Triangular C
This study presents a finite element formulation to perform vibration analysis of laminated composite plates based on the Refined Zigzag Theory of order {2,2}, namely RZT-{2,2}. This theory considers the transverse stretching by introducing quadratic through-thickness variations of both in-plane and...
Ausführliche Beschreibung
Autor*in: |
Dorduncu, Mehmet [verfasserIn] Kutlu, Akif [verfasserIn] Madenci, Erdogan [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Composite structures - Amsterdam : Elsevier, 1983, 281 |
---|---|
Übergeordnetes Werk: |
volume:281 |
DOI / URN: |
10.1016/j.compstruct.2021.115058 |
---|
Katalog-ID: |
ELV007202083 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV007202083 | ||
003 | DE-627 | ||
005 | 20230524144545.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230506s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.compstruct.2021.115058 |2 doi | |
035 | |a (DE-627)ELV007202083 | ||
035 | |a (ELSEVIER)S0263-8223(21)01478-1 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q DE-600 |
084 | |a 51.75 |2 bkl | ||
100 | 1 | |a Dorduncu, Mehmet |e verfasserin |4 aut | |
245 | 1 | 0 | |a Triangular C |
264 | 1 | |c 2021 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a This study presents a finite element formulation to perform vibration analysis of laminated composite plates based on the Refined Zigzag Theory of order {2,2}, namely RZT-{2,2}. This theory considers the transverse stretching by introducing quadratic through-thickness variations of both in-plane and transverse displacement components. Also, it eliminates the use of shear correction factors and is highly suitable for the analyses of thick and heterogeneous laminated plates. The governing equations of the RZT-{2,2} are derived based on Hamilton’s principle. The stiffness matrix, consistent mass matrix, and load vector of the governing equations are constructed by adopting anisoparametric interpolation functions associated with a triangular element that involves three corner nodes and three mid-side nodes along its edges. The corner nodes consist of eleven kinematic variables while each mid-side node possesses only three deflection components. An adaptive time-stepping algorithm is employed with an optimum time increment determined automatically at each time step, thus, eliminating the stability concerns. The capability of the present approach is demonstrated by considering several benchmark cases regarding free vibration analysis. The effect of transverse stretching is revealed through the dynamic characteristics of the laminated composite plates. In the case of forced vibration analysis, the accuracy of the present approach is established through comparison with three-dimensional finite element models. | ||
650 | 4 | |a Refined zigzag theory | |
650 | 4 | |a Thickness stretching | |
650 | 4 | |a Free vibration | |
650 | 4 | |a Forced vibration | |
650 | 4 | |a Laminated plates | |
700 | 1 | |a Kutlu, Akif |e verfasserin |4 aut | |
700 | 1 | |a Madenci, Erdogan |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Composite structures |d Amsterdam : Elsevier, 1983 |g 281 |w (DE-627)320509044 |w (DE-600)2013177-X |w (DE-576)094531447 |x 0263-8223 |7 nnns |
773 | 1 | 8 | |g volume:281 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 51.75 |j Verbundwerkstoffe |j Schichtstoffe |
951 | |a AR | ||
952 | |d 281 |
author_variant |
m d md a k ak e m em |
---|---|
matchkey_str |
article:02638223:2021----::rag |
hierarchy_sort_str |
2021 |
bklnumber |
51.75 |
publishDate |
2021 |
allfields |
10.1016/j.compstruct.2021.115058 doi (DE-627)ELV007202083 (ELSEVIER)S0263-8223(21)01478-1 DE-627 ger DE-627 rda eng 670 DE-600 51.75 bkl Dorduncu, Mehmet verfasserin aut Triangular C 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study presents a finite element formulation to perform vibration analysis of laminated composite plates based on the Refined Zigzag Theory of order {2,2}, namely RZT-{2,2}. This theory considers the transverse stretching by introducing quadratic through-thickness variations of both in-plane and transverse displacement components. Also, it eliminates the use of shear correction factors and is highly suitable for the analyses of thick and heterogeneous laminated plates. The governing equations of the RZT-{2,2} are derived based on Hamilton’s principle. The stiffness matrix, consistent mass matrix, and load vector of the governing equations are constructed by adopting anisoparametric interpolation functions associated with a triangular element that involves three corner nodes and three mid-side nodes along its edges. The corner nodes consist of eleven kinematic variables while each mid-side node possesses only three deflection components. An adaptive time-stepping algorithm is employed with an optimum time increment determined automatically at each time step, thus, eliminating the stability concerns. The capability of the present approach is demonstrated by considering several benchmark cases regarding free vibration analysis. The effect of transverse stretching is revealed through the dynamic characteristics of the laminated composite plates. In the case of forced vibration analysis, the accuracy of the present approach is established through comparison with three-dimensional finite element models. Refined zigzag theory Thickness stretching Free vibration Forced vibration Laminated plates Kutlu, Akif verfasserin aut Madenci, Erdogan verfasserin aut Enthalten in Composite structures Amsterdam : Elsevier, 1983 281 (DE-627)320509044 (DE-600)2013177-X (DE-576)094531447 0263-8223 nnns volume:281 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 51.75 Verbundwerkstoffe Schichtstoffe AR 281 |
