Cooling performance of multi-nozzle spray with liquid nitrogen
Spray cooling with liquid nitrogen has great advantages to achieve a cryogenic environment simulation system. The nozzle number, the mass flow rate and the gas velocity have crucial impacts on the cooling efficiency and the high-precision temperature control in the system. To gain insight into the m...
Ausführliche Beschreibung
Autor*in: |
Xue, Rong [verfasserIn] Lin, Xinyi [verfasserIn] Ruan, Yixiao [verfasserIn] Chen, Liang [verfasserIn] Hou, Yu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Cryogenics - Amsterdam [u.a.] : Elsevier Science, 1960, 121 |
---|---|
Übergeordnetes Werk: |
volume:121 |
DOI / URN: |
10.1016/j.cryogenics.2021.103389 |
---|
Katalog-ID: |
ELV007321953 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV007321953 | ||
003 | DE-627 | ||
005 | 20230524132129.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230507s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.cryogenics.2021.103389 |2 doi | |
035 | |a (DE-627)ELV007321953 | ||
035 | |a (ELSEVIER)S0011-2275(21)00147-8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 660 |q DE-600 |
084 | |a 52.43 |2 bkl | ||
084 | |a 33.09 |2 bkl | ||
100 | 1 | |a Xue, Rong |e verfasserin |4 aut | |
245 | 1 | 0 | |a Cooling performance of multi-nozzle spray with liquid nitrogen |
264 | 1 | |c 2021 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Spray cooling with liquid nitrogen has great advantages to achieve a cryogenic environment simulation system. The nozzle number, the mass flow rate and the gas velocity have crucial impacts on the cooling efficiency and the high-precision temperature control in the system. To gain insight into the multi-nozzle spray cooling performance, the small wind tunnel prototype with liquid nitrogen spray cooling was built, and the transient and steady-state cooling performance was experimentally studied. The results show that during the transient cooling process, the temperature is lower when the region is closer to the spray field. The temperature on the test plane near the spray has the biggest difference. After flowing through two elbow pipes, the high uniformity of the temperature distribution is obtained. The research of the steady state cooling shows that the average temperature gradually increases along the flow direction from the spray region, while the temperature uniformity is in the reverse order. And the small deviation among the data on the later three planes means a good temperature uniformity within the wind tunnel except the spray region. In addition, a lower gas velocity, a larger nozzle number and a higher injection pressure can enhance the cooling performance. However, the temperature uniformity becomes worse as the nozzle number increases. The results could provide theoretical guidelines for the engineering application of the cryogenic spray cooling. | ||
650 | 4 | |a Liquid nitrogen | |
650 | 4 | |a Multi-nozzle spray | |
650 | 4 | |a Cooling performance | |
650 | 4 | |a Temperature distribution | |
700 | 1 | |a Lin, Xinyi |e verfasserin |4 aut | |
700 | 1 | |a Ruan, Yixiao |e verfasserin |4 aut | |
700 | 1 | |a Chen, Liang |e verfasserin |4 aut | |
700 | 1 | |a Hou, Yu |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Cryogenics |d Amsterdam [u.a.] : Elsevier Science, 1960 |g 121 |h Online-Ressource |w (DE-627)30671616X |w (DE-600)1501356-X |w (DE-576)094531307 |x 0011-2275 |7 nnns |
773 | 1 | 8 | |g volume:121 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 52.43 |j Kältetechnik |
936 | b | k | |a 33.09 |j Physik unter besonderen Bedingungen |
951 | |a AR | ||
952 | |d 121 |
author_variant |
r x rx x l xl y r yr l c lc y h yh |
---|---|
matchkey_str |
article:00112275:2021----::olnpromnefutnzlsryi |
hierarchy_sort_str |
2021 |
bklnumber |
52.43 33.09 |
publishDate |
2021 |
allfields |
10.1016/j.cryogenics.2021.103389 doi (DE-627)ELV007321953 (ELSEVIER)S0011-2275(21)00147-8 DE-627 ger DE-627 rda eng 660 DE-600 52.43 bkl 33.09 bkl Xue, Rong verfasserin aut Cooling performance of multi-nozzle spray with liquid nitrogen 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Spray cooling with liquid nitrogen has great advantages to achieve a cryogenic environment simulation system. The nozzle number, the mass flow rate and the gas velocity have crucial impacts on the cooling efficiency and the high-precision temperature control in the system. To gain insight into the multi-nozzle spray cooling performance, the small wind tunnel prototype with liquid nitrogen spray cooling was built, and the transient and steady-state cooling performance was experimentally studied. The results show that during the transient cooling process, the temperature is lower when the region is closer to the spray field. The temperature on the test plane near the spray has the biggest difference. After flowing through two elbow pipes, the high uniformity of the temperature distribution is obtained. The research of the steady