Dietary polyphenols mitigate SARS-CoV-2 main protease (Mpro)–Molecular dynamics, molecular mechanics, and density functional theory investigations
The recent evolution of the SARS-like Coronavirus has ravaged the world. The deadly virus has claimed over millions of lives across the world and hence highlights the need to develop effective therapeutic drugs to contain the disease posed by this parasite. In this study, the inhibitory potential of...
Ausführliche Beschreibung
Autor*in: |
Adelusi, Temitope Isaac [verfasserIn] Oyedele, Abdul-Quddus Kehinde [verfasserIn] Monday, Ojo Emmanuel [verfasserIn] Boyenle, Ibrahim Damilare [verfasserIn] Idris, Mukhtar Oluwaseun [verfasserIn] Ogunlana, Abdeen Tunde [verfasserIn] Ayoola, Ashiru Mojeed [verfasserIn] Fatoki, John Olabode [verfasserIn] Kolawole, Oladipo Elijah [verfasserIn] David, Kehinde Busuyi [verfasserIn] Olayemi, Akintola Adebola [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of molecular structure - New York, NY [u.a.] : Elsevier, 1967, 1250 |
---|---|
Übergeordnetes Werk: |
volume:1250 |
DOI / URN: |
10.1016/j.molstruc.2021.131879 |
---|
Katalog-ID: |
ELV007122373 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV007122373 | ||
003 | DE-627 | ||
005 | 20230524155406.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230506s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.molstruc.2021.131879 |2 doi | |
035 | |a (DE-627)ELV007122373 | ||
035 | |a (ELSEVIER)S0022-2860(21)02001-9 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 540 |q DE-600 |
084 | |a 35.00 |2 bkl | ||
100 | 1 | |a Adelusi, Temitope Isaac |e verfasserin |4 aut | |
245 | 1 | 0 | |a Dietary polyphenols mitigate SARS-CoV-2 main protease (Mpro)–Molecular dynamics, molecular mechanics, and density functional theory investigations |
264 | 1 | |c 2021 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The recent evolution of the SARS-like Coronavirus has ravaged the world. The deadly virus has claimed over millions of lives across the world and hence highlights the need to develop effective therapeutic drugs to contain the disease posed by this parasite. In this study, the inhibitory potential of fifty (50) dietary polyphenols against Coronavirus (SARS-CoV-2) main protease (Mpro) was conducted using the Autodock Vina Molecular docking tool. In the virtual screening process, the binding affinity of Remdesivir (-7.7 kcal/mol) currently used to treat COVID-19 patients was set as the cut-off value to screen out less probable inhibitors. Ellagic acid, Kievitone, and Punicalin were the only promising ligands with binding affinities (-8.9 kcal/mol, -8.0 kcal/mol and -7.9 kcal/mol respectively) lower than the set cut-off value. Furthermore, we validated Ellagic acid and Kievitone efficacy by subjecting them to molecular dynamics simulation and further stability was assessed at the molecular mechanics and quantum levels. The overall analysis indicates both compounds demonstrate higher stability and inhibitory potential to bind to the crucial His41 and Cys145 catalytic dyad of Mpro than the standard drug. However, further analysis of punicalin after evaluating its docking score was not conducted as the ligand pharmacokinetics properties suggests it could pose serious adverse effect to the health of participants in clinical trials. Hence, we employed a more safe approach by filtering out the compound during this study. Conclusively, while Ellagic acid and kievitone polyphenolic compounds have been demonstrated to be promising under this in silico research, further studies are needed to substantiate their clinical relevance. | ||
650 | 4 | |a Molecular docking | |
650 | 4 | |a Molecular dynamics | |
650 | 4 | |a Quantum mechanics | |
650 | 4 | |a Molecular mechanics | |
650 | 4 | |a SARS-COV2 Mpro inhibitors | |
700 | 1 | |a Oyedele, Abdul-Quddus Kehinde |e verfasserin |4 aut | |
700 | 1 | |a Monday, Ojo Emmanuel |e verfasserin |4 aut | |
700 | 1 | |a Boyenle, Ibrahim Damilare |e verfasserin |4 aut | |
700 | 1 | |a Idris, Mukhtar Oluwaseun |e verfasserin |4 aut | |
700 | 1 | |a Ogunlana, Abdeen Tunde |e verfasserin |4 aut | |
700 | 1 | |a Ayoola, Ashiru Mojeed |e verfasserin |4 aut | |
700 | 1 | |a Fatoki, John Olabode |e verfasserin |4 aut | |
700 | 1 | |a Kolawole, Oladipo Elijah |e verfasserin |4 aut | |
700 | 1 | |a David, Kehinde Busuyi |e verfasserin |4 aut | |
700 | 1 | |a Olayemi, Akintola Adebola |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of molecular structure |d New York, NY [u.a.] : Elsevier, 1967 |g 1250 |h Online-Ressource |w (DE-627)302469745 |w (DE-600)1491504-2 |w (DE-576)255266626 |x 0022-2860 |7 nnns |
773 | 1 | 8 | |g volume:1250 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 35.00 |j Chemie: Allgemeines |
951 | |a AR | ||
