Theoretical impacts of single band gap grading of perovskite and valence band offset of perovskite/hole transport layer interface on its solar cell performances
Single bandgap (Eg)-grading in CH3NH3(Sn x Pb1− x )(I1− y Br y )3 perovskites and valence band offset (VBO) of a perovskite/hole transport layer (...
Ausführliche Beschreibung
Autor*in: |
Kawano, Yu [verfasserIn] Chantana, Jakapan [verfasserIn] Negami, Takayuki [verfasserIn] Nishimura, Takahito [verfasserIn] Mavlonov, Abdurashid [verfasserIn] Minemoto, Takashi [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Solar energy - Amsterdam [u.a.] : Elsevier Science, 1957, 231, Seite 684-693 |
---|---|
Übergeordnetes Werk: |
volume:231 ; pages:684-693 |
DOI / URN: |
10.1016/j.solener.2021.11.072 |
---|
Katalog-ID: |
ELV007214693 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV007214693 | ||
003 | DE-627 | ||
005 | 20230524143241.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230506s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.solener.2021.11.072 |2 doi | |
035 | |a (DE-627)ELV007214693 | ||
035 | |a (ELSEVIER)S0038-092X(21)01041-0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q DE-600 |
084 | |a 52.56 |2 bkl | ||
100 | 1 | |a Kawano, Yu |e verfasserin |0 (orcid)0000-0002-3343-7538 |4 aut | |
245 | 1 | 0 | |a Theoretical impacts of single band gap grading of perovskite and valence band offset of perovskite/hole transport layer interface on its solar cell performances |
264 | 1 | |c 2021 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Single bandgap (Eg)-grading in CH3NH3(Sn x Pb1− x )(I1− y Br y )3 perovskites and valence band offset (VBO) of a perovskite/hole transport layer (HTL) interface of perovskite solar cells (PSCs) are theoretically scrutinized. Eg values at front and back is defined as Eg values of perovskite at light incident side and back side, respectively, which are changed from 1.10 eV to 1.80 eV based on Sn and Br compositions for different Eg-grading. It is disclosed that optimized single Eg-grading (1.47 / 1.33 eV at front/back) results in enhancement of cell performances because of effective utilization of broader solar spectrum and formation of electric field in direction of promoting charge separation. Furthermore, optimized carrier diffusion length of 2.5 μm and perovskite thickness of 0.75 μm yields the highest power conversion efficiency of 26.0%. CH3NH3(Sn0.07Pb0.93)I3 at front for front Eg of 1.47 eV and CH3NH3(Sn0.38Pb0.62)I3 at back for back Eg of 1.33 eV are thus suggested for optimized single Eg-grading. Moreover, optimized VBO is in a range from − 0.1 eV to + 0.2 eV regardless of Eg-grading to improve cell performances. The results indicated that PEDOT:PSS, Spiro-OMeTAD, and PTAA as HTL are ultimately suitable for CH3NH3 (Sn x Pb1− x )I3 based PSCs, whereas NiOx and CuOx as HTL is appropriate for CH3NH3 (Sn x Pb1− x )I3 and CH3NH3Pb(I1− y Br y )3 based PSCs. | ||
650 | 4 | |a Solar cell | |
650 | 4 | |a Perovskite | |
650 | 4 | |a Device simulation | |
650 | 4 | |a Band gap grading | |
650 | 4 | |a Valence band offset | |
700 | 1 | |a Chantana, Jakapan |e verfasserin |4 aut | |
700 | 1 | |a Negami, Takayuki |e verfasserin |4 aut | |
700 | 1 | |a Nishimura, Takahito |e verfasserin |4 aut | |
700 | 1 | |a Mavlonov, Abdurashid |e verfasserin |4 aut | |
700 | 1 | |a Minemoto, Takashi |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Solar energy |d Amsterdam [u.a.] : Elsevier Science, 1957 |g 231, Seite 684-693 |h Online-Ressource |w (DE-627)320525597 |w (DE-600)2015126-3 |w (DE-576)096806648 |x 1471-1257 |7 nnns |
773 | 1 | 8 | |g volume:231 |g pages:684-693 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2116 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 52.56 |j Regenerative Energieformen |j alternative Energieformen |
951 | |a AR | ||
952 | |d 231 |h 684-693 |
author_variant |
y k yk j c jc t n tn t n tn a m am t m tm |
---|---|
matchkey_str |
