Cost-performance balance and new image analysis technique for ultra-high performance hybrid nano-based fiber-reinforced concrete
The formulation of ultra-high performance (UHPC) concrete is characterized by the presence of fine inert and reactive filling materials to cement with proper superplasticizer and low water-to-cement ratio. In this study, the use of crystalline nanocellulose (CNC) and carbon nanotube (CNT) to reinfor...
Ausführliche Beschreibung
Autor*in: |
Khan, Mohammad Iqbal [verfasserIn] Fares, Galal [verfasserIn] Abbas, Yassir M. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
Ultrahigh-performance concrete |
---|
Übergeordnetes Werk: |
Enthalten in: Construction and building materials - Amsterdam [u.a.] : Elsevier Science, 1987, 315 |
---|---|
Übergeordnetes Werk: |
volume:315 |
DOI / URN: |
10.1016/j.conbuildmat.2021.125753 |
---|
Katalog-ID: |
ELV007184565 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV007184565 | ||
003 | DE-627 | ||
005 | 20230524135036.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230506s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.conbuildmat.2021.125753 |2 doi | |
035 | |a (DE-627)ELV007184565 | ||
035 | |a (ELSEVIER)S0950-0618(21)03486-3 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 690 |q DE-600 |
084 | |a 56.45 |2 bkl | ||
100 | 1 | |a Khan, Mohammad Iqbal |e verfasserin |4 aut | |
245 | 1 | 0 | |a Cost-performance balance and new image analysis technique for ultra-high performance hybrid nano-based fiber-reinforced concrete |
264 | 1 | |c 2021 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The formulation of ultra-high performance (UHPC) concrete is characterized by the presence of fine inert and reactive filling materials to cement with proper superplasticizer and low water-to-cement ratio. In this study, the use of crystalline nanocellulose (CNC) and carbon nanotube (CNT) to reinforce the flexural resistance of the cementitious matrix at the nano level is investigated. CNC and CNT were utilized in the presence of hybridized polyvinyl alcohol (PVA) microfibers with either macrosteel or microsteel fibers of different physicomechanical properties. Additionally, fine aggregates of a maximum particle size of 4 mm and two types of desert sands were incorporated and evaluated in the presence of fly ash (FA) and silica fume (SF). The use of FA has led to an improvement in workability with elevated compactness integrated with SF nanoparticles. The optimal combination of aggregates with maximum packing density was selected in the mix composition. The effect of CNC and CNT on the temperature evolution profiles and superplasticizer dosage on the setting time was individually evaluated. The results have confirmed that there had been a limited zone of accepted workability with CNC, after which a substantial workability loss was noticed. Macrosteel fibers have limited content, after which a remarkable reduction in compressive strength becomes evident in contrast to the microsteel fibers that can be incorporated in much higher contents. The image analysis technique was used to support the interpretation of data. It is concluded that the utilization of fine aggregates of a maximum particle size of 4 mm has limited the properties of UHPC mixes. | ||
650 | 4 | |a Ultrahigh-performance concrete | |
650 | 4 | |a Cost-performance-balance | |
650 | 4 | |a Optimization | |
650 | 4 | |a Nano-based cementitious materials | |
650 | 4 | |a Fiber’s dispersion | |
650 | 4 | |a Image analysis | |
700 | 1 | |a Fares, Galal |e verfasserin |4 aut | |
700 | 1 | |a Abbas, Yassir M. |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Construction and building materials |d Amsterdam [u.a.] : Elsevier Science, 1987 |g 315 |h Online-Ressource |w (DE-627)320423115 |w (DE-600)2002804-0 |w (DE-576)259271187 |7 nnns |
773 | 1 | 8 | |g volume:315 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 56.45 |j Baustoffkunde |
951 | |a AR | ||
952 | |d 315 |
author_variant |
m i k mi mik g f gf y m a ym yma |
---|---|
matchkey_str |
khanmohammadiqbalfaresgalalabbasyassirm:2021----:otefracblnennwmgaayitcnqeoutaihefrachbin |
hierarchy_sort_str |
2021 |
bklnumber |
56.45 |
publishDate |
2021 |
allfields |