952 | |d 1250 |
author_variant |
t i a ti tia a q k o aqk aqko o e m oe oem i d b id idb m o i mo moi a t o at ato a m a am ama j o f jo jof o e k oe oek k b d kb kbd a a o aa aao |
---|---|
matchkey_str |
article:00222860:2021----::itrplpeosiiaeaso2anrtaepooeuadnmcmlclrehncades |
hierarchy_sort_str |
2021 |
bklnumber |
35.00 |
publishDate |
2021 |
allfields |
10.1016/j.molstruc.2021.131879 doi (DE-627)ELV007122373 (ELSEVIER)S0022-2860(21)02001-9 DE-627 ger DE-627 rda eng 540 DE-600 35.00 bkl Adelusi, Temitope Isaac verfasserin aut Dietary polyphenols mitigate SARS-CoV-2 main protease (Mpro)–Molecular dynamics, molecular mechanics, and density functional theory investigations 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The recent evolution of the SARS-like Coronavirus has ravaged the world. The deadly virus has claimed over millions of lives across the world and hence highlights the need to develop effective therapeutic drugs to contain the disease posed by this parasite. In this study, the inhibitory potential of fifty (50) dietary polyphenols against Coronavirus (SARS-CoV-2) main protease (Mpro) was conducted using the Autodock Vina Molecular docking tool. In the virtual screening process, the binding affinity of Remdesivir (-7.7 kcal/mol) currently used to treat COVID-19 patients was set as the cut-off value to screen out less probable inhibitors. Ellagic acid, Kievitone, and Punicalin were the only promising ligands with binding affinities (-8.9 kcal/mol, -8.0 kcal/mol and -7.9 kcal/mol respectively) lower than the set cut-off value. Furthermore, we validated Ellagic acid and Kievitone efficacy by subjecting them to molecular dynamics simulation and further stability was assessed at the molecular mechanics and quantum levels. The overall analysis indicates both compounds demonstrate higher stability and inhibitory potential to bind to the crucial His41 and Cys145 catalytic dyad of Mpro than the standard drug. However, further analysis of punicalin after evaluating its docking score was not conducted as the ligand pharmacokinetics properties suggests it could pose serious adverse effect to the health of participants in clinical trials. Hence, we employed a more safe approach by filtering out the compound during this study. Conclusively, while Ellagic acid and kievitone polyphenolic compounds have been demonstrated to be promising under this in silico research, further studies are needed to substantiate their clinical relevance. Molecular docking Molecular dynamics Quantum mechanics Molecular mechanics SARS-COV2 Mpro inhibitors Oyedele, Abdul-Quddus Kehinde verfasserin aut Monday, Ojo Emmanuel verfasserin aut Boyenle, Ibrahim Damilare verfasserin aut Idris, Mukhtar Oluwaseun verfasserin aut Ogunlana, Abdeen Tunde verfasserin aut Ayoola, Ashiru Mojeed verfasserin aut Fatoki, John Olabode verfasserin aut Kolawole, Oladipo Elijah verfasserin aut David, Kehinde Busuyi verfasserin aut Olayemi, Akintola Adebola verfasserin aut Enthalten in Journal of molecular structure New York, NY [u.a.] : Elsevier, 1967 1250 Online-Ressource (DE-627)302469745 (DE-600)1491504-2 (DE-576)255266626 0022-2860 nnns volume:1250 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 35.00 Chemie: Allgemeines AR 1250 |
spelling |
10.1016/j.molstruc.2021.131879 doi (DE-627)ELV007122373 (ELSEVIER)S0022-2860(21)02001-9 DE-627 ger DE-627 rda eng 540 DE-600 35.00 bkl Adelusi, Temitope Isaac verfasserin aut Dietary polyphenols mitigate SARS-CoV-2 main protease (Mpro)–Molecular dynamics, molecular mechanics, and density functional theory investigations 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The recent evolution of the SARS-like Coronavirus has ravaged the world. The deadly virus has claimed over millions of lives across the world and hence highlights the need to develop effective therapeutic drugs to contain the disease posed by this parasite. In this study, the inhibitory potential of fifty (50) dietary polyphenols against Coronavirus (SARS-CoV-2) main protease (Mpro) was conducted using the Autodock Vina Molecular docking tool. In the virtual screening process, the binding affinity of Remdesivir (-7.7 kcal/mol) currently used to treat COVID-19 patients was set as the cut-off value to screen out less probable inhibitors. Ellagic acid, Kievitone, and Punicalin were the only promising ligands with binding affinities (-8.9 kcal/mol, -8.0 kcal/mol and -7.9 kcal/mol respectively) lower than the set cut-off value. Furthermore, we validated Ellagic acid and Kievitone efficacy by subjecting them to molecular dynamics simulation and further stability was assessed at the molecular mechanics and quantum levels. The overall analysis indicates both compounds demonstrate higher stability and inhibitory potential to bind to