An adaptive nonlinear autoregressive ANN model for high time resolution traffic noise predictions. Experimental results for a port city waterfront
In this research study an adaptive recurrent artificial nonlinear neural network identification model has been developed and experimentally tested for dynamically predicting the traffic noise level L...
Ausführliche Beschreibung
Autor*in: |
Baccoli, Roberto [verfasserIn] Sollai, Federico [verfasserIn] Medda, Andrea [verfasserIn] Piccolo, Antonio [verfasserIn] Fadda, Paolo [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Building and environment - New York, NY [u.a.] : Elsevier, 1976, 207 |
---|---|
Übergeordnetes Werk: |
volume:207 |
DOI / URN: |
10.1016/j.buildenv.2021.108551 |
---|
Katalog-ID: |
ELV007106513 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV007106513 | ||
003 | DE-627 | ||
005 | 20230524160349.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230506s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.buildenv.2021.108551 |2 doi | |
035 | |a (DE-627)ELV007106513 | ||
035 | |a (ELSEVIER)S0360-1323(21)00944-6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 690 |q DE-600 |
084 | |a 56.00 |2 bkl | ||
100 | 1 | |a Baccoli, Roberto |e verfasserin |4 aut | |
245 | 1 | 0 | |a An adaptive nonlinear autoregressive ANN model for high time resolution traffic noise predictions. Experimental results for a port city waterfront |
264 | 1 | |c 2021 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In this research study an adaptive recurrent artificial nonlinear neural network identification model has been developed and experimentally tested for dynamically predicting the traffic noise level L e q , 1 ′ with a time refinement of 1 min. The model has been successfully applied in three selected positions, representative of the waterfront in a Mediterranean port city. Several maritime cities are exposed to a wide range of road traffic fluctuations that negatively impact liveability in the area concerned. Large volumes of road traffic periodically access the port, dynamically affecting the acoustic scenario in neighbouring areas, especially in seaside towns during the tourist season. A signalized intersection, a roundabout, and a wide entrance to a vehicular underpass have been analyzed in the course of two characteristic periods, during which traffic ranged widely from normal to peak yearly intensity. Detailed traffic data for 15 road lanes and noise sequence regressors have been considered as input data sources. This exploratory investigation reveals a good predictive performance of the model developed, the prediction error of L e q , 1 ′ falling prevalently within the range ±0.5 dB. The experimental profile of L e q , 1 ′ is well reflected by the simulated sequence, and the auto and cross correlation functions confirm how well the identified neural model is able to explain the functional dependence underlying the experimental observations. | ||
650 | 4 | |a Traffic noise prediction model | |
650 | 4 | |a Dynamic model | |
650 | 4 | |a Nonlinear autoregressive neural network | |
700 | 1 | |a Sollai, Federico |e verfasserin |4 aut | |
700 | 1 | |a Medda, Andrea |e verfasserin |0 (orcid)0000-0003-3716-5274 |4 aut | |
700 | 1 | |a Piccolo, Antonio |e verfasserin |4 aut | |
700 | 1 | |a Fadda, Paolo |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Building and environment |d New York, NY [u.a.] : Elsevier, 1976 |g 207 |h Online-Ressource |w (DE-627)300188773 |w (DE-600)1481962-4 |w (DE-576)104402504 |x 0360-1323 |7 nnns |
773 | 1 | 8 | |g volume:207 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 56.00 |j Bauwesen: Allgemeines |
951 | |a AR | ||
952 | |d 207 |
author_variant |
r b rb f s fs a m am a p ap p f pf |
---|---|
matchkey_str |
article:03601323:2021----::ndpieolnaatrgesvanoefrihieeouinrfinierdcineprm |
hierarchy_sort_str |
2021 |
bklnumber |
56.00 |
publishDate |
2021 |
allfields |
10.1016/j.buildenv.2021.108551 doi (DE-627)ELV007106513 (ELSEVIER)S0360-1323(21)00944-6 DE-627 ger DE-627 rda eng 690 DE-600 56.00 bkl Baccoli, Roberto verfasserin aut An adaptive nonlinear autoregressive ANN model for high time resolution traffic noise predictions. Experimental results for a port city waterfront 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this research study an adaptive recurrent artificial nonlinear neural network identification model has been developed and experimentally tested for dynamically predicting the traffic noise level L e q , 1 ′ with a time refinement of 1 min. The model has been successfully applied in three selected positions, representative of the waterfront in a Mediterranean port city. Several maritime cities are exposed to a wide range of road traffic fluctuations that negatively impact liveability in the area concerned. Large volumes of road traffic periodically access the port, dynamically affecting the acoustic scenario in neighbouring areas, especially in seaside towns during the tourist season. A signalized intersection, a roundabout, and a wide entrance to a vehicular underpass have been analyzed in the course of two characteristic periods, during which traffic ranged widely from