state cooling shows that the average temperature gradually increases along the flow direction from the spray region, while the temperature uniformity is in the reverse order. And the small deviation among the data on the later three planes means a good temperature uniformity within the wind tunnel except the spray region. In addition, a lower gas velocity, a larger nozzle number and a higher injection pressure can enhance the cooling performance. However, the temperature uniformity becomes worse as the nozzle number increases. The results could provide theoretical guidelines for the engineering application of the cryogenic spray cooling. Liquid nitrogen Multi-nozzle spray Cooling performance Temperature distribution Lin, Xinyi verfasserin aut Ruan, Yixiao verfasserin aut Chen, Liang verfasserin aut Hou, Yu verfasserin aut Enthalten in Cryogenics Amsterdam [u.a.] : Elsevier Science, 1960 121 Online-Ressource (DE-627)30671616X (DE-600)1501356-X (DE-576)094531307 0011-2275 nnns volume:121 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.43 Kältetechnik 33.09 Physik unter besonderen Bedingungen AR 121 |
spelling |
10.1016/j.cryogenics.2021.103389 doi (DE-627)ELV007321953 (ELSEVIER)S0011-2275(21)00147-8 DE-627 ger DE-627 rda eng 660 DE-600 52.43 bkl 33.09 bkl Xue, Rong verfasserin aut Cooling performance of multi-nozzle spray with liquid nitrogen 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Spray cooling with liquid nitrogen has great advantages to achieve a cryogenic environment simulation system. The nozzle number, the mass flow rate and the gas velocity have crucial impacts on the cooling efficiency and the high-precision temperature control in the system. To gain insight into the multi-nozzle spray cooling performance, the small wind tunnel prototype with liquid nitrogen spray cooling was built, and the transient and steady-state cooling performance was experimentally studied. The results show that during the transient cooling process, the temperature is lower when the region is closer to the spray field. The temperature on the test plane near the spray has the biggest difference. After flowing through two elbow pipes, the high uniformity of the temperature distribution is obtained. The research of the steady state cooling shows that the average temperature gradually increases along the flow direction from the spray region, while the temperature uniformity is in the reverse order. And the small deviation among the data on the later three planes means a good temperature uniformity within the wind tunnel except the spray region. In addition, a lower gas velocity, a larger nozzle number and a higher injection pressure can enhance the cooling performance. However, the temperature uniformity becomes worse as the nozzle number increases. The results could provide theoretical guidelines for the engineering application of the cryogenic spray cooling. Liquid nitrogen Multi-nozzle spray Cooling performance Temperature distribution Lin, Xinyi verfasserin aut Ruan, Yixiao verfasserin aut Chen, Liang verfasserin aut Hou, Yu verfasserin aut Enthalten in Cryogenics Amsterdam [u.a.] : Elsevier Science, 1960 121 Online-Ressource (DE-627)30671616X (DE-600)1501356-X (DE-576)094531307 0011-2275 nnns volume:121 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.43 Kältetechnik 33.09 Physik unter besonderen Bedingungen AR 121 |
allfields_unstemmed |
10.1016/j.cryogenics.2021.103389 doi (DE-627)ELV007321953 (ELSEVIER)S0011-2275(21)00147-8 DE-627 ger DE-627 rda eng 660 DE-600 52.43 bkl 33.09 bkl Xue, Rong verfasserin aut Cooling performance of multi-nozzle spray with liquid nitrogen 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Spray cooling with liquid nitrogen has great advantages to achieve a cryogenic environment simulation system. The nozzle number, the mass flow rate and the gas velocity have crucial impacts on the cooling efficiency and the high-precision temperature control in the system. To gain insight into the multi-nozzle spray cooling performance, the small wind tunnel prototype with liquid nitrogen spray cooling was built, and the transient and steady-state cooling performance was experimentally studied. The results show that during the transient cooling process, the temperature is lower when the region is closer to the spray field. The temperature on the test plane near the spray has the biggest difference. After flowing through two elbow pipes, the high uniformity of the temperature distribution is obtained. The research of the steady state cooling shows that the average temperature gradually increases along the flow direction from the spray region, while the temperature uniformity is in the reverse order. And the small deviation among the data on the later three planes means a good temperature uniformity within the wind tunnel except the spray region. In addition, a lower gas velocity, a larger nozzle number and a higher injection pressure can enhance the cooling performance. However, the temperature uniformity becomes worse as the nozzle number increases. The results could provide theoretical guidelines for the engineering application of the cryogenic spray cooling. Liquid nitrogen Multi-nozzle spray Cooling performance Temperature distribution Lin, Xinyi verfasserin aut Ruan, Yixiao verfasserin aut Chen, Liang verfasserin aut Hou, Yu verfasserin aut Enthalten in Cryogenics Amsterdam [u.a.] : Elsevier Science, 1960 121 Online-Ressource (DE-627)30671616X (DE-600)1501356-X (DE-576)094531307 0011-2275 nnns volume:121 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.43 Kältetechnik 33.09 Physik unter besonderen Bedingungen AR 121 |