10.1016/j.conbuildmat.2021.125753 doi (DE-627)ELV007184565 (ELSEVIER)S0950-0618(21)03486-3 DE-627 ger DE-627 rda eng 690 DE-600 56.45 bkl Khan, Mohammad Iqbal verfasserin aut Cost-performance balance and new image analysis technique for ultra-high performance hybrid nano-based fiber-reinforced concrete 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The formulation of ultra-high performance (UHPC) concrete is characterized by the presence of fine inert and reactive filling materials to cement with proper superplasticizer and low water-to-cement ratio. In this study, the use of crystalline nanocellulose (CNC) and carbon nanotube (CNT) to reinforce the flexural resistance of the cementitious matrix at the nano level is investigated. CNC and CNT were utilized in the presence of hybridized polyvinyl alcohol (PVA) microfibers with either macrosteel or microsteel fibers of different physicomechanical properties. Additionally, fine aggregates of a maximum particle size of 4 mm and two types of desert sands were incorporated and evaluated in the presence of fly ash (FA) and silica fume (SF). The use of FA has led to an improvement in workability with elevated compactness integrated with SF nanoparticles. The optimal combination of aggregates with maximum packing density was selected in the mix composition. The effect of CNC and CNT on the temperature evolution profiles and superplasticizer dosage on the setting time was individually evaluated. The results have confirmed that there had been a limited zone of accepted workability with CNC, after which a substantial workability loss was noticed. Macrosteel fibers have limited content, after which a remarkable reduction in compressive strength becomes evident in contrast to the microsteel fibers that can be incorporated in much higher contents. The image analysis technique was used to support the interpretation of data. It is concluded that the utilization of fine aggregates of a maximum particle size of 4 mm has limited the properties of UHPC mixes. Ultrahigh-performance concrete Cost-performance-balance Optimization Nano-based cementitious materials Fiber’s dispersion Image analysis Fares, Galal verfasserin aut Abbas, Yassir M. verfasserin aut Enthalten in Construction and building materials Amsterdam [u.a.] : Elsevier Science, 1987 315 Online-Ressource (DE-627)320423115 (DE-600)2002804-0 (DE-576)259271187 nnns volume:315 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 56.45 Baustoffkunde AR 315 |
spelling |
10.1016/j.conbuildmat.2021.125753 doi (DE-627)ELV007184565 (ELSEVIER)S0950-0618(21)03486-3 DE-627 ger DE-627 rda eng 690 DE-600 56.45 bkl Khan, Mohammad Iqbal verfasserin aut Cost-performance balance and new image analysis technique for ultra-high performance hybrid nano-based fiber-reinforced concrete 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The formulation of ultra-high performance (UHPC) concrete is characterized by the presence of fine inert and reactive filling materials to cement with proper superplasticizer and low water-to-cement ratio. In this study, the use of crystalline nanocellulose (CNC) and carbon nanotube (CNT) to reinforce the flexural resistance of the cementitious matrix at the nano level is investigated. CNC and CNT were utilized in the presence of hybridized polyvinyl alcohol (PVA) microfibers with either macrosteel or microsteel fibers of different physicomechanical properties. Additionally, fine aggregates of a maximum particle size of 4 mm and two types of desert sands were incorporated and evaluated in the presence of fly ash (FA) and silica fume (SF). The use of FA has led to an improvement in workability with elevated compactness integrated with SF nanoparticles. The optimal combination of aggregates with maximum packing density was selected in the mix composition. The effect of CNC and CNT on the temperature evolution profiles and superplasticizer dosage on the setting time was individually evaluated. The results have confirmed that there had been a limited zone of accepted workability with CNC, after which a substantial workability loss was noticed. Macrosteel fibers have limited content, after which a remarkable reduction in compressive strength becomes evident in contrast to the microsteel fibers that can be incorporated in much higher contents. The image analysis technique was used to support the interpretation of data. It is concluded that the utilization of fine aggregates of a maximum particle size of 4 mm has limited the properties of UHPC mixes. Ultrahigh-performance concrete Cost-performance-balance Optimization Nano-based cementitious materials Fiber’s dispersion Image analysis Fares, Galal verfasserin aut Abbas, Yassir M. verfasserin aut Enthalten in Construction and building materials Amsterdam [u.a.] : Elsevier Science, 1987 315 Online-Ressource (DE-627)320423115 (DE-600)2002804-0 (DE-576)259271187 nnns volume:315 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 56.45 Baustoffkunde AR 315 |
allfields_unstemmed |