normal to peak yearly intensity. Detailed traffic data for 15 road lanes and noise sequence regressors have been considered as input data sources. This exploratory investigation reveals a good predictive performance of the model developed, the prediction error of L e q , 1 ′ falling prevalently within the range ±0.5 dB. The experimental profile of L e q , 1 ′ is well reflected by the simulated sequence, and the auto and cross correlation functions confirm how well the identified neural model is able to explain the functional dependence underlying the experimental observations. Traffic noise prediction model Dynamic model Nonlinear autoregressive neural network Sollai, Federico verfasserin aut Medda, Andrea verfasserin (orcid)0000-0003-3716-5274 aut Piccolo, Antonio verfasserin aut Fadda, Paolo verfasserin aut Enthalten in Building and environment New York, NY [u.a.] : Elsevier, 1976 207 Online-Ressource (DE-627)300188773 (DE-600)1481962-4 (DE-576)104402504 0360-1323 nnns volume:207 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 56.00 Bauwesen: Allgemeines AR 207 |
spelling |
10.1016/j.buildenv.2021.108551 doi (DE-627)ELV007106513 (ELSEVIER)S0360-1323(21)00944-6 DE-627 ger DE-627 rda eng 690 DE-600 56.00 bkl Baccoli, Roberto verfasserin aut An adaptive nonlinear autoregressive ANN model for high time resolution traffic noise predictions. Experimental results for a port city waterfront 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this research study an adaptive recurrent artificial nonlinear neural network identification model has been developed and experimentally tested for dynamically predicting the traffic noise level L e q , 1 ′ with a time refinement of 1 min. The model has been successfully applied in three selected positions, representative of the waterfront in a Mediterranean port city. Several maritime cities are exposed to a wide range of road traffic fluctuations that negatively impact liveability in the area concerned. Large volumes of road traffic periodically access the port, dynamically affecting the acoustic scenario in neighbouring areas, especially in seaside towns during the tourist season. A signalized intersection, a roundabout, and a wide entrance to a vehicular underpass have been analyzed in the course of two characteristic periods, during which traffic ranged widely from normal to peak yearly intensity. Detailed traffic data for 15 road lanes and noise sequence regressors have been considered as input data sources. This exploratory investigation reveals a good predictive performance of the model developed, the prediction error of L e q , 1 ′ falling prevalently within the range ±0.5 dB. The experimental profile of L e q , 1 ′ is well reflected by the simulated sequence, and the auto and cross correlation functions confirm how well the identified neural model is able to explain the functional dependence underlying the experimental observations. Traffic noise prediction model Dynamic model Nonlinear autoregressive neural network Sollai, Federico verfasserin aut Medda, Andrea verfasserin (orcid)0000-0003-3716-5274 aut Piccolo, Antonio verfasserin aut Fadda, Paolo verfasserin aut Enthalten in Building and environment New York, NY [u.a.] : Elsevier, 1976 207 Online-Ressource (DE-627)300188773 (DE-600)1481962-4 (DE-576)104402504 0360-1323 nnns volume:207 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 56.00 Bauwesen: Allgemeines AR 207 |
allfields_unstemmed |
10.1016/j.buildenv.2021.108551 doi (DE-627)ELV007106513 (ELSEVIER)S0360-1323(21)00944-6 DE-627 ger DE-627 rda eng 690 DE-600 56.00 bkl Baccoli, Roberto verfasserin aut An adaptive nonlinear autoregressive ANN model for high time resolution traffic noise predictions. Experimental results for a port city waterfront 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this research study an adaptive recurrent artificial nonlinear neural network identification model has been developed and experimentally tested for dynamically predicting the traffic noise level L e q , 1 ′ with a time refinement of 1 min. The model has been successfully applied in three selected positions, representative of the waterfront in a Mediterranean port city. Several maritime cities are exposed to a wide range of road traffic fluctuations that negatively impact liveability in the area concerned. Large volumes of road traffic periodically access the port, dynamically affecting the acoustic scenario in neighbouring areas, especially in seaside towns during the tourist season. A signalized intersection, a roundabout, and a wide entrance to a vehicular underpass have been analyzed in the course of two characteristic periods, during which traffic ranged widely from normal to peak yearly intensity. Detailed traffic data for 15 road lanes and noise sequence regressors have been considered as input data sources. This exploratory investigation reveals a good predictive performance of the model developed, the prediction error of L e q , 1 ′ falling prevalently within the range ±0.5 dB. The experimental profile of L e q , 1 ′ is well reflected by the simulated sequence, and the auto and cross correlation functions confirm how well the identified neural model is able to explain the functional dependence underlying the experimental observations. Traffic noise prediction model Dynamic model Nonlinear autoregressive neural network Sollai, Federico verfasserin aut Medda, Andrea verfasserin (orcid)0000-0003-3716-5274 aut Piccolo, Antonio verfasserin aut Fadda, Paolo verfasserin aut Enthalten in Building and environment New York, NY [u.a.] : Elsevier, 1976 207 Online-Ressource (DE-627)300188773 (DE-600)1481962-4 (DE-576)104402504 0360-1323 nnns volume:207 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 56.00 Bauwesen: Allgemeines AR 207 |