spelling |
10.1016/j.compstruct.2021.115058 doi (DE-627)ELV007202083 (ELSEVIER)S0263-8223(21)01478-1 DE-627 ger DE-627 rda eng 670 DE-600 51.75 bkl Dorduncu, Mehmet verfasserin aut Triangular C 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study presents a finite element formulation to perform vibration analysis of laminated composite plates based on the Refined Zigzag Theory of order {2,2}, namely RZT-{2,2}. This theory considers the transverse stretching by introducing quadratic through-thickness variations of both in-plane and transverse displacement components. Also, it eliminates the use of shear correction factors and is highly suitable for the analyses of thick and heterogeneous laminated plates. The governing equations of the RZT-{2,2} are derived based on Hamilton’s principle. The stiffness matrix, consistent mass matrix, and load vector of the governing equations are constructed by adopting anisoparametric interpolation functions associated with a triangular element that involves three corner nodes and three mid-side nodes along its edges. The corner nodes consist of eleven kinematic variables while each mid-side node possesses only three deflection components. An adaptive time-stepping algorithm is employed with an optimum time increment determined automatically at each time step, thus, eliminating the stability concerns. The capability of the present approach is demonstrated by considering several benchmark cases regarding free vibration analysis. The effect of transverse stretching is revealed through the dynamic characteristics of the laminated composite plates. In the case of forced vibration analysis, the accuracy of the present approach is established through comparison with three-dimensional finite element models. Refined zigzag theory Thickness stretching Free vibration Forced vibration Laminated plates Kutlu, Akif verfasserin aut Madenci, Erdogan verfasserin aut Enthalten in Composite structures Amsterdam : Elsevier, 1983 281 (DE-627)320509044 (DE-600)2013177-X (DE-576)094531447 0263-8223 nnns volume:281 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 51.75 Verbundwerkstoffe Schichtstoffe AR 281 |
allfields_unstemmed |
10.1016/j.compstruct.2021.115058 doi (DE-627)ELV007202083 (ELSEVIER)S0263-8223(21)01478-1 DE-627 ger DE-627 rda eng 670 DE-600 51.75 bkl Dorduncu, Mehmet verfasserin aut Triangular C 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study presents a finite element formulation to perform vibration analysis of laminated composite plates based on the Refined Zigzag Theory of order {2,2}, namely RZT-{2,2}. This theory considers the transverse stretching by introducing quadratic through-thickness variations of both in-plane and transverse displacement components. Also, it eliminates the use of shear correction factors and is highly suitable for the analyses of thick and heterogeneous laminated plates. The governing equations of the RZT-{2,2} are derived based on Hamilton’s principle. The stiffness matrix, consistent mass matrix, and load vector of the governing equations are constructed by adopting anisoparametric interpolation functions associated with a triangular element that involves three corner nodes and three mid-side nodes along its edges. The corner nodes consist of eleven kinematic variables while each mid-side node possesses only three deflection components. An adaptive time-stepping algorithm is employed with an optimum time increment determined automatically at each time step, thus, eliminating the stability concerns. The capability of the present approach is demonstrated by considering several benchmark cases regarding free vibration analysis. The effect of transverse stretching is revealed through the dynamic characteristics of the laminated composite plates. In the case of forced vibration analysis, the accuracy of the present approach is established through comparison with three-dimensional finite element models. Refined zigzag theory Thickness stretching Free vibration Forced vibration Laminated plates Kutlu, Akif verfasserin aut Madenci, Erdogan verfasserin aut Enthalten in Composite structures Amsterdam : Elsevier, 1983 281 (DE-627)320509044 (DE-600)2013177-X (DE-576)094531447 0263-8223 nnns volume:281 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 51.75 Verbundwerkstoffe Schichtstoffe AR 281 |
allfieldsGer |
10.1016/j.compstruct.2021.115058 doi (DE-627)ELV007202083 (ELSEVIER)S0263-8223(21)01478-1 DE-627 ger DE-627 rda eng 670 DE-600 51.75 bkl Dorduncu, Mehmet verfasserin aut Triangular C 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study presents a finite element formulation to perform vibration analysis of laminated composite plates based on the Refined Zigzag Theory of order {2,2}, namely RZT-{2,2}. This theory considers the transverse stretching by introducing quadratic through-thickness variations of both in-plane and transverse displacement components. Also, it eliminates the use of shear correction factors and is highly suitable for the analyses of thick and heterogeneous laminated plates. The governing equations of the RZT-{2,2} are derived based on Hamilton’s principle. The stiffness matrix, consistent mass matrix, and load vector of the governing equations are constructed by adopting anisoparametric interpolation functions associated with a triangular element that involves three corner nodes and three mid-side nodes along its edges. The corner nodes consist of eleven kinematic variables while each mid-side node possesses only three deflection components. An adaptive time-stepping algorithm is employed with an optimum time increment determined automatically