10.1016/j.conbuildmat.2021.125753 doi (DE-627)ELV007184565 (ELSEVIER)S0950-0618(21)03486-3 DE-627 ger DE-627 rda eng 690 DE-600 56.45 bkl Khan, Mohammad Iqbal verfasserin aut Cost-performance balance and new image analysis technique for ultra-high performance hybrid nano-based fiber-reinforced concrete 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The formulation of ultra-high performance (UHPC) concrete is characterized by the presence of fine inert and reactive filling materials to cement with proper superplasticizer and low water-to-cement ratio. In this study, the use of crystalline nanocellulose (CNC) and carbon nanotube (CNT) to reinforce the flexural resistance of the cementitious matrix at the nano level is investigated. CNC and CNT were utilized in the presence of hybridized polyvinyl alcohol (PVA) microfibers with either macrosteel or microsteel fibers of different physicomechanical properties. Additionally, fine aggregates of a maximum particle size of 4 mm and two types of desert sands were incorporated and evaluated in the presence of fly ash (FA) and silica fume (SF). The use of FA has led to an improvement in workability with elevated compactness integrated with SF nanoparticles. The optimal combination of aggregates with maximum packing density was selected in the mix composition. The effect of CNC and CNT on the temperature evolution profiles and superplasticizer dosage on the setting time was individually evaluated. The results have confirmed that there had been a limited zone of accepted workability with CNC, after which a substantial workability loss was noticed. Macrosteel fibers have limited content, after which a remarkable reduction in compressive strength becomes evident in contrast to the microsteel fibers that can be incorporated in much higher contents. The image analysis technique was used to support the interpretation of data. It is concluded that the utilization of fine aggregates of a maximum particle size of 4 mm has limited the properties of UHPC mixes. Ultrahigh-performance concrete Cost-performance-balance Optimization Nano-based cementitious materials Fiber’s dispersion Image analysis Fares, Galal verfasserin aut Abbas, Yassir M. verfasserin aut Enthalten in Construction and building materials Amsterdam [u.a.] : Elsevier Science, 1987 315 Online-Ressource (DE-627)320423115 (DE-600)2002804-0 (DE-576)259271187 nnns volume:315 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 56.45 Baustoffkunde AR 315 |
allfieldsGer |
10.1016/j.conbuildmat.2021.125753 doi (DE-627)ELV007184565 (ELSEVIER)S0950-0618(21)03486-3 DE-627 ger DE-627 rda eng 690 DE-600 56.45 bkl Khan, Mohammad Iqbal verfasserin aut Cost-performance balance and new image analysis technique for ultra-high performance hybrid nano-based fiber-reinforced concrete 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The formulation of ultra-high performance (UHPC) concrete is characterized by the presence of fine inert and reactive filling materials to cement with proper superplasticizer and low water-to-cement ratio. In this study, the use of crystalline nanocellulose (CNC) and carbon nanotube (CNT) to reinforce the flexural resistance of the cementitious matrix at the nano level is investigated. CNC and CNT were utilized in the presence of hybridized polyvinyl alcohol (PVA) microfibers with either macrosteel or microsteel fibers of different physicomechanical properties. Additionally, fine aggregates of a maximum particle size of 4 mm and two types of desert sands were incorporated and evaluated in the presence of fly ash (FA) and silica fume (SF). The use of FA has led to an improvement in workability with elevated compactness integrated with SF nanoparticles. The optimal combination of aggregates with maximum packing density was selected in the mix composition. The effect of CNC and CNT on the temperature evolution profiles and superplasticizer dosage on the setting time was individually evaluated. The results have confirmed that there had been a limited zone of accepted workability with CNC, after which a substantial workability loss was noticed. Macrosteel fibers have limited content, after which a remarkable reduction in compressive strength becomes evident in contrast to the microsteel fibers that can be incorporated in much higher contents. The image analysis technique was used to support the interpretation of data. It is concluded that the utilization of fine aggregates of a maximum particle size of 4 mm has limited the properties of UHPC mixes. Ultrahigh-performance concrete Cost-performance-balance Optimization Nano-based cementitious materials Fiber’s dispersion Image analysis Fares, Galal verfasserin aut Abbas, Yassir M. verfasserin aut Enthalten in Construction and building materials Amsterdam [u.a.] : Elsevier Science, 1987 315 Online-Ressource (DE-627)320423115 (DE-600)2002804-0 (DE-576)259271187 nnns volume:315 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 56.45 Baustoffkunde AR 315 |