article:14711257:2021----::hoeiaipcsfigeadagaigfeosienvlneadfstfeosieoernprlyr |
hierarchy_sort_str |
2021 |
bklnumber |
52.56 |
publishDate |
2021 |
allfields |
10.1016/j.solener.2021.11.072 doi (DE-627)ELV007214693 (ELSEVIER)S0038-092X(21)01041-0 DE-627 ger DE-627 rda eng 530 DE-600 52.56 bkl Kawano, Yu verfasserin (orcid)0000-0002-3343-7538 aut Theoretical impacts of single band gap grading of perovskite and valence band offset of perovskite/hole transport layer interface on its solar cell performances 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Single bandgap (Eg)-grading in CH3NH3(Sn x Pb1− x )(I1− y Br y )3 perovskites and valence band offset (VBO) of a perovskite/hole transport layer (HTL) interface of perovskite solar cells (PSCs) are theoretically scrutinized. Eg values at front and back is defined as Eg values of perovskite at light incident side and back side, respectively, which are changed from 1.10 eV to 1.80 eV based on Sn and Br compositions for different Eg-grading. It is disclosed that optimized single Eg-grading (1.47 / 1.33 eV at front/back) results in enhancement of cell performances because of effective utilization of broader solar spectrum and formation of electric field in direction of promoting charge separation. Furthermore, optimized carrier diffusion length of 2.5 μm and perovskite thickness of 0.75 μm yields the highest power conversion efficiency of 26.0%. CH3NH3(Sn0.07Pb0.93)I3 at front for front Eg of 1.47 eV and CH3NH3(Sn0.38Pb0.62)I3 at back for back Eg of 1.33 eV are thus suggested for optimized single Eg-grading. Moreover, optimized VBO is in a range from − 0.1 eV to + 0.2 eV regardless of Eg-grading to improve cell performances. The results indicated that PEDOT:PSS, Spiro-OMeTAD, and PTAA as HTL are ultimately suitable for CH3NH3 (Sn x Pb1− x )I3 based PSCs, whereas NiOx and CuOx as HTL is appropriate for CH3NH3 (Sn x Pb1− x )I3 and CH3NH3Pb(I1− y Br y )3 based PSCs. Solar cell Perovskite Device simulation Band gap grading Valence band offset Chantana, Jakapan verfasserin aut Negami, Takayuki verfasserin aut Nishimura, Takahito verfasserin aut Mavlonov, Abdurashid verfasserin aut Minemoto, Takashi verfasserin aut Enthalten in Solar energy Amsterdam [u.a.] : Elsevier Science, 1957 231, Seite 684-693 Online-Ressource (DE-627)320525597 (DE-600)2015126-3 (DE-576)096806648 1471-1257 nnns volume:231 pages:684-693 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.56 Regenerative Energieformen alternative Energieformen AR 231 684-693 |
spelling |
10.1016/j.solener.2021.11.072 doi (DE-627)ELV007214693 (ELSEVIER)S0038-092X(21)01041-0 DE-627 ger DE-627 rda eng 530 DE-600 52.56 bkl Kawano, Yu verfasserin (orcid)0000-0002-3343-7538 aut Theoretical impacts of single band gap grading of perovskite and valence band offset of perovskite/hole transport layer interface on its solar cell performances 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Single bandgap (Eg)-grading in CH3NH3(Sn x Pb1− x )(I1− y Br y )3 perovskites and valence band offset (VBO) of a perovskite/hole transport layer (HTL) interface of perovskite solar cells (PSCs) are theoretically scrutinized. Eg values at front and back is defined as Eg values of perovskite at light incident side and back side, respectively, which are changed from 1.10 eV to 1.80 eV based on Sn and Br compositions for different Eg-grading. It is disclosed that optimized single Eg-grading (1.47 / 1.33 eV at front/back) results in enhancement of cell performances because of effective utilization of broader solar spectrum and formation of electric field in direction of promoting charge separation. Furthermore, optimized carrier diffusion length of 2.5 μm and perovskite thickness of 0.75 μm yields the highest power conversion efficiency of 26.0%. CH3NH3(Sn0.07Pb0.93)I3 at front for front Eg of 1.47 eV and CH3NH3(Sn0.38Pb0.62)I3 at back for back Eg of 1.33 eV are thus suggested for optimized single Eg-grading. Moreover, optimized VBO is in a range from − 