the crucial His41 and Cys145 catalytic dyad of Mpro than the standard drug. However, further analysis of punicalin after evaluating its docking score was not conducted as the ligand pharmacokinetics properties suggests it could pose serious adverse effect to the health of participants in clinical trials. Hence, we employed a more safe approach by filtering out the compound during this study. Conclusively, while Ellagic acid and kievitone polyphenolic compounds have been demonstrated to be promising under this in silico research, further studies are needed to substantiate their clinical relevance. Molecular docking Molecular dynamics Quantum mechanics Molecular mechanics SARS-COV2 Mpro inhibitors Oyedele, Abdul-Quddus Kehinde verfasserin aut Monday, Ojo Emmanuel verfasserin aut Boyenle, Ibrahim Damilare verfasserin aut Idris, Mukhtar Oluwaseun verfasserin aut Ogunlana, Abdeen Tunde verfasserin aut Ayoola, Ashiru Mojeed verfasserin aut Fatoki, John Olabode verfasserin aut Kolawole, Oladipo Elijah verfasserin aut David, Kehinde Busuyi verfasserin aut Olayemi, Akintola Adebola verfasserin aut Enthalten in Journal of molecular structure New York, NY [u.a.] : Elsevier, 1967 1250 Online-Ressource (DE-627)302469745 (DE-600)1491504-2 (DE-576)255266626 0022-2860 nnns volume:1250 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 35.00 Chemie: Allgemeines AR 1250 |
allfields_unstemmed |
10.1016/j.molstruc.2021.131879 doi (DE-627)ELV007122373 (ELSEVIER)S0022-2860(21)02001-9 DE-627 ger DE-627 rda eng 540 DE-600 35.00 bkl Adelusi, Temitope Isaac verfasserin aut Dietary polyphenols mitigate SARS-CoV-2 main protease (Mpro)–Molecular dynamics, molecular mechanics, and density functional theory investigations 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The recent evolution of the SARS-like Coronavirus has ravaged the world. The deadly virus has claimed over millions of lives across the world and hence highlights the need to develop effective therapeutic drugs to contain the disease posed by this parasite. In this study, the inhibitory potential of fifty (50) dietary polyphenols against Coronavirus (SARS-CoV-2) main protease (Mpro) was conducted using the Autodock Vina Molecular docking tool. In the virtual screening process, the binding affinity of Remdesivir (-7.7 kcal/mol) currently used to treat COVID-19 patients was set as the cut-off value to screen out less probable inhibitors. Ellagic acid, Kievitone, and Punicalin were the only promising ligands with binding affinities (-8.9 kcal/mol, -8.0 kcal/mol and -7.9 kcal/mol respectively) lower than the set cut-off value. Furthermore, we validated Ellagic acid and Kievitone efficacy by subjecting them to molecular dynamics simulation and further stability was assessed at the molecular mechanics and quantum levels. The overall analysis indicates both compounds demonstrate higher stability and inhibitory potential to bind to the crucial His41 and Cys145 catalytic dyad of Mpro than the standard drug. However, further analysis of punicalin after evaluating its docking score was not conducted as the ligand pharmacokinetics properties suggests it could pose serious adverse effect to the health of participants in clinical trials. Hence, we employed a more safe approach by filtering out the compound during this study. Conclusively, while Ellagic acid and kievitone polyphenolic compounds have been demonstrated to be promising under this in silico research, further studies are needed to substantiate their clinical relevance. Molecular docking Molecular dynamics Quantum mechanics Molecular mechanics SARS-COV2 Mpro inhibitors Oyedele, Abdul-Quddus Kehinde verfasserin aut Monday, Ojo Emmanuel verfasserin aut Boyenle, Ibrahim Damilare verfasserin aut Idris, Mukhtar Oluwaseun verfasserin aut Ogunlana, Abdeen Tunde verfasserin aut Ayoola, Ashiru Mojeed verfasserin aut Fatoki, John Olabode verfasserin aut Kolawole, Oladipo Elijah verfasserin aut David, Kehinde Busuyi verfasserin aut Olayemi, Akintola Adebola verfasserin aut Enthalten in Journal of molecular structure New York, NY [u.a.] : Elsevier, 1967 1250 Online-Ressource (DE-627)302469745 (DE-600)1491504-2 (DE-576)255266626 0022-2860 nnns volume:1250 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 35.00 Chemie: Allgemeines AR 1250 |
allfieldsGer |