allfieldsSound |
10.1016/j.conbuildmat.2021.125753 doi (DE-627)ELV007184565 (ELSEVIER)S0950-0618(21)03486-3 DE-627 ger DE-627 rda eng 690 DE-600 56.45 bkl Khan, Mohammad Iqbal verfasserin aut Cost-performance balance and new image analysis technique for ultra-high performance hybrid nano-based fiber-reinforced concrete 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The formulation of ultra-high performance (UHPC) concrete is characterized by the presence of fine inert and reactive filling materials to cement with proper superplasticizer and low water-to-cement ratio. In this study, the use of crystalline nanocellulose (CNC) and carbon nanotube (CNT) to reinforce the flexural resistance of the cementitious matrix at the nano level is investigated. CNC and CNT were utilized in the presence of hybridized polyvinyl alcohol (PVA) microfibers with either macrosteel or microsteel fibers of different physicomechanical properties. Additionally, fine aggregates of a maximum particle size of 4 mm and two types of desert sands were incorporated and evaluated in the presence of fly ash (FA) and silica fume (SF). The use of FA has led to an improvement in workability with elevated compactness integrated with SF nanoparticles. The optimal combination of aggregates with maximum packing density was selected in the mix composition. The effect of CNC and CNT on the temperature evolution profiles and superplasticizer dosage on the setting time was individually evaluated. The results have confirmed that there had been a limited zone of accepted workability with CNC, after which a substantial workability loss was noticed. Macrosteel fibers have limited content, after which a remarkable reduction in compressive strength becomes evident in contrast to the microsteel fibers that can be incorporated in much higher contents. The image analysis technique was used to support the interpretation of data. It is concluded that the utilization of fine aggregates of a maximum particle size of 4 mm has limited the properties of UHPC mixes. Ultrahigh-performance concrete Cost-performance-balance Optimization Nano-based cementitious materials Fiber’s dispersion Image analysis Fares, Galal verfasserin aut Abbas, Yassir M. verfasserin aut Enthalten in Construction and building materials Amsterdam [u.a.] : Elsevier Science, 1987 315 Online-Ressource (DE-627)320423115 (DE-600)2002804-0 (DE-576)259271187 nnns volume:315 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 56.45 Baustoffkunde AR 315 |
language |
English |
source |
Enthalten in Construction and building materials 315 volume:315 |
sourceStr |
Enthalten in Construction and building materials 315 volume:315 |
format_phy_str_mv |
Article |
bklname |
Baustoffkunde |
institution |
findex.gbv.de |
topic_facet |
Ultrahigh-performance concrete Cost-performance-balance Optimization Nano-based cementitious materials Fiber’s dispersion Image analysis |
dewey-raw |
690 |
isfreeaccess_bool |
false |
container_title |
Construction and building materials |
authorswithroles_txt_mv |
Khan, Mohammad Iqbal @@aut@@ Fares, Galal @@aut@@ Abbas, Yassir M. @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
320423115 |
dewey-sort |
3690 |
id |
ELV007184565 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV007184565</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524135036.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230506s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.conbuildmat.2021.125753</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV007184565</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0950-0618(21)03486-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">56.45</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Khan, Mohammad Iqbal</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Cost-performance balance and new image analysis technique for ultra-high performance hybrid nano-based fiber-reinforced concrete</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The formulation of ultra-high performance (UHPC) concrete is characterized by the presence of fine inert and reactive filling materials to cement with proper superplasticizer and low water-to-cement ratio. In this study, the use of crystalline nanocellulose (CNC) and carbon nanotube (CNT) to reinforce the flexural resistance of the cementitious matrix at the nano level is investigated. CNC and CNT were utilized in the presence of hybridized polyvinyl alcohol (PVA) microfibers with either macrosteel or microsteel fibers of different physicomechanical properties. Additionally, fine aggregates of a maximum particle size of 4 mm and two types of desert sands were