allfieldsGer |
10.1016/j.cryogenics.2021.103389 doi (DE-627)ELV007321953 (ELSEVIER)S0011-2275(21)00147-8 DE-627 ger DE-627 rda eng 660 DE-600 52.43 bkl 33.09 bkl Xue, Rong verfasserin aut Cooling performance of multi-nozzle spray with liquid nitrogen 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Spray cooling with liquid nitrogen has great advantages to achieve a cryogenic environment simulation system. The nozzle number, the mass flow rate and the gas velocity have crucial impacts on the cooling efficiency and the high-precision temperature control in the system. To gain insight into the multi-nozzle spray cooling performance, the small wind tunnel prototype with liquid nitrogen spray cooling was built, and the transient and steady-state cooling performance was experimentally studied. The results show that during the transient cooling process, the temperature is lower when the region is closer to the spray field. The temperature on the test plane near the spray has the biggest difference. After flowing through two elbow pipes, the high uniformity of the temperature distribution is obtained. The research of the steady state cooling shows that the average temperature gradually increases along the flow direction from the spray region, while the temperature uniformity is in the reverse order. And the small deviation among the data on the later three planes means a good temperature uniformity within the wind tunnel except the spray region. In addition, a lower gas velocity, a larger nozzle number and a higher injection pressure can enhance the cooling performance. However, the temperature uniformity becomes worse as the nozzle number increases. The results could provide theoretical guidelines for the engineering application of the cryogenic spray cooling. Liquid nitrogen Multi-nozzle spray Cooling performance Temperature distribution Lin, Xinyi verfasserin aut Ruan, Yixiao verfasserin aut Chen, Liang verfasserin aut Hou, Yu verfasserin aut Enthalten in Cryogenics Amsterdam [u.a.] : Elsevier Science, 1960 121 Online-Ressource (DE-627)30671616X (DE-600)1501356-X (DE-576)094531307 0011-2275 nnns volume:121 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.43 Kältetechnik 33.09 Physik unter besonderen Bedingungen AR 121 |
allfieldsSound |
10.1016/j.cryogenics.2021.103389 doi (DE-627)ELV007321953 (ELSEVIER)S0011-2275(21)00147-8 DE-627 ger DE-627 rda eng 660 DE-600 52.43 bkl 33.09 bkl Xue, Rong verfasserin aut Cooling performance of multi-nozzle spray with liquid nitrogen 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Spray cooling with liquid nitrogen has great advantages to achieve a cryogenic environment simulation system. The nozzle number, the mass flow rate and the gas velocity have crucial impacts on the cooling efficiency and the high-precision temperature control in the system. To gain insight into the multi-nozzle spray cooling performance, the small wind tunnel prototype with liquid nitrogen spray cooling was built, and the transient and steady-state cooling performance was experimentally studied. The results show that during the transient cooling process, the temperature is lower when the region is closer to the spray field. The temperature on the test plane near the spray has the biggest difference. After flowing through two elbow pipes, the high uniformity of the temperature distribution is obtained. The research of the steady state cooling shows that the average temperature gradually increases along the flow direction from the spray region, while the temperature uniformity is in the reverse order. And the small deviation among the data on the later three planes means a good temperature uniformity within the wind tunnel except the spray region. In addition, a lower gas velocity, a larger nozzle number and a higher injection pressure can enhance the cooling performance. However, the temperature uniformity becomes worse as the nozzle number increases. The results could provide theoretical guidelines for the engineering application of the cryogenic spray cooling. Liquid nitrogen Multi-nozzle spray Cooling performance Temperature distribution Lin, Xinyi verfasserin aut Ruan, Yixiao verfasserin aut Chen, Liang verfasserin aut Hou, Yu verfasserin aut Enthalten in Cryogenics Amsterdam [u.a.] : Elsevier Science, 1960 121 Online-Ressource (DE-627)30671616X (DE-600)1501356-X (DE-576)094531307 0011-2275 nnns volume:121 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.43 Kältetechnik 33.09 Physik unter besonderen Bedingungen AR 121 |