0.1 eV to + 0.2 eV regardless of Eg-grading to improve cell performances. The results indicated that PEDOT:PSS, Spiro-OMeTAD, and PTAA as HTL are ultimately suitable for CH3NH3 (Sn x Pb1− x )I3 based PSCs, whereas NiOx and CuOx as HTL is appropriate for CH3NH3 (Sn x Pb1− x )I3 and CH3NH3Pb(I1− y Br y )3 based PSCs. Solar cell Perovskite Device simulation Band gap grading Valence band offset Chantana, Jakapan verfasserin aut Negami, Takayuki verfasserin aut Nishimura, Takahito verfasserin aut Mavlonov, Abdurashid verfasserin aut Minemoto, Takashi verfasserin aut Enthalten in Solar energy Amsterdam [u.a.] : Elsevier Science, 1957 231, Seite 684-693 Online-Ressource (DE-627)320525597 (DE-600)2015126-3 (DE-576)096806648 1471-1257 nnns volume:231 pages:684-693 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.56 Regenerative Energieformen alternative Energieformen AR 231 684-693 |
allfields_unstemmed |
10.1016/j.solener.2021.11.072 doi (DE-627)ELV007214693 (ELSEVIER)S0038-092X(21)01041-0 DE-627 ger DE-627 rda eng 530 DE-600 52.56 bkl Kawano, Yu verfasserin (orcid)0000-0002-3343-7538 aut Theoretical impacts of single band gap grading of perovskite and valence band offset of perovskite/hole transport layer interface on its solar cell performances 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Single bandgap (Eg)-grading in CH3NH3(Sn x Pb1− x )(I1− y Br y )3 perovskites and valence band offset (VBO) of a perovskite/hole transport layer (HTL) interface of perovskite solar cells (PSCs) are theoretically scrutinized. Eg values at front and back is defined as Eg values of perovskite at light incident side and back side, respectively, which are changed from 1.10 eV to 1.80 eV based on Sn and Br compositions for different Eg-grading. It is disclosed that optimized single Eg-grading (1.47 / 1.33 eV at front/back) results in enhancement of cell performances because of effective utilization of broader solar spectrum and formation of electric field in direction of promoting charge separation. Furthermore, optimized carrier diffusion length of 2.5 μm and perovskite thickness of 0.75 μm yields the highest power conversion efficiency of 26.0%. CH3NH3(Sn0.07Pb0.93)I3 at front for front Eg of 1.47 eV and CH3NH3(Sn0.38Pb0.62)I3 at back for back Eg of 1.33 eV are thus suggested for optimized single Eg-grading. Moreover, optimized VBO is in a range from − 0.1 eV to + 0.2 eV regardless of Eg-grading to improve cell performances. The results indicated that PEDOT:PSS, Spiro-OMeTAD, and PTAA as HTL are ultimately suitable for CH3NH3 (Sn x Pb1− x )I3 based PSCs, whereas NiOx and CuOx as HTL is appropriate for CH3NH3 (Sn x Pb1− x )I3 and CH3NH3Pb(I1− y Br y )3 based PSCs. Solar cell Perovskite Device simulation Band gap grading Valence band offset Chantana, Jakapan verfasserin aut Negami, Takayuki verfasserin aut Nishimura, Takahito verfasserin aut Mavlonov, Abdurashid verfasserin aut Minemoto, Takashi verfasserin aut Enthalten in Solar energy Amsterdam [u.a.] : Elsevier Science, 1957 231, Seite 684-693 Online-Ressource (DE-627)320525597 (DE-600)2015126-3 (DE-576)096806648 1471-1257 nnns volume:231 pages:684-693 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.56 Regenerative Energieformen alternative Energieformen AR 231 684-693 |
allfieldsGer |
10.1016/j.solener.2021.11.072 doi (DE-627)ELV007214693 (ELSEVIER)S0038-092X(21)01041-0 DE-627 ger DE-627 rda eng 530 DE-600 52.56 bkl Kawano, Yu verfasserin (orcid)0000-0002-3343-7538 aut Theoretical impacts of single band gap grading of perovskite and valence band offset of perovskite/hole transport layer interface on its solar cell performances 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Single bandgap (Eg)-grading in CH3NH3(Sn x Pb1− x )(I1− y Br y )3 perovskites and valence band offset (VBO) of a perovskite/hole transport layer (HTL) interface of perovskite solar cells (PSCs) are theoretically scrutinized. Eg values at front and back is defined as Eg values of