunctional core-shell nalmof energetic particles with enhanced ignition and combustion performance |
title_auth |
Bifunctional core-shell nAlMOF energetic particles with enhanced ignition and combustion performance |
abstract |
With the continuous development of advanced fuel and engine technology, the boundary between liquid and solid fuel is more and more blurred, so the development of new solid-liquid two-phase fuels has become a major opportunity and challenge. Herein, two kinds of nAlMOF energetic particles (nAl@Zn-MOF and nAl@Co-MOF) were fabricated by an in-situ electrostatic self-assembly method. The thermal property, ignition and combustion performances of nAl@MOF are characterized by TG-DSC, CO2 laser ignition and constant-volume combustion experiments. The results show that the initial exothermic temperature of nAl@Zn-MOF and nAl@Co-MOF are reduced by about 60 and 110 °C, respectively, compared with nAl (579.6 °C). Moreover, nAl@MOF has a lower ignition delay time, higher peak pressure, and faster pressurization rate than nAl, especially nAl@Zn-MOF-1 and nAl@Co-MOF-1. The combustion process of nAl@MOF is proposed, which can be obviously enhanced by regulating the interfacial reaction and the generation of microexplosions. In the ignition experiment of nanofluid fuel, nAl@MOF energetic particles exhibit the bifunction characteristics, which can simultaneously improve the ignition and combustion performances of solid-phase nAl particles and liquid-phase hydrocarbon fuel. This work provides a new strategy for advanced aerospace fuel by introducing MOF shells to construct bifunctional energetic particles with enhanced ignition and combustion properties. |
abstractGer |
With the continuous development of advanced fuel and engine technology, the boundary between liquid and solid fuel is more and more blurred, so the development of new solid-liquid two-phase fuels has become a major opportunity and challenge. Herein, two kinds of nAlMOF energetic particles (nAl@Zn-MOF and nAl@Co-MOF) were fabricated by an in-situ electrostatic self-assembly method. The thermal property, ignition and combustion performances of nAl@MOF are characterized by TG-DSC, CO2 laser ignition and constant-volume combustion experiments. The results show that the initial exothermic temperature of nAl@Zn-MOF and nAl@Co-MOF are reduced by about 60 and 110 °C, respectively, compared with nAl (579.6 °C). Moreover, nAl@MOF has a lower ignition delay time, higher peak pressure, and faster pressurization rate than nAl, especially nAl@Zn-MOF-1 and nAl@Co-MOF-1. The combustion process of nAl@MOF is proposed, which can be obviously enhanced by regulating the interfacial reaction and the generation of microexplosions. In the ignition experiment of nanofluid fuel, nAl@MOF energetic particles exhibit the bifunction characteristics, which can simultaneously improve the ignition and combustion performances of solid-phase nAl particles and liquid-phase hydrocarbon fuel. This work provides a new strategy for advanced aerospace fuel by introducing MOF shells to construct bifunctional energetic particles with enhanced ignition and combustion properties. |
abstract_unstemmed |
With the continuous development of advanced fuel and engine technology, the boundary between liquid and solid fuel is more and more blurred, so the development of new solid-liquid two-phase fuels has become a major opportunity and challenge. Herein, two kinds of nAlMOF energetic particles (nAl@Zn-MOF and nAl@Co-MOF) were fabricated by an in-situ electrostatic self-assembly method. The thermal property, ignition and combustion performances of nAl@MOF are characterized by TG-DSC, CO2 laser ignition and constant-volume combustion experiments. The results show that the initial exothermic temperature of nAl@Zn-MOF and nAl@Co-MOF are reduced by about 60 and 110 °C, respectively, compared with nAl (579.6 °C). Moreover, nAl@MOF has a lower ignition delay time, higher peak pressure, and faster pressurization rate than nAl, especially nAl@Zn-MOF-1 and nAl@Co-MOF-1. The combustion process of nAl@MOF is proposed, which can be obviously enhanced by regulating the interfacial reaction and the generation of microexplosions. In the ignition experiment of nanofluid fuel, nAl@MOF energetic particles exhibit the bifunction characteristics, which can simultaneously improve the ignition and combustion performances of solid-phase nAl particles and liquid-phase hydrocarbon fuel. This work provides a new strategy for advanced aerospace fuel by introducing MOF shells to construct bifunctional energetic particles with enhanced ignition and combustion properties. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Bifunctional core-shell nAlMOF energetic particles with enhanced ignition and combustion performance |
remote_bool |
true |
author2 |
Li, Huaiyu Pan, Lun Liu, Yiran Zhang, Xiangwen Zou, Ji-Jun |
author2Str |
Li, Huaiyu Pan, Lun Liu, Yiran Zhang, Xiangwen Zou, Ji-Jun |
ppnlink |
320500322 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.cej.2021.132909 |
up_date |
2024-07-06T23:37:12.832Z |
_version_ |
1803874764412944384 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV007101252</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524131748.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230506s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.cej.2021.132909</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV007101252</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1385-8947(21)04484-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">660.05</subfield><subfield code="q">DE-101</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">DE-101</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.10</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Xue, Kang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Bifunctional core-shell nAlMOF energetic particles with enhanced ignition and combustion performance</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">With the continuous development of advanced fuel and engine technology, the boundary between liquid and solid fuel is more and more blurred, so the development of new solid-liquid two-phase fuels has become a major opportunity and challenge. Herein, two kinds of nAlMOF energetic particles (nAl@Zn-MOF and nAl@Co-MOF) were fabricated by an in-situ electrostatic self-assembly method. The thermal property, ignition and combustion performances of nAl@MOF are characterized by TG-DSC, CO2 laser ignition and constant-volume combustion experiments. The results show that the initial exothermic temperature of nAl@Zn-MOF and nAl@Co-MOF are reduced by about 60 and 110 °C, respectively, compared with nAl (579.6 °C). Moreover, nAl@MOF has a lower ignition delay time, higher peak pressure, and faster pressurization rate than nAl, especially nAl@Zn-MOF-1 and nAl@Co-MOF-1. The combustion process of nAl@MOF is proposed, which can be obviously enhanced by regulating the interfacial reaction and the generation of microexplosions. In the ignition experiment of nanofluid fuel, nAl@MOF energetic particles exhibit the bifunction characteristics, which can simultaneously improve the ignition and combustion performances of solid-phase nAl particles and liquid-phase hydrocarbon fuel. This work provides a new strategy for advanced aerospace fuel by introducing MOF shells to construct bifunctional energetic particles with enhanced ignition and combustion properties.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metal-organic frameworks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nano aluminum</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Core-shell structure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanofluid fuel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ignition and combustion</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Huaiyu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pan, Lun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Yiran</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Xiangwen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zou, Ji-Jun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The chemical engineering journal</subfield><subfield code="d">Amsterdam : Elsevier, 1997</subfield><subfield code="g">430</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320500322</subfield><subfield code="w">(DE-600)2012137-4</subfield><subfield code="w">(DE-576)098330152</subfield><subfield code="x">1873-3212</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:430</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.10</subfield><subfield code="j">Verfahrenstechnik: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">430</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">660.05</subfield></datafield></record></collection>
|
score |
7.400943 |