An explainable recommendation framework based on an improved knowledge graph attention network with massive volumes of side information
In recent years, explainable recommendation has been a topic of active study. This is because the branch of the machine learning field related to methodologies is enabling human understanding of the reasons for the outputs of recommender systems. The realization of explainable recommendation is wide...
Ausführliche Beschreibung
Autor*in: |
Shimizu, Ryotaro [verfasserIn] Matsutani, Megumi [verfasserIn] Goto, Masayuki [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
Explainable artificial intelligence |
---|
Übergeordnetes Werk: |
Enthalten in: Knowledge-based systems - Amsterdam [u.a.] : Elsevier Science, 1987, 239 |
---|---|
Übergeordnetes Werk: |
volume:239 |
DOI / URN: |
10.1016/j.knosys.2021.107970 |
---|
Katalog-ID: |
ELV007361963 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV007361963 | ||
003 | DE-627 | ||
005 | 20230524164151.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230507s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.knosys.2021.107970 |2 doi | |
035 | |a (DE-627)ELV007361963 | ||
035 | |a (ELSEVIER)S0950-7051(21)01095-9 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q DE-600 |
084 | |a 54.72 |2 bkl | ||
100 | 1 | |a Shimizu, Ryotaro |e verfasserin |0 (orcid)0000-0002-4841-1824 |4 aut | |
245 | 1 | 0 | |a An explainable recommendation framework based on an improved knowledge graph attention network with massive volumes of side information |
264 | 1 | |c 2021 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In recent years, explainable recommendation has been a topic of active study. This is because the branch of the machine learning field related to methodologies is enabling human understanding of the reasons for the outputs of recommender systems. The realization of explainable recommendation is widely expected to increase both user satisfaction and the demand for explainable recommendation systems. Explainable recommendation utilizes a wealth of side information (such as sellers, brands, user ages and genders, and bookmark information, among others) to expound the decision-making reasoning applied by recommendation models. In explainable recommendation, although learning side information containing numerous variables leads to rich interpretability, learning too many variables presents a challenge because decreases the amount of learning that a given computational resource can perform, and the accuracy of the recommendation model may be degraded. However, numerous and diverse variables are included in the side information stored by the actual companies operating massive real-world services. Hence, to realize practical applications of this valuable information, it is necessary to resolve problems such as computational cost. In this study, we propose a new framework for explainable recommendation based on an improved knowledge graph attention network model, which utilizes the side information of items and realizes high recommendation accuracy. The proposed framework enables direct interpretation by visualizing the reasons for the recommendations provided. Experimental results show that the proposed framework reduced computational time requirements by approximately 80%, while maintaining recommendation accuracy by enabling the model to learn the probabilistically given edges included in the graph structure. Moreover, the results show that the proposed framework exhibited richer interpretability than the conventional model. Finally, a multifaceted analysis suggests that the proposed framework is not only effective as an explainable recommendation model but also provides a powerful tool for planning various marketing strategies. | ||
650 | 4 | |a Explainable artificial intelligence | |
650 | 4 | |a Explainable recommendation | |
650 | 4 | |a Model-intrinsic approach | |
650 | 4 | |a Knowledge graph attention network | |
650 | 4 | |a Knowledge graph embedding | |
650 | 4 | |a Knowledge graph enabled recommendation | |
700 | 1 | |a Matsutani, Megumi |e verfasserin |4 aut | |
700 | 1 | |a Goto, Masayuki |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Knowledge-based systems |d Amsterdam [u.a.] : Elsevier Science, 1987 |g 239 |h Online-Ressource |w (DE-627)320580024 |w (DE-600)2017495-0 |w (DE-576)253018722 |x 0950-7051 |7 nnns |
773 | 1 | 8 | |g volume:239 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 54.72 |j Künstliche Intelligenz |
951 | |a AR | ||
952 | |d 239 |
author_variant |
r s rs m m mm m g mg |
---|---|
matchkey_str |
article:09507051:2021----::nxlialrcmedtofaeokaeoaipoekolderpatninewrwt |
hierarchy_sort_str |
2021 |
bklnumber |
54.72 |
publishDate |
2021 |
allfields |