language |
English |
source |
Enthalten in Cryogenics 121 volume:121 |
sourceStr |
Enthalten in Cryogenics 121 volume:121 |
format_phy_str_mv |
Article |
bklname |
Kältetechnik Physik unter besonderen Bedingungen |
institution |
findex.gbv.de |
topic_facet |
Liquid nitrogen Multi-nozzle spray Cooling performance Temperature distribution |
dewey-raw |
660 |
isfreeaccess_bool |
false |
container_title |
Cryogenics |
authorswithroles_txt_mv |
Xue, Rong @@aut@@ Lin, Xinyi @@aut@@ Ruan, Yixiao @@aut@@ Chen, Liang @@aut@@ Hou, Yu @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
30671616X |
dewey-sort |
3660 |
id |
ELV007321953 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV007321953</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524132129.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230507s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.cryogenics.2021.103389</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV007321953</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0011-2275(21)00147-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.43</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.09</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Xue, Rong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Cooling performance of multi-nozzle spray with liquid nitrogen</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Spray cooling with liquid nitrogen has great advantages to achieve a cryogenic environment simulation system. The nozzle number, the mass flow rate and the gas velocity have crucial impacts on the cooling efficiency and the high-precision temperature control in the system. To gain insight into the multi-nozzle spray cooling performance, the small wind tunnel prototype with liquid nitrogen spray cooling was built, and the transient and steady-state cooling performance was experimentally studied. The results show that during the transient cooling process, the temperature is lower when the region is closer to the spray field. The temperature on the test plane near the spray has the biggest difference. After flowing through two elbow pipes, the high uniformity of the temperature distribution is obtained. The research of the steady state cooling shows that the average temperature gradually increases along the flow direction from the spray region, while the temperature uniformity is in the reverse order. And the small deviation among the data on the later three planes means a good temperature uniformity within the wind tunnel except the spray region. In addition, a lower gas velocity, a larger nozzle number and a higher injection pressure can enhance the cooling performance. However, the temperature uniformity becomes worse as the nozzle number increases. The results could provide theoretical guidelines for the engineering application of the cryogenic spray cooling.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Liquid nitrogen</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multi-nozzle spray</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cooling performance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Temperature distribution</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lin, Xinyi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ruan, Yixiao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Liang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hou, Yu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Cryogenics</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1960</subfield><subfield code="g">121</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)30671616X</subfield><subfield code="w">(DE-600)1501356-X</subfield><subfield code="w">(DE-576)094531307</subfield><subfield code="x">0011-2275</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:121</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.43</subfield><subfield code="j">Kältetechnik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.09</subfield><subfield code="j">Physik unter besonderen Bedingungen</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">121</subfield></datafield></record></collection>
|
author |
Xue, Rong |
spellingShingle |
Xue, Rong ddc 660 bkl 52.43 bkl 33.09 misc Liquid nitrogen misc Multi-nozzle spray misc Cooling performance misc Temperature distribution Cooling performance of multi-nozzle spray with liquid nitrogen |
authorStr |
Xue, Rong |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)30671616X |
format |
electronic Article |
dewey-ones |
660 - Chemical engineering |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0011-2275 |
topic_title |
660 DE-600 52.43 bkl 33.09 bkl Cooling performance of multi-nozzle spray with liquid nitrogen Liquid nitrogen Multi-nozzle spray Cooling performance Temperature distribution |