at each time step, thus, eliminating the stability concerns. The capability of the present approach is demonstrated by considering several benchmark cases regarding free vibration analysis. The effect of transverse stretching is revealed through the dynamic characteristics of the laminated composite plates. In the case of forced vibration analysis, the accuracy of the present approach is established through comparison with three-dimensional finite element models. Refined zigzag theory Thickness stretching Free vibration Forced vibration Laminated plates Kutlu, Akif verfasserin aut Madenci, Erdogan verfasserin aut Enthalten in Composite structures Amsterdam : Elsevier, 1983 281 (DE-627)320509044 (DE-600)2013177-X (DE-576)094531447 0263-8223 nnns volume:281 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 51.75 Verbundwerkstoffe Schichtstoffe AR 281 |
allfieldsSound |
10.1016/j.compstruct.2021.115058 doi (DE-627)ELV007202083 (ELSEVIER)S0263-8223(21)01478-1 DE-627 ger DE-627 rda eng 670 DE-600 51.75 bkl Dorduncu, Mehmet verfasserin aut Triangular C 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This study presents a finite element formulation to perform vibration analysis of laminated composite plates based on the Refined Zigzag Theory of order {2,2}, namely RZT-{2,2}. This theory considers the transverse stretching by introducing quadratic through-thickness variations of both in-plane and transverse displacement components. Also, it eliminates the use of shear correction factors and is highly suitable for the analyses of thick and heterogeneous laminated plates. The governing equations of the RZT-{2,2} are derived based on Hamilton’s principle. The stiffness matrix, consistent mass matrix, and load vector of the governing equations are constructed by adopting anisoparametric interpolation functions associated with a triangular element that involves three corner nodes and three mid-side nodes along its edges. The corner nodes consist of eleven kinematic variables while each mid-side node possesses only three deflection components. An adaptive time-stepping algorithm is employed with an optimum time increment determined automatically at each time step, thus, eliminating the stability concerns. The capability of the present approach is demonstrated by considering several benchmark cases regarding free vibration analysis. The effect of transverse stretching is revealed through the dynamic characteristics of the laminated composite plates. In the case of forced vibration analysis, the accuracy of the present approach is established through comparison with three-dimensional finite element models. Refined zigzag theory Thickness stretching Free vibration Forced vibration Laminated plates Kutlu, Akif verfasserin aut Madenci, Erdogan verfasserin aut Enthalten in Composite structures Amsterdam : Elsevier, 1983 281 (DE-627)320509044 (DE-600)2013177-X (DE-576)094531447 0263-8223 nnns volume:281 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 51.75 Verbundwerkstoffe Schichtstoffe AR 281 |
language |
English |
source |
Enthalten in Composite structures 281 volume:281 |
sourceStr |
Enthalten in Composite structures 281 volume:281 |
format_phy_str_mv |
Article |
bklname |
Verbundwerkstoffe Schichtstoffe |
institution |
findex.gbv.de |
topic_facet |
Refined zigzag theory Thickness stretching Free vibration Forced vibration Laminated plates |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
Composite structures |
authorswithroles_txt_mv |
Dorduncu, Mehmet @@aut@@ Kutlu, Akif @@aut@@ Madenci, Erdogan @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
320509044 |
dewey-sort |
3670 |
id |
ELV007202083 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV007202083</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524144545.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230506s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.compstruct.2021.115058</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV007202083</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0263-8223(21)01478-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.75</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dorduncu, Mehmet</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Triangular C</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This study presents a finite element formulation to perform vibration analysis of laminated composite plates based on the Refined Zigzag Theory of order {2,2}, namely RZT-{2,2}. This theory considers the transverse stretching by introducing quadratic through-thickness variations of both in-plane and transverse displacement components. Also, it eliminates the use of shear correction factors and is highly suitable for the analyses of thick and heterogeneous laminated plates. The governing equations of the RZT-{2,2} are derived based on Hamilton’s principle. The stiffness matrix, consistent mass matrix, and load vector of the governing equations are constructed by adopting anisoparametric interpolation functions associated with a triangular element that involves three corner nodes and three mid-side nodes along its edges. The corner nodes consist of eleven kinematic variables while each mid-side node possesses only three deflection components. An adaptive time-stepping algorithm is employed with an optimum time increment determined automatically at each time step, thus, eliminating the stability concerns. The capability of the present approach is demonstrated by considering several benchmark cases regarding free vibration analysis. The effect of transverse stretching is revealed through the dynamic characteristics of the laminated composite plates. In the case of forced vibration analysis, the accuracy of the present approach is established through comparison with three-dimensional finite element models.