allfieldsGer |
10.1016/j.buildenv.2021.108551 doi (DE-627)ELV007106513 (ELSEVIER)S0360-1323(21)00944-6 DE-627 ger DE-627 rda eng 690 DE-600 56.00 bkl Baccoli, Roberto verfasserin aut An adaptive nonlinear autoregressive ANN model for high time resolution traffic noise predictions. Experimental results for a port city waterfront 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this research study an adaptive recurrent artificial nonlinear neural network identification model has been developed and experimentally tested for dynamically predicting the traffic noise level L e q , 1 ′ with a time refinement of 1 min. The model has been successfully applied in three selected positions, representative of the waterfront in a Mediterranean port city. Several maritime cities are exposed to a wide range of road traffic fluctuations that negatively impact liveability in the area concerned. Large volumes of road traffic periodically access the port, dynamically affecting the acoustic scenario in neighbouring areas, especially in seaside towns during the tourist season. A signalized intersection, a roundabout, and a wide entrance to a vehicular underpass have been analyzed in the course of two characteristic periods, during which traffic ranged widely from normal to peak yearly intensity. Detailed traffic data for 15 road lanes and noise sequence regressors have been considered as input data sources. This exploratory investigation reveals a good predictive performance of the model developed, the prediction error of L e q , 1 ′ falling prevalently within the range ±0.5 dB. The experimental profile of L e q , 1 ′ is well reflected by the simulated sequence, and the auto and cross correlation functions confirm how well the identified neural model is able to explain the functional dependence underlying the experimental observations. Traffic noise prediction model Dynamic model Nonlinear autoregressive neural network Sollai, Federico verfasserin aut Medda, Andrea verfasserin (orcid)0000-0003-3716-5274 aut Piccolo, Antonio verfasserin aut Fadda, Paolo verfasserin aut Enthalten in Building and environment New York, NY [u.a.] : Elsevier, 1976 207 Online-Ressource (DE-627)300188773 (DE-600)1481962-4 (DE-576)104402504 0360-1323 nnns volume:207 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 56.00 Bauwesen: Allgemeines AR 207 |
allfieldsSound |
10.1016/j.buildenv.2021.108551 doi (DE-627)ELV007106513 (ELSEVIER)S0360-1323(21)00944-6 DE-627 ger DE-627 rda eng 690 DE-600 56.00 bkl Baccoli, Roberto verfasserin aut An adaptive nonlinear autoregressive ANN model for high time resolution traffic noise predictions. Experimental results for a port city waterfront 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In this research study an adaptive recurrent artificial nonlinear neural network identification model has been developed and experimentally tested for dynamically predicting the traffic noise level L e q , 1 ′ with a time refinement of 1 min. The model has been successfully applied in three selected positions, representative of the waterfront in a Mediterranean port city. Several maritime cities are exposed to a wide range of road traffic fluctuations that negatively impact liveability in the area concerned. Large volumes of road traffic periodically access the port, dynamically affecting the acoustic scenario in neighbouring areas, especially in seaside towns during the tourist season. A signalized intersection, a roundabout, and a wide entrance to a vehicular underpass have been analyzed in the course of two characteristic periods, during which traffic ranged widely from normal to peak yearly intensity. Detailed traffic data for 15 road lanes and noise sequence regressors have been considered as input data sources. This exploratory investigation reveals a good predictive performance of the model developed, the prediction error of L e q , 1 ′ falling prevalently within the range ±0.5 dB. The experimental profile of L e q , 1 ′ is well reflected by the simulated sequence, and the auto and cross correlation functions confirm how well the identified neural model is able to explain the functional dependence underlying the experimental observations. Traffic noise prediction model Dynamic model Nonlinear autoregressive neural network Sollai, Federico verfasserin aut Medda, Andrea verfasserin (orcid)0000-0003-3716-5274 aut Piccolo, Antonio verfasserin aut Fadda, Paolo verfasserin aut Enthalten in Building and environment New York, NY [u.a.] : Elsevier, 1976 207 Online-Ressource (DE-627)300188773 (DE-600)1481962-4 (DE-576)104402504 0360-1323 nnns volume:207 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 56.00 Bauwesen: Allgemeines AR 207 |