perovskite at light incident side and back side, respectively, which are changed from 1.10 eV to 1.80 eV based on Sn and Br compositions for different Eg-grading. It is disclosed that optimized single Eg-grading (1.47 / 1.33 eV at front/back) results in enhancement of cell performances because of effective utilization of broader solar spectrum and formation of electric field in direction of promoting charge separation. Furthermore, optimized carrier diffusion length of 2.5 μm and perovskite thickness of 0.75 μm yields the highest power conversion efficiency of 26.0%. CH3NH3(Sn0.07Pb0.93)I3 at front for front Eg of 1.47 eV and CH3NH3(Sn0.38Pb0.62)I3 at back for back Eg of 1.33 eV are thus suggested for optimized single Eg-grading. Moreover, optimized VBO is in a range from − 0.1 eV to + 0.2 eV regardless of Eg-grading to improve cell performances. The results indicated that PEDOT:PSS, Spiro-OMeTAD, and PTAA as HTL are ultimately suitable for CH3NH3 (Sn x Pb1− x )I3 based PSCs, whereas NiOx and CuOx as HTL is appropriate for CH3NH3 (Sn x Pb1− x )I3 and CH3NH3Pb(I1− y Br y )3 based PSCs. Solar cell Perovskite Device simulation Band gap grading Valence band offset Chantana, Jakapan verfasserin aut Negami, Takayuki verfasserin aut Nishimura, Takahito verfasserin aut Mavlonov, Abdurashid verfasserin aut Minemoto, Takashi verfasserin aut Enthalten in Solar energy Amsterdam [u.a.] : Elsevier Science, 1957 231, Seite 684-693 Online-Ressource (DE-627)320525597 (DE-600)2015126-3 (DE-576)096806648 1471-1257 nnns volume:231 pages:684-693 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.56 Regenerative Energieformen alternative Energieformen AR 231 684-693 |
allfieldsSound |
10.1016/j.solener.2021.11.072 doi (DE-627)ELV007214693 (ELSEVIER)S0038-092X(21)01041-0 DE-627 ger DE-627 rda eng 530 DE-600 52.56 bkl Kawano, Yu verfasserin (orcid)0000-0002-3343-7538 aut Theoretical impacts of single band gap grading of perovskite and valence band offset of perovskite/hole transport layer interface on its solar cell performances 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Single bandgap (Eg)-grading in CH3NH3(Sn x Pb1− x )(I1− y Br y )3 perovskites and valence band offset (VBO) of a perovskite/hole transport layer (HTL) interface of perovskite solar cells (PSCs) are theoretically scrutinized. Eg values at front and back is defined as Eg values of perovskite at light incident side and back side, respectively, which are changed from 1.10 eV to 1.80 eV based on Sn and Br compositions for different Eg-grading. It is disclosed that optimized single Eg-grading (1.47 / 1.33 eV at front/back) results in enhancement of cell performances because of effective utilization of broader solar spectrum and formation of electric field in direction of promoting charge separation. Furthermore, optimized carrier diffusion length of 2.5 μm and perovskite thickness of 0.75 μm yields the highest power conversion efficiency of 26.0%. CH3NH3(Sn0.07Pb0.93)I3 at front for front Eg of 1.47 eV and CH3NH3(Sn0.38Pb0.62)I3 at back for back Eg of 1.33 eV are thus suggested for optimized single Eg-grading. Moreover, optimized VBO is in a range from − 0.1 eV to + 0.2 eV regardless of Eg-grading to improve cell performances. The results indicated that PEDOT:PSS, Spiro-OMeTAD, and PTAA as HTL are ultimately suitable for CH3NH3 (Sn x Pb1− x )I3 based PSCs, whereas NiOx and CuOx as HTL is appropriate for CH3NH3 (Sn x Pb1− x )I3 and CH3NH3Pb(I1− y Br y )3 based PSCs. Solar cell Perovskite Device simulation Band gap grading Valence band offset Chantana, Jakapan verfasserin aut Negami, Takayuki verfasserin aut Nishimura, Takahito verfasserin aut Mavlonov, Abdurashid verfasserin aut Minemoto, Takashi verfasserin aut Enthalten in Solar energy Amsterdam [u.a.] : Elsevier Science, 1957 231, Seite 684-693 Online-Ressource (DE-627)320525597 (DE-600)2015126-3 (DE-576)096806648 1471-1257 nnns volume:231 pages:684-693 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.56 Regenerative Energieformen alternative Energieformen AR 231 684-693 |