10.1016/j.molstruc.2021.131879 doi (DE-627)ELV007122373 (ELSEVIER)S0022-2860(21)02001-9 DE-627 ger DE-627 rda eng 540 DE-600 35.00 bkl Adelusi, Temitope Isaac verfasserin aut Dietary polyphenols mitigate SARS-CoV-2 main protease (Mpro)–Molecular dynamics, molecular mechanics, and density functional theory investigations 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The recent evolution of the SARS-like Coronavirus has ravaged the world. The deadly virus has claimed over millions of lives across the world and hence highlights the need to develop effective therapeutic drugs to contain the disease posed by this parasite. In this study, the inhibitory potential of fifty (50) dietary polyphenols against Coronavirus (SARS-CoV-2) main protease (Mpro) was conducted using the Autodock Vina Molecular docking tool. In the virtual screening process, the binding affinity of Remdesivir (-7.7 kcal/mol) currently used to treat COVID-19 patients was set as the cut-off value to screen out less probable inhibitors. Ellagic acid, Kievitone, and Punicalin were the only promising ligands with binding affinities (-8.9 kcal/mol, -8.0 kcal/mol and -7.9 kcal/mol respectively) lower than the set cut-off value. Furthermore, we validated Ellagic acid and Kievitone efficacy by subjecting them to molecular dynamics simulation and further stability was assessed at the molecular mechanics and quantum levels. The overall analysis indicates both compounds demonstrate higher stability and inhibitory potential to bind to the crucial His41 and Cys145 catalytic dyad of Mpro than the standard drug. However, further analysis of punicalin after evaluating its docking score was not conducted as the ligand pharmacokinetics properties suggests it could pose serious adverse effect to the health of participants in clinical trials. Hence, we employed a more safe approach by filtering out the compound during this study. Conclusively, while Ellagic acid and kievitone polyphenolic compounds have been demonstrated to be promising under this in silico research, further studies are needed to substantiate their clinical relevance. Molecular docking Molecular dynamics Quantum mechanics Molecular mechanics SARS-COV2 Mpro inhibitors Oyedele, Abdul-Quddus Kehinde verfasserin aut Monday, Ojo Emmanuel verfasserin aut Boyenle, Ibrahim Damilare verfasserin aut Idris, Mukhtar Oluwaseun verfasserin aut Ogunlana, Abdeen Tunde verfasserin aut Ayoola, Ashiru Mojeed verfasserin aut Fatoki, John Olabode verfasserin aut Kolawole, Oladipo Elijah verfasserin aut David, Kehinde Busuyi verfasserin aut Olayemi, Akintola Adebola verfasserin aut Enthalten in Journal of molecular structure New York, NY [u.a.] : Elsevier, 1967 1250 Online-Ressource (DE-627)302469745 (DE-600)1491504-2 (DE-576)255266626 0022-2860 nnns volume:1250 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 35.00 Chemie: Allgemeines AR 1250 |
allfieldsSound |
10.1016/j.molstruc.2021.131879 doi (DE-627)ELV007122373 (ELSEVIER)S0022-2860(21)02001-9 DE-627 ger DE-627 rda eng 540 DE-600 35.00 bkl Adelusi, Temitope Isaac verfasserin aut Dietary polyphenols mitigate SARS-CoV-2 main protease (Mpro)–Molecular dynamics, molecular mechanics, and density functional theory investigations 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The recent evolution of the SARS-like Coronavirus has ravaged the world. The deadly virus has claimed over millions of lives across the world and hence highlights the need to develop effective therapeutic drugs to contain the disease posed by this parasite. In this study, the inhibitory potential of fifty (50) dietary polyphenols against Coronavirus (SARS-CoV-2) main protease (Mpro) was conducted using the Autodock Vina Molecular docking tool. In the virtual screening process, the binding affinity of Remdesivir (-7.7 kcal/mol) currently used to treat COVID-19 patients was set as the cut-off value to screen out less probable inhibitors. Ellagic acid, Kievitone, and Punicalin were the only promising ligands with binding affinities (-8.9 kcal/mol, -8.0 kcal/mol and -7.9 kcal/mol respectively) lower than the set cut-off value. Furthermore, we validated Ellagic acid and Kievitone efficacy by subjecting them to molecular dynamics simulation and further stability was assessed at the molecular mechanics and quantum levels. The overall analysis indicates both compounds demonstrate higher stability and inhibitory potential to bind to the crucial His41 and Cys145 catalytic dyad of Mpro than the standard drug. However, further analysis of punicalin after evaluating its docking score was not conducted as the ligand pharmacokinetics properties suggests it could pose serious adverse effect to the health of participants in clinical trials. Hence, we employed a more safe approach by filtering out the compound during this study. Conclusively, while Ellagic acid and kievitone polyphenolic compounds have been demonstrated to be promising under this in silico research, further studies are needed to substantiate their clinical relevance. Molecular docking Molecular dynamics Quantum mechanics Molecular mechanics SARS-COV2 Mpro inhibitors Oyedele, Abdul-Quddus Kehinde verfasserin aut Monday, Ojo Emmanuel verfasserin aut Boyenle, Ibrahim Damilare verfasserin aut Idris, Mukhtar Oluwaseun verfasserin aut Ogunlana, Abdeen Tunde verfasserin aut Ayoola, Ashiru Mojeed verfasserin aut Fatoki, John Olabode verfasserin aut Kolawole, Oladipo Elijah verfasserin aut David, Kehinde Busuyi verfasserin aut Olayemi, Akintola Adebola verfasserin aut Enthalten in Journal of molecular structure New York, NY [u.a.] : Elsevier, 1967 1250 Online-Ressource (DE-627)302469745 (DE-600)1491504-2 (DE-576)255266626 0022-2860 nnns volume:1250 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 35.00 Chemie: Allgemeines AR 1250 |