language |
English |
source |
Enthalten in Building and environment 207 volume:207 |
sourceStr |
Enthalten in Building and environment 207 volume:207 |
format_phy_str_mv |
Article |
bklname |
Bauwesen: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Traffic noise prediction model Dynamic model Nonlinear autoregressive neural network |
dewey-raw |
690 |
isfreeaccess_bool |
false |
container_title |
Building and environment |
authorswithroles_txt_mv |
Baccoli, Roberto @@aut@@ Sollai, Federico @@aut@@ Medda, Andrea @@aut@@ Piccolo, Antonio @@aut@@ Fadda, Paolo @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
300188773 |
dewey-sort |
3690 |
id |
ELV007106513 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV007106513</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524160349.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230506s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.buildenv.2021.108551</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV007106513</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0360-1323(21)00944-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">56.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Baccoli, Roberto</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An adaptive nonlinear autoregressive ANN model for high time resolution traffic noise predictions. Experimental results for a port city waterfront</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this research study an adaptive recurrent artificial nonlinear neural network identification model has been developed and experimentally tested for dynamically predicting the traffic noise level L e q , 1 ′ with a time refinement of 1 min. The model has been successfully applied in three selected positions, representative of the waterfront in a Mediterranean port city. Several maritime cities are exposed to a wide range of road traffic fluctuations that negatively impact liveability in the area concerned. Large volumes of road traffic periodically access the port, dynamically affecting the acoustic scenario in neighbouring areas, especially in seaside towns during the tourist season. A signalized intersection, a roundabout, and a wide entrance to a vehicular underpass have been analyzed in the course of two characteristic periods, during which traffic ranged widely from normal to peak yearly intensity. Detailed traffic data for 15 road lanes and noise sequence regressors have been considered as input data sources. This exploratory investigation reveals a good predictive performance of the model developed, the prediction error of L e q , 1 ′ falling prevalently within the range ±0.5 dB. The experimental profile of L e q , 1 ′ is well reflected by the simulated sequence, and the auto and cross correlation functions confirm how well the identified neural model is able to explain the functional dependence underlying the experimental observations.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Traffic noise prediction model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamic model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear autoregressive neural network</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sollai, Federico</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Medda, Andrea</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-3716-5274</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Piccolo, Antonio</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fadda, Paolo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Building and environment</subfield><subfield code="d">New York, NY [u.a.] : Elsevier, 1976</subfield><subfield code="g">207</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)300188773</subfield><subfield code="w">(DE-600)1481962-4</subfield><subfield code="w">(DE-576)104402504</subfield><subfield code="x">0360-1323</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:207</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">56.00</subfield><subfield code="j">Bauwesen: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">207</subfield></datafield></record></collection>
|
author |
Baccoli, Roberto |
spellingShingle |
Baccoli, Roberto ddc 690 bkl 56.00 misc Traffic noise prediction model misc Dynamic model misc Nonlinear autoregressive neural network An adaptive nonlinear autoregressive ANN model for high time resolution traffic noise predictions. Experimental results for a port city waterfront |
authorStr |
Baccoli, Roberto |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)300188773 |
format |
electronic Article |
dewey-ones |
690 - Buildings |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0360-1323 |
topic_title |
690 DE-600 56.00 bkl An adaptive nonlinear autoregressive ANN model for high time resolution traffic noise predictions. Experimental results for a port city waterfront Traffic noise prediction model Dynamic model Nonlinear autoregressive neural network |
topic |
ddc 690 bkl 56.00 misc Traffic noise prediction model misc Dynamic model misc Nonlinear autoregressive neural network |