language |
English |
source |
Enthalten in Solar energy 231, Seite 684-693 volume:231 pages:684-693 |
sourceStr |
Enthalten in Solar energy 231, Seite 684-693 volume:231 pages:684-693 |
format_phy_str_mv |
Article |
bklname |
Regenerative Energieformen alternative Energieformen |
institution |
findex.gbv.de |
topic_facet |
Solar cell Perovskite Device simulation Band gap grading Valence band offset |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Solar energy |
authorswithroles_txt_mv |
Kawano, Yu @@aut@@ Chantana, Jakapan @@aut@@ Negami, Takayuki @@aut@@ Nishimura, Takahito @@aut@@ Mavlonov, Abdurashid @@aut@@ Minemoto, Takashi @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
320525597 |
dewey-sort |
3530 |
id |
ELV007214693 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV007214693</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524143241.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230506s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.solener.2021.11.072</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV007214693</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0038-092X(21)01041-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.56</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kawano, Yu</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-3343-7538</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Theoretical impacts of single band gap grading of perovskite and valence band offset of perovskite/hole transport layer interface on its solar cell performances</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Single bandgap (Eg)-grading in CH3NH3(Sn x Pb1− x )(I1− y Br y )3 perovskites and valence band offset (VBO) of a perovskite/hole transport layer (HTL) interface of perovskite solar cells (PSCs) are theoretically scrutinized. Eg values at front and back is defined as Eg values of perovskite at light incident side and back side, respectively, which are changed from 1.10 eV to 1.80 eV based on Sn and Br compositions for different Eg-grading. It is disclosed that optimized single Eg-grading (1.47 / 1.33 eV at front/back) results in enhancement of cell performances because of effective utilization of broader solar spectrum and formation of electric field in direction of promoting charge separation. Furthermore, optimized carrier diffusion length of 2.5 μm and perovskite thickness of 0.75 μm yields the highest power conversion efficiency of 26.0%. CH3NH3(Sn0.07Pb0.93)I3 at front for front Eg of 1.47 eV and CH3NH3(Sn0.38Pb0.62)I3 at back for back Eg of 1.33 eV are thus suggested for optimized single Eg-grading. Moreover, optimized VBO is in a range from − 0.1 eV to + 0.2 eV regardless of Eg-grading to improve cell performances. The results indicated that PEDOT:PSS, Spiro-OMeTAD, and PTAA as HTL are ultimately suitable for CH3NH3 (Sn x Pb1− x )I3 based PSCs, whereas NiOx and CuOx as HTL is appropriate for CH3NH3 (Sn x Pb1− x )I3 and CH3NH3Pb(I1− y Br y )3 based PSCs.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solar cell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Perovskite</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Device simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Band gap grading</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Valence band offset</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chantana, Jakapan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Negami, Takayuki</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nishimura, Takahito</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mavlonov, Abdurashid</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Minemoto, Takashi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Solar energy</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1957</subfield><subfield code="g">231, Seite 684-693</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320525597</subfield><subfield code="w">(DE-600)2015126-3</subfield><subfield code="w">(DE-576)096806648</subfield><subfield code="x">1471-1257</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:231</subfield><subfield code="g">pages:684-693</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.56</subfield><subfield code="j">Regenerative Energieformen</subfield><subfield code="j">alternative Energieformen</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">231</subfield><subfield code="h">684-693</subfield></datafield></record></collection>