language |
English |
source |
Enthalten in Journal of molecular structure 1250 volume:1250 |
sourceStr |
Enthalten in Journal of molecular structure 1250 volume:1250 |
format_phy_str_mv |
Article |
bklname |
Chemie: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Molecular docking Molecular dynamics Quantum mechanics Molecular mechanics SARS-COV2 Mpro inhibitors |
dewey-raw |
540 |
isfreeaccess_bool |
false |
container_title |
Journal of molecular structure |
authorswithroles_txt_mv |
Adelusi, Temitope Isaac @@aut@@ Oyedele, Abdul-Quddus Kehinde @@aut@@ Monday, Ojo Emmanuel @@aut@@ Boyenle, Ibrahim Damilare @@aut@@ Idris, Mukhtar Oluwaseun @@aut@@ Ogunlana, Abdeen Tunde @@aut@@ Ayoola, Ashiru Mojeed @@aut@@ Fatoki, John Olabode @@aut@@ Kolawole, Oladipo Elijah @@aut@@ David, Kehinde Busuyi @@aut@@ Olayemi, Akintola Adebola @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
302469745 |
dewey-sort |
3540 |
id |
ELV007122373 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV007122373</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524155406.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230506s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.molstruc.2021.131879</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV007122373</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0022-2860(21)02001-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Adelusi, Temitope Isaac</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dietary polyphenols mitigate SARS-CoV-2 main protease (Mpro)–Molecular dynamics, molecular mechanics, and density functional theory investigations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The recent evolution of the SARS-like Coronavirus has ravaged the world. The deadly virus has claimed over millions of lives across the world and hence highlights the need to develop effective therapeutic drugs to contain the disease posed by this parasite. In this study, the inhibitory potential of fifty (50) dietary polyphenols against Coronavirus (SARS-CoV-2) main protease (Mpro) was conducted using the Autodock Vina Molecular docking tool. In the virtual screening process, the binding affinity of Remdesivir (-7.7 kcal/mol) currently used to treat COVID-19 patients was set as the cut-off value to screen out less probable inhibitors. Ellagic acid, Kievitone, and Punicalin were the only promising ligands with binding affinities (-8.9 kcal/mol, -8.0 kcal/mol and -7.9 kcal/mol respectively) lower than the set cut-off value. Furthermore, we validated Ellagic acid and Kievitone efficacy by subjecting them to molecular dynamics simulation and further stability was assessed at the molecular mechanics and quantum levels. The overall analysis indicates both compounds demonstrate higher stability and inhibitory potential to bind to the crucial His41 and Cys145 catalytic dyad of Mpro than the standard drug. However, further analysis of punicalin after evaluating its docking score was not conducted as the ligand pharmacokinetics properties suggests it could pose serious adverse effect to the health of participants in clinical trials. Hence, we employed a more safe approach by filtering out the compound during this study. Conclusively, while Ellagic acid and kievitone polyphenolic compounds have been demonstrated to be promising under this in silico research, further studies are needed to substantiate their clinical relevance.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Molecular docking</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Molecular dynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Molecular mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SARS-COV2 Mpro inhibitors</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Oyedele, Abdul-Quddus Kehinde</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Monday, Ojo Emmanuel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Boyenle, Ibrahim Damilare</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Idris, Mukhtar Oluwaseun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ogunlana, Abdeen Tunde</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ayoola, Ashiru Mojeed</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fatoki, John