topic |
ddc 660 bkl 52.43 bkl 33.09 misc Liquid nitrogen misc Multi-nozzle spray misc Cooling performance misc Temperature distribution |
topic_unstemmed |
ddc 660 bkl 52.43 bkl 33.09 misc Liquid nitrogen misc Multi-nozzle spray misc Cooling performance misc Temperature distribution |
topic_browse |
ddc 660 bkl 52.43 bkl 33.09 misc Liquid nitrogen misc Multi-nozzle spray misc Cooling performance misc Temperature distribution |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Cryogenics |
hierarchy_parent_id |
30671616X |
dewey-tens |
660 - Chemical engineering |
hierarchy_top_title |
Cryogenics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)30671616X (DE-600)1501356-X (DE-576)094531307 |
title |
Cooling performance of multi-nozzle spray with liquid nitrogen |
ctrlnum |
(DE-627)ELV007321953 (ELSEVIER)S0011-2275(21)00147-8 |
title_full |
Cooling performance of multi-nozzle spray with liquid nitrogen |
author_sort |
Xue, Rong |
journal |
Cryogenics |
journalStr |
Cryogenics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
author_browse |
Xue, Rong Lin, Xinyi Ruan, Yixiao Chen, Liang Hou, Yu |
container_volume |
121 |
class |
660 DE-600 52.43 bkl 33.09 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Xue, Rong |
doi_str_mv |
10.1016/j.cryogenics.2021.103389 |
dewey-full |
660 |
author2-role |
verfasserin |
title_sort |
cooling performance of multi-nozzle spray with liquid nitrogen |
title_auth |
Cooling performance of multi-nozzle spray with liquid nitrogen |
abstract |
Spray cooling with liquid nitrogen has great advantages to achieve a cryogenic environment simulation system. The nozzle number, the mass flow rate and the gas velocity have crucial impacts on the cooling efficiency and the high-precision temperature control in the system. To gain insight into the multi-nozzle spray cooling performance, the small wind tunnel prototype with liquid nitrogen spray cooling was built, and the transient and steady-state cooling performance was experimentally studied. The results show that during the transient cooling process, the temperature is lower when the region is closer to the spray field. The temperature on the test plane near the spray has the biggest difference. After flowing through two elbow pipes, the high uniformity of the temperature distribution is obtained. The research of the steady state cooling shows that the average temperature gradually increases along the flow direction from the spray region, while the temperature uniformity is in the reverse order. And the small deviation among the data on the later three planes means a good temperature uniformity within the wind tunnel except the spray region. In addition, a lower gas velocity, a larger nozzle number and a higher injection pressure can enhance the cooling performance. However, the temperature uniformity becomes worse as the nozzle number increases. The results could provide theoretical guidelines for the engineering application of the cryogenic spray cooling. |
abstractGer |
Spray cooling with liquid nitrogen has great advantages to achieve a cryogenic environment simulation system. The nozzle number, the mass flow rate and the gas velocity have crucial impacts on the cooling efficiency and the high-precision temperature control in the system. To gain insight into the multi-nozzle spray cooling performance, the small wind tunnel prototype with liquid nitrogen spray cooling was built, and the transient and steady-state cooling performance was experimentally studied. The results show that during the transient cooling process, the temperature is lower when the region is closer to the spray field. The temperature on the test plane near the spray has the biggest difference. After flowing through two elbow pipes, the high uniformity of the temperature distribution is obtained. The research of the steady state cooling shows that the average temperature gradually increases along the flow direction from the spray region, while the temperature uniformity is in the reverse order. And the small deviation among the data on the later three planes means a good temperature uniformity within the wind tunnel except the spray region. In addition, a lower gas velocity, a larger nozzle number and a higher injection pressure can enhance the cooling performance. However, the temperature uniformity becomes worse as the nozzle number increases. The results could provide theoretical guidelines for the engineering application of the cryogenic spray cooling. |
abstract_unstemmed |