incorporated and evaluated in the presence of fly ash (FA) and silica fume (SF). The use of FA has led to an improvement in workability with elevated compactness integrated with SF nanoparticles. The optimal combination of aggregates with maximum packing density was selected in the mix composition. The effect of CNC and CNT on the temperature evolution profiles and superplasticizer dosage on the setting time was individually evaluated. The results have confirmed that there had been a limited zone of accepted workability with CNC, after which a substantial workability loss was noticed. Macrosteel fibers have limited content, after which a remarkable reduction in compressive strength becomes evident in contrast to the microsteel fibers that can be incorporated in much higher contents. The image analysis technique was used to support the interpretation of data. It is concluded that the utilization of fine aggregates of a maximum particle size of 4 mm has limited the properties of UHPC mixes.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ultrahigh-performance concrete</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cost-performance-balance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nano-based cementitious materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fiber’s dispersion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Image analysis</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fares, Galal</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Abbas, Yassir M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Construction and building materials</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1987</subfield><subfield code="g">315</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320423115</subfield><subfield code="w">(DE-600)2002804-0</subfield><subfield code="w">(DE-576)259271187</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:315</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">56.45</subfield><subfield code="j">Baustoffkunde</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">315</subfield></datafield></record></collection>
|
author |
Khan, Mohammad Iqbal |
spellingShingle |
Khan, Mohammad Iqbal ddc 690 bkl 56.45 misc Ultrahigh-performance concrete misc Cost-performance-balance misc Optimization misc Nano-based cementitious materials misc Fiber’s dispersion misc Image analysis Cost-performance balance and new image analysis technique for ultra-high performance hybrid nano-based fiber-reinforced concrete |
authorStr |
Khan, Mohammad Iqbal |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320423115 |
format |
electronic Article |
dewey-ones |
690 - Buildings |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
690 DE-600 56.45 bkl Cost-performance balance and new image analysis technique for ultra-high performance hybrid nano-based fiber-reinforced concrete Ultrahigh-performance concrete Cost-performance-balance Optimization Nano-based cementitious materials Fiber’s dispersion Image analysis |
topic |
ddc 690 bkl 56.45 misc Ultrahigh-performance concrete misc Cost-performance-balance misc Optimization misc Nano-based cementitious materials misc Fiber’s dispersion misc Image analysis |
topic_unstemmed |
ddc 690 bkl 56.45 misc Ultrahigh-performance concrete misc Cost-performance-balance misc Optimization misc Nano-based cementitious materials misc Fiber’s dispersion misc Image analysis |
topic_browse |
ddc 690 bkl 56.45 misc Ultrahigh-performance concrete misc Cost-performance-balance misc Optimization misc Nano-based cementitious materials misc Fiber’s dispersion misc Image analysis |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Construction and building materials |
hierarchy_parent_id |
320423115 |
dewey-tens |
690 - Building & construction |
hierarchy_top_title |
Construction and building materials |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320423115 (DE-600)2002804-0 (DE-576)259271187 |
title |
Cost-performance balance and new image analysis technique for ultra-high performance hybrid nano-based fiber-reinforced concrete |
ctrlnum |
(DE-627)ELV007184565 (ELSEVIER)S0950-0618(21)03486-3 |
title_full |
Cost-performance balance and new image analysis technique for ultra-high performance hybrid nano-based fiber-reinforced concrete |
author_sort |
Khan, Mohammad Iqbal |
journal |
Construction and building materials |
journalStr |
Construction and building materials |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
author_browse |
Khan, Mohammad Iqbal Fares, Galal Abbas, Yassir M. |
container_volume |
315 |
class |
690 DE-600 56.45 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Khan, Mohammad Iqbal |
doi_str_mv |
10.1016/j.conbuildmat.2021.125753 |