Olabode</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kolawole, Oladipo Elijah</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">David, Kehinde Busuyi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Olayemi, Akintola Adebola</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of molecular structure</subfield><subfield code="d">New York, NY [u.a.] : Elsevier, 1967</subfield><subfield code="g">1250</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)302469745</subfield><subfield code="w">(DE-600)1491504-2</subfield><subfield code="w">(DE-576)255266626</subfield><subfield code="x">0022-2860</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:1250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.00</subfield><subfield code="j">Chemie: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">1250</subfield></datafield></record></collection>
|
author |
Adelusi, Temitope Isaac |
spellingShingle |
Adelusi, Temitope Isaac ddc 540 bkl 35.00 misc Molecular docking misc Molecular dynamics misc Quantum mechanics misc Molecular mechanics misc SARS-COV2 Mpro inhibitors Dietary polyphenols mitigate SARS-CoV-2 main protease (Mpro)–Molecular dynamics, molecular mechanics, and density functional theory investigations |
authorStr |
Adelusi, Temitope Isaac |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)302469745 |
format |
electronic Article |
dewey-ones |
540 - Chemistry & allied sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0022-2860 |
topic_title |
540 DE-600 35.00 bkl Dietary polyphenols mitigate SARS-CoV-2 main protease (Mpro)–Molecular dynamics, molecular mechanics, and density functional theory investigations Molecular docking Molecular dynamics Quantum mechanics Molecular mechanics SARS-COV2 Mpro inhibitors |
topic |
ddc 540 bkl 35.00 misc Molecular docking misc Molecular dynamics misc Quantum mechanics misc Molecular mechanics misc SARS-COV2 Mpro inhibitors |
topic_unstemmed |
ddc 540 bkl 35.00 misc Molecular docking misc Molecular dynamics misc Quantum mechanics misc Molecular mechanics misc SARS-COV2 Mpro inhibitors |
topic_browse |
ddc 540 bkl 35.00 misc Molecular docking misc Molecular dynamics misc Quantum mechanics misc Molecular mechanics misc SARS-COV2 Mpro inhibitors |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of molecular structure |
hierarchy_parent_id |
302469745 |
dewey-tens |
540 - Chemistry |
hierarchy_top_title |
Journal of molecular structure |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)302469745 (DE-600)1491504-2 (DE-576)255266626 |
title |
Dietary polyphenols mitigate SARS-CoV-2 main protease (Mpro)–Molecular dynamics, molecular mechanics, and density functional theory investigations |
ctrlnum |
(DE-627)ELV007122373 (ELSEVIER)S0022-2860(21)02001-9 |
title_full |
Dietary polyphenols mitigate SARS-CoV-2 main protease (Mpro)–Molecular dynamics, molecular mechanics, and density functional theory investigations |
author_sort |
Adelusi, Temitope Isaac |
journal |
Journal of molecular structure |
journalStr |
Journal of molecular structure |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
author_browse |
Adelusi, Temitope Isaac Oyedele, Abdul-Quddus Kehinde Monday, Ojo Emmanuel Boyenle, Ibrahim Damilare Idris, Mukhtar Oluwaseun Ogunlana, Abdeen Tunde Ayoola, Ashiru Mojeed Fatoki, John Olabode Kolawole, Oladipo Elijah David, Kehinde Busuyi Olayemi, Akintola Adebola |
container_volume |
1250 |
class |
540 DE-600 35.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Adelusi, Temitope Isaac |
doi_str_mv |
10.1016/j.molstruc.2021.131879 |
dewey-full |
540 |
author2-role |
verfasserin |
title_sort |
dietary polyphenols mitigate sars-cov-2 main protease (mpro)–molecular dynamics, molecular mechanics, and density functional theory investigations |
title_auth |
Dietary polyphenols mitigate SARS-CoV-2 main protease (Mpro)–Molecular dynamics, molecular mechanics, and density functional theory investigations |
abstract |
The recent evolution of the SARS-like Coronavirus has ravaged the world. The deadly virus has claimed over millions of lives across the world and hence highlights the need to develop effective therapeutic drugs to contain the disease posed by this parasite. In this study, the inhibitory potential of fifty (50) dietary polyphenols against Coronavirus (SARS-CoV-2) main protease (Mpro) was conducted using the Autodock Vina Molecular docking tool. In the virtual screening process, the binding affinity of Remdesivir (-7.7 kcal/mol) currently used to treat COVID-19 patients was set as the cut-off value to screen out less probable inhibitors. Ellagic acid, Kievitone, and Punicalin were the only promising ligands with binding affinities (-8.9 kcal/mol, -8.0 kcal/mol and -7.9 kcal/mol respectively) lower