|
author |
Kawano, Yu |
spellingShingle |
Kawano, Yu ddc 530 bkl 52.56 misc Solar cell misc Perovskite misc Device simulation misc Band gap grading misc Valence band offset Theoretical impacts of single band gap grading of perovskite and valence band offset of perovskite/hole transport layer interface on its solar cell performances |
authorStr |
Kawano, Yu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320525597 |
format |
electronic Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1471-1257 |
topic_title |
530 DE-600 52.56 bkl Theoretical impacts of single band gap grading of perovskite and valence band offset of perovskite/hole transport layer interface on its solar cell performances Solar cell Perovskite Device simulation Band gap grading Valence band offset |
topic |
ddc 530 bkl 52.56 misc Solar cell misc Perovskite misc Device simulation misc Band gap grading misc Valence band offset |
topic_unstemmed |
ddc 530 bkl 52.56 misc Solar cell misc Perovskite misc Device simulation misc Band gap grading misc Valence band offset |
topic_browse |
ddc 530 bkl 52.56 misc Solar cell misc Perovskite misc Device simulation misc Band gap grading misc Valence band offset |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Solar energy |
hierarchy_parent_id |
320525597 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Solar energy |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320525597 (DE-600)2015126-3 (DE-576)096806648 |
title |
Theoretical impacts of single band gap grading of perovskite and valence band offset of perovskite/hole transport layer interface on its solar cell performances |
ctrlnum |
(DE-627)ELV007214693 (ELSEVIER)S0038-092X(21)01041-0 |
title_full |
Theoretical impacts of single band gap grading of perovskite and valence band offset of perovskite/hole transport layer interface on its solar cell performances |
author_sort |
Kawano, Yu |
journal |
Solar energy |
journalStr |
Solar energy |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
container_start_page |
684 |
author_browse |
Kawano, Yu Chantana, Jakapan Negami, Takayuki Nishimura, Takahito Mavlonov, Abdurashid Minemoto, Takashi |
container_volume |
231 |
class |
530 DE-600 52.56 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Kawano, Yu |
doi_str_mv |
10.1016/j.solener.2021.11.072 |
normlink |
(ORCID)0000-0002-3343-7538 |
normlink_prefix_str_mv |
(orcid)0000-0002-3343-7538 |
dewey-full |
530 |
author2-role |
verfasserin |
title_sort |
theoretical impacts of single band gap grading of perovskite and valence band offset of perovskite/hole transport layer interface on its solar cell performances |
title_auth |
Theoretical impacts of single band gap grading of perovskite and valence band offset of perovskite/hole transport layer interface on its solar cell performances |
abstract |