topic_unstemmed |
ddc 690 bkl 56.00 misc Traffic noise prediction model misc Dynamic model misc Nonlinear autoregressive neural network |
topic_browse |
ddc 690 bkl 56.00 misc Traffic noise prediction model misc Dynamic model misc Nonlinear autoregressive neural network |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Building and environment |
hierarchy_parent_id |
300188773 |
dewey-tens |
690 - Building & construction |
hierarchy_top_title |
Building and environment |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)300188773 (DE-600)1481962-4 (DE-576)104402504 |
title |
An adaptive nonlinear autoregressive ANN model for high time resolution traffic noise predictions. Experimental results for a port city waterfront |
ctrlnum |
(DE-627)ELV007106513 (ELSEVIER)S0360-1323(21)00944-6 |
title_full |
An adaptive nonlinear autoregressive ANN model for high time resolution traffic noise predictions. Experimental results for a port city waterfront |
author_sort |
Baccoli, Roberto |
journal |
Building and environment |
journalStr |
Building and environment |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
author_browse |
Baccoli, Roberto Sollai, Federico Medda, Andrea Piccolo, Antonio Fadda, Paolo |
container_volume |
207 |
class |
690 DE-600 56.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Baccoli, Roberto |
doi_str_mv |
10.1016/j.buildenv.2021.108551 |
normlink |
(ORCID)0000-0003-3716-5274 |
normlink_prefix_str_mv |
(orcid)0000-0003-3716-5274 |
dewey-full |
690 |
author2-role |
verfasserin |
title_sort |
an adaptive nonlinear autoregressive ann model for high time resolution traffic noise predictions. experimental results for a port city waterfront |
title_auth |
An adaptive nonlinear autoregressive ANN model for high time resolution traffic noise predictions. Experimental results for a port city waterfront |
abstract |
In this research study an adaptive recurrent artificial nonlinear neural network identification model has been developed and experimentally tested for dynamically predicting the traffic noise level L e q , 1 ′ with a time refinement of 1 min. The model has been successfully applied in three selected positions, representative of the waterfront in a Mediterranean port city. Several maritime cities are exposed to a wide range of road traffic fluctuations that negatively impact liveability in the area concerned. Large volumes of road traffic periodically access the port, dynamically affecting the acoustic scenario in neighbouring areas, especially in seaside towns during the tourist season. A signalized intersection, a roundabout, and a wide entrance to a vehicular underpass have been analyzed in the course of two characteristic periods, during which traffic ranged widely from normal to peak yearly intensity. Detailed traffic data for 15 road lanes and noise sequence regressors have been considered as input data sources. This exploratory investigation reveals a good predictive performance of the model developed, the prediction error of L e q , 1 ′ falling prevalently within the range ±0.5 dB. The experimental profile of L e q , 1 ′ is well reflected by the simulated sequence, and the auto and cross correlation functions confirm how well the identified neural model is able to explain the functional dependence underlying the experimental observations. |
abstractGer |
In this research study an adaptive recurrent artificial nonlinear neural network identification model has been developed and experimentally tested for dynamically predicting the traffic noise level L e q , 1 ′ with a time refinement of 1 min. The model has been successfully applied in three selected positions, representative of the waterfront in a Mediterranean port city. Several maritime cities are exposed to a wide range of road traffic fluctuations that negatively impact liveability in the area concerned. Large volumes of road traffic periodically access the port, dynamically affecting the acoustic scenario in neighbouring areas, especially in seaside towns during the tourist season. A signalized intersection, a roundabout, and a wide entrance to a vehicular underpass have been analyzed in the course of two characteristic periods, during which traffic ranged widely from normal to peak yearly intensity. Detailed traffic data for 15 road lanes and noise sequence regressors have been considered as input data sources. This exploratory investigation reveals a good predictive performance of the model developed, the prediction error of L e q , 1 ′ falling prevalently within the range ±0.5 dB. The experimental profile of L e q , 1 ′ is well reflected by the simulated sequence, and the auto and cross correlation functions confirm how well the identified neural model is able to explain the functional dependence underlying the experimental observations. |
abstract_unstemmed |