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Refined zigzag theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thickness stretching</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Free vibration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Forced vibration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Laminated plates</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kutlu, Akif</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Madenci, Erdogan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Composite structures</subfield><subfield code="d">Amsterdam : Elsevier, 1983</subfield><subfield code="g">281</subfield><subfield code="w">(DE-627)320509044</subfield><subfield code="w">(DE-600)2013177-X</subfield><subfield code="w">(DE-576)094531447</subfield><subfield code="x">0263-8223</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.75</subfield><subfield code="j">Verbundwerkstoffe</subfield><subfield code="j">Schichtstoffe</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">281</subfield></datafield></record></collection>
|
author |
Dorduncu, Mehmet |
spellingShingle |
Dorduncu, Mehmet ddc 670 bkl 51.75 misc Refined zigzag theory misc Thickness stretching misc Free vibration misc Forced vibration misc Laminated plates Triangular C |
authorStr |
Dorduncu, Mehmet |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320509044 |
format |
electronic Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0263-8223 |
topic_title |
670 DE-600 51.75 bkl Triangular C Refined zigzag theory Thickness stretching Free vibration Forced vibration Laminated plates |
topic |
ddc 670 bkl 51.75 misc Refined zigzag theory misc Thickness stretching misc Free vibration misc Forced vibration misc Laminated plates |
topic_unstemmed |
ddc 670 bkl 51.75 misc Refined zigzag theory misc Thickness stretching misc Free vibration misc Forced vibration misc Laminated plates |
topic_browse |
ddc 670 bkl 51.75 misc Refined zigzag theory misc Thickness stretching misc Free vibration misc Forced vibration misc Laminated plates |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Composite structures |
hierarchy_parent_id |
320509044 |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
Composite structures |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320509044 (DE-600)2013177-X (DE-576)094531447 |
title |
Triangular C |
ctrlnum |
(DE-627)ELV007202083 (ELSEVIER)S0263-8223(21)01478-1 |
title_full |
Triangular C |
author_sort |
Dorduncu, Mehmet |
journal |
Composite structures |
journalStr |
Composite structures |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
author_browse |
Dorduncu, Mehmet Kutlu, Akif Madenci, Erdogan |
container_volume |
281 |
class |
670 DE-600 51.75 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Dorduncu, Mehmet |
doi_str_mv |
10.1016/j.compstruct.2021.115058 |
dewey-full |
670 |
author2-role |
verfasserin |
title_sort |
triangular c |
title_auth |
Triangular C |
abstract |
This study presents a finite element formulation to perform vibration analysis of laminated composite plates based on the Refined Zigzag Theory of order {2,2}, namely RZT-{2,2}. This theory considers the transverse stretching by introducing quadratic through-thickness variations of both in-plane and transverse displacement components. Also, it eliminates the use of shear correction factors and is highly suitable for the analyses of thick and heterogeneous laminated plates. The governing equations of the RZT-{2,2} are derived based on Hamilton’s principle. The stiffness matrix, consistent mass matrix, and load vector of the governing equations are constructed by adopting anisoparametric interpolation functions associated with a triangular element that involves three corner nodes and three mid-side nodes along its edges. The corner nodes consist of eleven kinematic variables while each mid-side node possesses only three deflection components. An adaptive time-stepping algorithm is employed with an optimum time increment determined automatically at each time step, thus, eliminating the stability concerns. The capability of the present approach is demonstrated by considering several benchmark cases regarding free vibration analysis. The effect of transverse stretching is revealed through the dynamic characteristics of the laminated composite plates. In the case of forced vibration analysis, the accuracy of the present approach is established through comparison with three-dimensional finite element models. |
abstractGer |
This study presents a finite element formulation to perform vibration analysis of laminated composite plates based on the Refined Zigzag Theory of order {2,2}, namely RZT-{2,2}. This theory considers the transverse stretching by introducing quadratic through-thickness variations of both in-plane and transverse displacement components. Also, it eliminates the use of shear correction factors and is highly suitable for the analyses of thick and heterogeneous laminated plates. The governing equations of the RZT-{2,2} are derived based on Hamilton’s principle. The stiffness matrix, consistent mass matrix, and load vector of the governing equations are constructed by adopting anisoparametric interpolation functions associated with a triangular element that involves three corner nodes and three mid-side nodes along its edges. The corner nodes consist of eleven kinematic variables while each mid-side node possesses only three deflection components. An adaptive time-stepping algorithm is employed with an optimum time increment determined automatically at each time step, thus, eliminating the stability concerns. The capability of the present approach is demonstrated by considering several benchmark cases regarding free vibration analysis. The effect of transverse stretching is revealed through the dynamic characteristics of the laminated composite plates. In the case of forced vibration analysis, the accuracy of the present approach is established through comparison with three-dimensional finite element models. |