Single bandgap (Eg)-grading in CH3NH3(Sn x Pb1− x )(I1− y Br y )3 perovskites and valence band offset (VBO) of a perovskite/hole transport layer (HTL) interface of perovskite solar cells (PSCs) are theoretically scrutinized. Eg values at front and back is defined as Eg values of perovskite at light incident side and back side, respectively, which are changed from 1.10 eV to 1.80 eV based on Sn and Br compositions for different Eg-grading. It is disclosed that optimized single Eg-grading (1.47 / 1.33 eV at front/back) results in enhancement of cell performances because of effective utilization of broader solar spectrum and formation of electric field in direction of promoting charge separation. Furthermore, optimized carrier diffusion length of 2.5 μm and perovskite thickness of 0.75 μm yields the highest power conversion efficiency of 26.0%. CH3NH3(Sn0.07Pb0.93)I3 at front for front Eg of 1.47 eV and CH3NH3(Sn0.38Pb0.62)I3 at back for back Eg of 1.33 eV are thus suggested for optimized single Eg-grading. Moreover, optimized VBO is in a range from − 0.1 eV to + 0.2 eV regardless of Eg-grading to improve cell performances. The results indicated that PEDOT:PSS, Spiro-OMeTAD, and PTAA as HTL are ultimately suitable for CH3NH3 (Sn x Pb1− x )I3 based PSCs, whereas NiOx and CuOx as HTL is appropriate for CH3NH3 (Sn x Pb1− x )I3 and CH3NH3Pb(I1− y Br y )3 based PSCs. |
abstractGer |
Single bandgap (Eg)-grading in CH3NH3(Sn x Pb1− x )(I1− y Br y )3 perovskites and valence band offset (VBO) of a perovskite/hole transport layer (HTL) interface of perovskite solar cells (PSCs) are theoretically scrutinized. Eg values at front and back is defined as Eg values of perovskite at light incident side and back side, respectively, which are changed from 1.10 eV to 1.80 eV based on Sn and Br compositions for different Eg-grading. It is disclosed that optimized single Eg-grading (1.47 / 1.33 eV at front/back) results in enhancement of cell performances because of effective utilization of broader solar spectrum and formation of electric field in direction of promoting charge separation. Furthermore, optimized carrier diffusion length of 2.5 μm and perovskite thickness of 0.75 μm yields the highest power conversion efficiency of 26.0%. CH3NH3(Sn0.07Pb0.93)I3 at front for front Eg of 1.47 eV and CH3NH3(Sn0.38Pb0.62)I3 at back for back Eg of 1.33 eV are thus suggested for optimized single Eg-grading. Moreover, optimized VBO is in a range from − 0.1 eV to + 0.2 eV regardless of Eg-grading to improve cell performances. The results indicated that PEDOT:PSS, Spiro-OMeTAD, and PTAA as HTL are ultimately suitable for CH3NH3 (Sn x Pb1− x )I3 based PSCs, whereas NiOx and CuOx as HTL is appropriate for CH3NH3 (Sn x Pb1− x )I3 and CH3NH3Pb(I1− y Br y )3 based PSCs. |
abstract_unstemmed |
Single bandgap (Eg)-grading in CH3NH3(Sn x Pb1− x )(I1− y Br y )3 perovskites and valence band offset (VBO) of a perovskite/hole transport layer (HTL) interface of perovskite solar cells (PSCs) are theoretically scrutinized. Eg values at front and back is defined as Eg values of perovskite at light incident side and back side, respectively, which are changed from 1.10 eV to 1.80 eV based on Sn and Br compositions for different Eg-grading. It is disclosed that optimized single Eg-grading (1.47 / 1.33 eV at front/back) results in enhancement of cell performances because of effective utilization of broader solar spectrum and formation of electric field in direction of promoting charge separation. Furthermore, optimized carrier diffusion length of 2.5 μm and perovskite thickness of 0.75 μm yields the highest power conversion efficiency of 26.0%. CH3NH3(Sn0.07Pb0.93)I3 at front for front Eg of 1.47 eV and CH3NH3(Sn0.38Pb0.62)I3 at back for back Eg of 1.33 eV are thus suggested for optimized single Eg-grading. Moreover, optimized VBO is in a range from − 0.1 eV to + 0.2 eV regardless of Eg-grading to improve cell performances. The results indicated that PEDOT:PSS, Spiro-OMeTAD, and PTAA as HTL are ultimately suitable for CH3NH3 (Sn x Pb1− x )I3 based PSCs, whereas NiOx and CuOx as HTL is appropriate for CH3NH3 (Sn x Pb1− x )I3 and CH3NH3Pb(I1− y Br y )3 based PSCs. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Theoretical impacts of single band gap grading of perovskite and valence band offset of perovskite/hole transport layer interface on its solar cell performances |
remote_bool |
true |
author2 |
Chantana, Jakapan Negami, Takayuki Nishimura, Takahito Mavlonov, Abdurashid Minemoto, Takashi |
author2Str |