than the set cut-off value. Furthermore, we validated Ellagic acid and Kievitone efficacy by subjecting them to molecular dynamics simulation and further stability was assessed at the molecular mechanics and quantum levels. The overall analysis indicates both compounds demonstrate higher stability and inhibitory potential to bind to the crucial His41 and Cys145 catalytic dyad of Mpro than the standard drug. However, further analysis of punicalin after evaluating its docking score was not conducted as the ligand pharmacokinetics properties suggests it could pose serious adverse effect to the health of participants in clinical trials. Hence, we employed a more safe approach by filtering out the compound during this study. Conclusively, while Ellagic acid and kievitone polyphenolic compounds have been demonstrated to be promising under this in silico research, further studies are needed to substantiate their clinical relevance. |
abstractGer |
The recent evolution of the SARS-like Coronavirus has ravaged the world. The deadly virus has claimed over millions of lives across the world and hence highlights the need to develop effective therapeutic drugs to contain the disease posed by this parasite. In this study, the inhibitory potential of fifty (50) dietary polyphenols against Coronavirus (SARS-CoV-2) main protease (Mpro) was conducted using the Autodock Vina Molecular docking tool. In the virtual screening process, the binding affinity of Remdesivir (-7.7 kcal/mol) currently used to treat COVID-19 patients was set as the cut-off value to screen out less probable inhibitors. Ellagic acid, Kievitone, and Punicalin were the only promising ligands with binding affinities (-8.9 kcal/mol, -8.0 kcal/mol and -7.9 kcal/mol respectively) lower than the set cut-off value. Furthermore, we validated Ellagic acid and Kievitone efficacy by subjecting them to molecular dynamics simulation and further stability was assessed at the molecular mechanics and quantum levels. The overall analysis indicates both compounds demonstrate higher stability and inhibitory potential to bind to the crucial His41 and Cys145 catalytic dyad of Mpro than the standard drug. However, further analysis of punicalin after evaluating its docking score was not conducted as the ligand pharmacokinetics properties suggests it could pose serious adverse effect to the health of participants in clinical trials. Hence, we employed a more safe approach by filtering out the compound during this study. Conclusively, while Ellagic acid and kievitone polyphenolic compounds have been demonstrated to be promising under this in silico research, further studies are needed to substantiate their clinical relevance. |
abstract_unstemmed |
The recent evolution of the SARS-like Coronavirus has ravaged the world. The deadly virus has claimed over millions of lives across the world and hence highlights the need to develop effective therapeutic drugs to contain the disease posed by this parasite. In this study, the inhibitory potential of fifty (50) dietary polyphenols against Coronavirus (SARS-CoV-2) main protease (Mpro) was conducted using the Autodock Vina Molecular docking tool. In the virtual screening process, the binding affinity of Remdesivir (-7.7 kcal/mol) currently used to treat COVID-19 patients was set as the cut-off value to screen out less probable inhibitors. Ellagic acid, Kievitone, and Punicalin were the only promising ligands with binding affinities (-8.9 kcal/mol, -8.0 kcal/mol and -7.9 kcal/mol respectively) lower than the set cut-off value. Furthermore, we validated Ellagic acid and Kievitone efficacy by subjecting them to molecular dynamics simulation and further stability was assessed at the molecular mechanics and quantum levels. The overall analysis indicates both compounds demonstrate higher stability and inhibitory potential to bind to the crucial His41 and Cys145 catalytic dyad of Mpro than the standard drug. However, further analysis of punicalin after evaluating its docking score was not conducted as the ligand pharmacokinetics properties suggests it could pose serious adverse effect to the health of participants in clinical trials. Hence, we employed a more safe approach by filtering out the compound during this study. Conclusively, while Ellagic acid and kievitone polyphenolic compounds have been demonstrated to be promising under this in silico research, further studies are needed to substantiate their clinical relevance. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Dietary polyphenols mitigate SARS-CoV-2 main protease (Mpro)–Molecular dynamics, molecular mechanics, and density functional theory investigations |
remote_bool |
true |
author2 |