dewey-full |
690 |
author2-role |
verfasserin |
title_sort |
cost-performance balance and new image analysis technique for ultra-high performance hybrid nano-based fiber-reinforced concrete |
title_auth |
Cost-performance balance and new image analysis technique for ultra-high performance hybrid nano-based fiber-reinforced concrete |
abstract |
The formulation of ultra-high performance (UHPC) concrete is characterized by the presence of fine inert and reactive filling materials to cement with proper superplasticizer and low water-to-cement ratio. In this study, the use of crystalline nanocellulose (CNC) and carbon nanotube (CNT) to reinforce the flexural resistance of the cementitious matrix at the nano level is investigated. CNC and CNT were utilized in the presence of hybridized polyvinyl alcohol (PVA) microfibers with either macrosteel or microsteel fibers of different physicomechanical properties. Additionally, fine aggregates of a maximum particle size of 4 mm and two types of desert sands were incorporated and evaluated in the presence of fly ash (FA) and silica fume (SF). The use of FA has led to an improvement in workability with elevated compactness integrated with SF nanoparticles. The optimal combination of aggregates with maximum packing density was selected in the mix composition. The effect of CNC and CNT on the temperature evolution profiles and superplasticizer dosage on the setting time was individually evaluated. The results have confirmed that there had been a limited zone of accepted workability with CNC, after which a substantial workability loss was noticed. Macrosteel fibers have limited content, after which a remarkable reduction in compressive strength becomes evident in contrast to the microsteel fibers that can be incorporated in much higher contents. The image analysis technique was used to support the interpretation of data. It is concluded that the utilization of fine aggregates of a maximum particle size of 4 mm has limited the properties of UHPC mixes. |
abstractGer |
The formulation of ultra-high performance (UHPC) concrete is characterized by the presence of fine inert and reactive filling materials to cement with proper superplasticizer and low water-to-cement ratio. In this study, the use of crystalline nanocellulose (CNC) and carbon nanotube (CNT) to reinforce the flexural resistance of the cementitious matrix at the nano level is investigated. CNC and CNT were utilized in the presence of hybridized polyvinyl alcohol (PVA) microfibers with either macrosteel or microsteel fibers of different physicomechanical properties. Additionally, fine aggregates of a maximum particle size of 4 mm and two types of desert sands were incorporated and evaluated in the presence of fly ash (FA) and silica fume (SF). The use of FA has led to an improvement in workability with elevated compactness integrated with SF nanoparticles. The optimal combination of aggregates with maximum packing density was selected in the mix composition. The effect of CNC and CNT on the temperature evolution profiles and superplasticizer dosage on the setting time was individually evaluated. The results have confirmed that there had been a limited zone of accepted workability with CNC, after which a substantial workability loss was noticed. Macrosteel fibers have limited content, after which a remarkable reduction in compressive strength becomes evident in contrast to the microsteel fibers that can be incorporated in much higher contents. The image analysis technique was used to support the interpretation of data. It is concluded that the utilization of fine aggregates of a maximum particle size of 4 mm has limited the properties of UHPC mixes. |
abstract_unstemmed |
The formulation of ultra-high performance (UHPC) concrete is characterized by the presence of fine inert and reactive filling materials to cement with proper superplasticizer and low water-to-cement ratio. In this study, the use of crystalline nanocellulose (CNC) and carbon nanotube (CNT) to reinforce the flexural resistance of the cementitious matrix at the nano level is investigated. CNC and CNT were utilized in the presence of hybridized polyvinyl alcohol (PVA) microfibers with either macrosteel or microsteel fibers of different physicomechanical properties. Additionally, fine aggregates of a maximum particle size of 4 mm and two types of desert sands were incorporated and evaluated in the presence of fly ash (FA) and silica fume (SF). The use of FA has led to an improvement in workability with elevated compactness integrated with SF nanoparticles. The optimal combination of aggregates with maximum packing density was selected in the mix composition. The effect of CNC and CNT on the temperature evolution profiles and superplasticizer dosage on the setting time was individually evaluated. The results have confirmed that there had been a limited zone of accepted workability with CNC, after which a substantial workability loss was noticed. Macrosteel fibers have limited content, after which a remarkable reduction in compressive strength becomes evident in contrast to the microsteel fibers that can be incorporated in much higher contents. The image analysis technique was used to support the interpretation of data. It is concluded that the utilization of fine aggregates of a maximum particle size of 4 mm has limited the properties of UHPC mixes. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Cost-performance balance and new image analysis technique for ultra-high performance hybrid nano-based fiber-reinforced concrete |
remote_bool |
true |
author2 |
Fares, Galal Abbas, Yassir M. |
author2Str |
Fares, Galal Abbas, Yassir M. |
ppnlink |
320423115 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.conbuildmat.2021.125753 |
up_date |
2024-07-06T23:53:45.587Z |
_version_ |
1803875805393059840 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV007184565</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524135036.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230506s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.conbuildmat.2021.125753</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV007184565</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0950-0618(21)03486-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">56.45</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Khan, Mohammad Iqbal</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Cost-performance balance and new image analysis technique for ultra-high performance hybrid nano-based fiber-reinforced concrete</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The formulation of ultra-high performance (UHPC) concrete is characterized by the presence of fine inert and reactive filling materials to cement with proper superplasticizer and low water-to-cement ratio. In this study, the use of crystalline nanocellulose (CNC) and carbon nanotube (CNT) to reinforce the flexural resistance of the cementitious matrix at the nano level is investigated. CNC and CNT were utilized in the presence of hybridized polyvinyl alcohol (PVA) microfibers with either macrosteel or microsteel fibers of different physicomechanical properties. Additionally, fine aggregates of a maximum particle size of 4 mm and two types of desert sands were incorporated and evaluated in the presence of fly ash (FA) and silica fume (SF). The use of FA has led to an improvement in workability with elevated compactness integrated with SF nanoparticles. The optimal combination of aggregates with maximum packing density was selected in the mix composition. The effect of CNC and CNT on the temperature evolution profiles and superplasticizer dosage on the setting time was individually evaluated. The results have confirmed that there had been a limited zone of accepted workability with CNC, after which a substantial workability loss was noticed. Macrosteel fibers have limited content, after which a remarkable reduction in compressive strength becomes evident in contrast to the microsteel fibers that can be incorporated in much higher contents. The image analysis technique was used to support the interpretation of data. It is concluded that the utilization of fine aggregates of a maximum particle size of 4 mm has limited the properties of UHPC mixes.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ultrahigh-performance concrete</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cost-performance-balance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nano-based cementitious materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fiber’s dispersion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Image analysis</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fares, Galal</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Abbas, Yassir M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Construction and building materials</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1987</subfield><subfield code="g">315</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320423115</subfield><subfield code="w">(DE-600)2002804-0</subfield><subfield code="w">(DE-576)259271187</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:315</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">56.45</subfield><subfield code="j">Baustoffkunde</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">315</subfield></datafield></record></collection>
|
score |
7.4017696 |