In this research study an adaptive recurrent artificial nonlinear neural network identification model has been developed and experimentally tested for dynamically predicting the traffic noise level L e q , 1 ′ with a time refinement of 1 min. The model has been successfully applied in three selected positions, representative of the waterfront in a Mediterranean port city. Several maritime cities are exposed to a wide range of road traffic fluctuations that negatively impact liveability in the area concerned. Large volumes of road traffic periodically access the port, dynamically affecting the acoustic scenario in neighbouring areas, especially in seaside towns during the tourist season. A signalized intersection, a roundabout, and a wide entrance to a vehicular underpass have been analyzed in the course of two characteristic periods, during which traffic ranged widely from normal to peak yearly intensity. Detailed traffic data for 15 road lanes and noise sequence regressors have been considered as input data sources. This exploratory investigation reveals a good predictive performance of the model developed, the prediction error of L e q , 1 ′ falling prevalently within the range ±0.5 dB. The experimental profile of L e q , 1 ′ is well reflected by the simulated sequence, and the auto and cross correlation functions confirm how well the identified neural model is able to explain the functional dependence underlying the experimental observations. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
An adaptive nonlinear autoregressive ANN model for high time resolution traffic noise predictions. Experimental results for a port city waterfront |
remote_bool |
true |
author2 |
Sollai, Federico Medda, Andrea Piccolo, Antonio Fadda, Paolo |
author2Str |
Sollai, Federico Medda, Andrea Piccolo, Antonio Fadda, Paolo |
ppnlink |
300188773 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.buildenv.2021.108551 |
up_date |
2024-07-06T23:38:16.146Z |
_version_ |
1803874830802485248 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV007106513</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524160349.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230506s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.buildenv.2021.108551</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV007106513</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0360-1323(21)00944-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">56.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Baccoli, Roberto</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An adaptive nonlinear autoregressive ANN model for high time resolution traffic noise predictions. Experimental results for a port city waterfront</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this research study an adaptive recurrent artificial nonlinear neural network identification model has been developed and experimentally tested for dynamically predicting the traffic noise level L e q , 1 ′ with a time refinement of 1 min. The model has been successfully applied in three selected positions, representative of the waterfront in a Mediterranean port city. Several maritime cities are exposed to a wide range of road traffic fluctuations that negatively impact liveability in the area concerned. Large volumes of road traffic periodically access the port, dynamically affecting the acoustic scenario in neighbouring areas, especially in seaside towns during the tourist season. A signalized intersection, a roundabout, and a wide entrance to a vehicular underpass have been analyzed in the course of two characteristic periods, during which traffic ranged widely from normal to peak yearly intensity. Detailed traffic data for 15 road lanes and noise sequence regressors have been considered as input data sources. This exploratory investigation reveals a good predictive performance of the model developed, the prediction error of L e q , 1 ′ falling prevalently within the range ±0.5 dB. The experimental profile of L e q , 1 ′ is well reflected by the simulated sequence, and the auto and cross correlation functions confirm how well the identified neural model is able to explain the functional dependence underlying the experimental observations.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Traffic noise prediction model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamic model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear autoregressive neural network</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sollai, Federico</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Medda, Andrea</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-3716-5274</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Piccolo, Antonio</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fadda, Paolo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Building and environment</subfield><subfield code="d">New York, NY [u.a.] : Elsevier, 1976</subfield><subfield code="g">207</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)300188773</subfield><subfield code="w">(DE-600)1481962-4</subfield><subfield code="w">(DE-576)104402504</subfield><subfield code="x">0360-1323</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:207</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">56.00</subfield><subfield code="j">Bauwesen: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">207</subfield></datafield></record></collection>
|
score |
7.4018106 |