Spray cooling with liquid nitrogen has great advantages to achieve a cryogenic environment simulation system. The nozzle number, the mass flow rate and the gas velocity have crucial impacts on the cooling efficiency and the high-precision temperature control in the system. To gain insight into the multi-nozzle spray cooling performance, the small wind tunnel prototype with liquid nitrogen spray cooling was built, and the transient and steady-state cooling performance was experimentally studied. The results show that during the transient cooling process, the temperature is lower when the region is closer to the spray field. The temperature on the test plane near the spray has the biggest difference. After flowing through two elbow pipes, the high uniformity of the temperature distribution is obtained. The research of the steady state cooling shows that the average temperature gradually increases along the flow direction from the spray region, while the temperature uniformity is in the reverse order. And the small deviation among the data on the later three planes means a good temperature uniformity within the wind tunnel except the spray region. In addition, a lower gas velocity, a larger nozzle number and a higher injection pressure can enhance the cooling performance. However, the temperature uniformity becomes worse as the nozzle number increases. The results could provide theoretical guidelines for the engineering application of the cryogenic spray cooling. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Cooling performance of multi-nozzle spray with liquid nitrogen |
remote_bool |
true |
author2 |
Lin, Xinyi Ruan, Yixiao Chen, Liang Hou, Yu |
author2Str |
Lin, Xinyi Ruan, Yixiao Chen, Liang Hou, Yu |
ppnlink |
30671616X |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.cryogenics.2021.103389 |
up_date |
2024-07-07T00:21:27.003Z |
_version_ |
1803877547514003456 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV007321953</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524132129.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230507s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.cryogenics.2021.103389</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV007321953</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0011-2275(21)00147-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.43</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.09</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Xue, Rong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Cooling performance of multi-nozzle spray with liquid nitrogen</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Spray cooling with liquid nitrogen has great advantages to achieve a cryogenic environment simulation system. The nozzle number, the mass flow rate and the gas velocity have crucial impacts on the cooling efficiency and the high-precision temperature control in the system. To gain insight into the multi-nozzle spray cooling performance, the small wind tunnel prototype with liquid nitrogen spray cooling was built, and the transient and steady-state cooling performance was experimentally studied. The results show that during the transient cooling process, the temperature is lower when the region is closer to the spray field. The temperature on the test plane near the spray has the biggest difference. After flowing through two elbow pipes, the high uniformity of the temperature distribution is obtained. The research of the steady state cooling shows that the average temperature gradually increases along the flow direction from the spray region, while the temperature uniformity is in the reverse order. And the small deviation among the data on the later three planes means a good temperature uniformity within the wind tunnel except the spray region. In addition, a lower gas velocity, a larger nozzle number and a higher injection pressure can enhance the cooling performance. However, the temperature uniformity becomes worse as the nozzle number increases. The results could provide theoretical guidelines for the engineering application of the cryogenic spray cooling.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Liquid nitrogen</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multi-nozzle spray</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cooling performance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Temperature distribution</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lin, Xinyi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ruan, Yixiao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Liang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hou, Yu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Cryogenics</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1960</subfield><subfield code="g">121</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)30671616X</subfield><subfield code="w">(DE-600)1501356-X</subfield><subfield code="w">(DE-576)094531307</subfield><subfield code="x">0011-2275</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:121</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.43</subfield><subfield code="j">Kältetechnik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.09</subfield><subfield code="j">Physik unter besonderen Bedingungen</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">121</subfield></datafield></record></collection>
|
score |
7.4016743 |