Chantana, Jakapan Negami, Takayuki Nishimura, Takahito Mavlonov, Abdurashid Minemoto, Takashi |
ppnlink |
320525597 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.solener.2021.11.072 |
up_date |
2024-07-06T23:59:41.056Z |
_version_ |
1803876178128273408 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV007214693</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524143241.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230506s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.solener.2021.11.072</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV007214693</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0038-092X(21)01041-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.56</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kawano, Yu</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-3343-7538</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Theoretical impacts of single band gap grading of perovskite and valence band offset of perovskite/hole transport layer interface on its solar cell performances</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Single bandgap (Eg)-grading in CH3NH3(Sn x Pb1− x )(I1− y Br y )3 perovskites and valence band offset (VBO) of a perovskite/hole transport layer (HTL) interface of perovskite solar cells (PSCs) are theoretically scrutinized. Eg values at front and back is defined as Eg values of perovskite at light incident side and back side, respectively, which are changed from 1.10 eV to 1.80 eV based on Sn and Br compositions for different Eg-grading. It is disclosed that optimized single Eg-grading (1.47 / 1.33 eV at front/back) results in enhancement of cell performances because of effective utilization of broader solar spectrum and formation of electric field in direction of promoting charge separation. Furthermore, optimized carrier diffusion length of 2.5 μm and perovskite thickness of 0.75 μm yields the highest power conversion efficiency of 26.0%. CH3NH3(Sn0.07Pb0.93)I3 at front for front Eg of 1.47 eV and CH3NH3(Sn0.38Pb0.62)I3 at back for back Eg of 1.33 eV are thus suggested for optimized single Eg-grading. Moreover, optimized VBO is in a range from − 0.1 eV to + 0.2 eV regardless of Eg-grading to improve cell performances. The results indicated that PEDOT:PSS, Spiro-OMeTAD, and PTAA as HTL are ultimately suitable for CH3NH3 (Sn x Pb1− x )I3 based PSCs, whereas NiOx and CuOx as HTL is appropriate for CH3NH3 (Sn x Pb1− x )I3 and CH3NH3Pb(I1− y Br y )3 based PSCs.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solar cell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Perovskite</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Device simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Band gap grading</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Valence band offset</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chantana, Jakapan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Negami, Takayuki</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nishimura, Takahito</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mavlonov, Abdurashid</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Minemoto, Takashi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Solar energy</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1957</subfield><subfield code="g">231, Seite 684-693</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320525597</subfield><subfield code="w">(DE-600)2015126-3</subfield><subfield code="w">(DE-576)096806648</subfield><subfield code="x">1471-1257</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:231</subfield><subfield code="g">pages:684-693</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.56</subfield><subfield code="j">Regenerative Energieformen</subfield><subfield code="j">alternative Energieformen</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">231</subfield><subfield code="h">684-693</subfield></datafield></record></collection>
|
score |
7.401124 |