abstract_unstemmed |
This study presents a finite element formulation to perform vibration analysis of laminated composite plates based on the Refined Zigzag Theory of order {2,2}, namely RZT-{2,2}. This theory considers the transverse stretching by introducing quadratic through-thickness variations of both in-plane and transverse displacement components. Also, it eliminates the use of shear correction factors and is highly suitable for the analyses of thick and heterogeneous laminated plates. The governing equations of the RZT-{2,2} are derived based on Hamilton’s principle. The stiffness matrix, consistent mass matrix, and load vector of the governing equations are constructed by adopting anisoparametric interpolation functions associated with a triangular element that involves three corner nodes and three mid-side nodes along its edges. The corner nodes consist of eleven kinematic variables while each mid-side node possesses only three deflection components. An adaptive time-stepping algorithm is employed with an optimum time increment determined automatically at each time step, thus, eliminating the stability concerns. The capability of the present approach is demonstrated by considering several benchmark cases regarding free vibration analysis. The effect of transverse stretching is revealed through the dynamic characteristics of the laminated composite plates. In the case of forced vibration analysis, the accuracy of the present approach is established through comparison with three-dimensional finite element models. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Triangular C |
remote_bool |
true |
author2 |
Kutlu, Akif Madenci, Erdogan |
author2Str |
Kutlu, Akif Madenci, Erdogan |
ppnlink |
320509044 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.compstruct.2021.115058 |
up_date |
2024-07-06T23:57:10.817Z |
_version_ |
1803876020591263744 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV007202083</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524144545.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230506s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.compstruct.2021.115058</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV007202083</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0263-8223(21)01478-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51.75</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dorduncu, Mehmet</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Triangular C</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This study presents a finite element formulation to perform vibration analysis of laminated composite plates based on the Refined Zigzag Theory of order {2,2}, namely RZT-{2,2}. This theory considers the transverse stretching by introducing quadratic through-thickness variations of both in-plane and transverse displacement components. Also, it eliminates the use of shear correction factors and is highly suitable for the analyses of thick and heterogeneous laminated plates. The governing equations of the RZT-{2,2} are derived based on Hamilton’s principle. The stiffness matrix, consistent mass matrix, and load vector of the governing equations are constructed by adopting anisoparametric interpolation functions associated with a triangular element that involves three corner nodes and three mid-side nodes along its edges. The corner nodes consist of eleven kinematic variables while each mid-side node possesses only three deflection components. An adaptive time-stepping algorithm is employed with an optimum time increment determined automatically at each time step, thus, eliminating the stability concerns. The capability of the present approach is demonstrated by considering several benchmark cases regarding free vibration analysis. The effect of transverse stretching is revealed through the dynamic characteristics of the laminated composite plates. In the case of forced vibration analysis, the accuracy of the present approach is established through comparison with three-dimensional finite element models.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Refined zigzag theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thickness stretching</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Free vibration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Forced vibration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Laminated plates</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kutlu, Akif</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Madenci, Erdogan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Composite structures</subfield><subfield code="d">Amsterdam : Elsevier, 1983</subfield><subfield code="g">281</subfield><subfield code="w">(DE-627)320509044</subfield><subfield code="w">(DE-600)2013177-X</subfield><subfield code="w">(DE-576)094531447</subfield><subfield code="x">0263-8223</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">51.75</subfield><subfield code="j">Verbundwerkstoffe</subfield><subfield code="j">Schichtstoffe</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">281</subfield></datafield></record></collection>
|
score |
7.399987 |