Oyedele, Abdul-Quddus Kehinde Monday, Ojo Emmanuel Boyenle, Ibrahim Damilare Idris, Mukhtar Oluwaseun Ogunlana, Abdeen Tunde Ayoola, Ashiru Mojeed Fatoki, John Olabode Kolawole, Oladipo Elijah David, Kehinde Busuyi Olayemi, Akintola Adebola |
author2Str |
Oyedele, Abdul-Quddus Kehinde Monday, Ojo Emmanuel Boyenle, Ibrahim Damilare Idris, Mukhtar Oluwaseun Ogunlana, Abdeen Tunde Ayoola, Ashiru Mojeed Fatoki, John Olabode Kolawole, Oladipo Elijah David, Kehinde Busuyi Olayemi, Akintola Adebola |
ppnlink |
302469745 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.molstruc.2021.131879 |
up_date |
2024-07-06T23:41:25.448Z |
_version_ |
1803875029298970624 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV007122373</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524155406.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230506s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.molstruc.2021.131879</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV007122373</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0022-2860(21)02001-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Adelusi, Temitope Isaac</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dietary polyphenols mitigate SARS-CoV-2 main protease (Mpro)–Molecular dynamics, molecular mechanics, and density functional theory investigations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The recent evolution of the SARS-like Coronavirus has ravaged the world. The deadly virus has claimed over millions of lives across the world and hence highlights the need to develop effective therapeutic drugs to contain the disease posed by this parasite. In this study, the inhibitory potential of fifty (50) dietary polyphenols against Coronavirus (SARS-CoV-2) main protease (Mpro) was conducted using the Autodock Vina Molecular docking tool. In the virtual screening process, the binding affinity of Remdesivir (-7.7 kcal/mol) currently used to treat COVID-19 patients was set as the cut-off value to screen out less probable inhibitors. Ellagic acid, Kievitone, and Punicalin were the only promising ligands with binding affinities (-8.9 kcal/mol, -8.0 kcal/mol and -7.9 kcal/mol respectively) lower than the set cut-off value. Furthermore, we validated Ellagic acid and Kievitone efficacy by subjecting them to molecular dynamics simulation and further stability was assessed at the molecular mechanics and quantum levels. The overall analysis indicates both compounds demonstrate higher stability and inhibitory potential to bind to the crucial His41 and Cys145 catalytic dyad of Mpro than the standard drug. However, further analysis of punicalin after evaluating its docking score was not conducted as the ligand pharmacokinetics properties suggests it could pose serious adverse effect to the health of participants in clinical trials. Hence, we employed a more safe approach by filtering out the compound during this study. Conclusively, while Ellagic acid and kievitone polyphenolic compounds have been demonstrated to be promising under this in silico research, further studies are needed to substantiate their clinical relevance.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Molecular docking</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Molecular dynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Molecular mechanics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SARS-COV2 Mpro inhibitors</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Oyedele, Abdul-Quddus Kehinde</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Monday, Ojo Emmanuel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Boyenle, Ibrahim Damilare</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Idris, Mukhtar Oluwaseun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ogunlana, Abdeen Tunde</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ayoola, Ashiru Mojeed</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fatoki, John Olabode</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kolawole, Oladipo Elijah</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">David, Kehinde Busuyi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Olayemi, Akintola Adebola</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of molecular structure</subfield><subfield code="d">New York, NY [u.a.] : Elsevier, 1967</subfield><subfield code="g">1250</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)302469745</subfield><subfield code="w">(DE-600)1491504-2</subfield><subfield code="w">(DE-576)255266626</subfield><subfield code="x">0022-2860</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:1250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.00</subfield><subfield code="j">Chemie: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">1250</subfield></datafield></record></collection>
|
score |
7.3993254 |