10.1016/j.knosys.2021.107970 doi (DE-627)ELV007361963 (ELSEVIER)S0950-7051(21)01095-9 DE-627 ger DE-627 rda eng 004 DE-600 54.72 bkl Shimizu, Ryotaro verfasserin (orcid)0000-0002-4841-1824 aut An explainable recommendation framework based on an improved knowledge graph attention network with massive volumes of side information 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In recent years, explainable recommendation has been a topic of active study. This is because the branch of the machine learning field related to methodologies is enabling human understanding of the reasons for the outputs of recommender systems. The realization of explainable recommendation is widely expected to increase both user satisfaction and the demand for explainable recommendation systems. Explainable recommendation utilizes a wealth of side information (such as sellers, brands, user ages and genders, and bookmark information, among others) to expound the decision-making reasoning applied by recommendation models. In explainable recommendation, although learning side information containing numerous variables leads to rich interpretability, learning too many variables presents a challenge because decreases the amount of learning that a given computational resource can perform, and the accuracy of the recommendation model may be degraded. However, numerous and diverse variables are included in the side information stored by the actual companies operating massive real-world services. Hence, to realize practical applications of this valuable information, it is necessary to resolve problems such as computational cost. In this study, we propose a new framework for explainable recommendation based on an improved knowledge graph attention network model, which utilizes the side information of items and realizes high recommendation accuracy. The proposed framework enables direct interpretation by visualizing the reasons for the recommendations provided. Experimental results show that the proposed framework reduced computational time requirements by approximately 80%, while maintaining recommendation accuracy by enabling the model to learn the probabilistically given edges included in the graph structure. Moreover, the results show that the proposed framework exhibited richer interpretability than the conventional model. Finally, a multifaceted analysis suggests that the proposed framework is not only effective as an explainable recommendation model but also provides a powerful tool for planning various marketing strategies. Explainable artificial intelligence Explainable recommendation Model-intrinsic approach Knowledge graph attention network Knowledge graph embedding Knowledge graph enabled recommendation Matsutani, Megumi verfasserin aut Goto, Masayuki verfasserin aut Enthalten in Knowledge-based systems Amsterdam [u.a.] : Elsevier Science, 1987 239 Online-Ressource (DE-627)320580024 (DE-600)2017495-0 (DE-576)253018722 0950-7051 nnns volume:239 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.72 Künstliche Intelligenz AR 239 |
spelling |
10.1016/j.knosys.2021.107970 doi (DE-627)ELV007361963 (ELSEVIER)S0950-7051(21)01095-9 DE-627 ger DE-627 rda eng 004 DE-600 54.72 bkl Shimizu, Ryotaro verfasserin (orcid)0000-0002-4841-1824 aut An explainable recommendation framework based on an improved knowledge graph attention network with massive volumes of side information 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In recent years, explainable recommendation has been a topic of active study. This is because the branch of the machine learning field related to methodologies is enabling human understanding of the reasons for the outputs of recommender systems. The realization of explainable recommendation is widely expected to increase both user satisfaction and the demand for explainable recommendation systems. Explainable recommendation utilizes a wealth of side information (such as sellers, brands, user ages and genders, and bookmark information, among others) to expound the decision-making reasoning applied by recommendation models. In explainable recommendation, although learning side information containing numerous variables leads to rich interpretability, learning too many variables presents a challenge because decreases the amount of learning that a given computational resource can perform, and the accuracy of the recommendation model may be degraded. However, numerous and diverse variables are included in the side information stored by the actual companies operating massive real-world services. Hence, to realize practical applications of this valuable information, it is necessary to resolve problems such as computational cost. In this study, we propose a new framework for explainable recommendation based on an improved knowledge graph attention network model, which utilizes the side information of items and realizes high recommendation accuracy. The proposed framework enables direct interpretation by visualizing the reasons for the recommendations provided. Experimental results show that the proposed framework reduced computational time requirements by approximately 80%, while maintaining recommendation accuracy by enabling the model to learn the probabilistically given edges included in the graph structure. Moreover, the results show that the proposed framework exhibited richer interpretability than the conventional model. Finally, a multifaceted analysis suggests that the proposed framework is not only effective as an explainable recommendation model but also provides a powerful tool for planning various marketing strategies. Explainable artificial intelligence Explainable recommendation Model-intrinsic approach Knowledge graph attention network Knowledge graph embedding Knowledge graph enabled recommendation Matsutani, Megumi verfasserin aut Goto, Masayuki verfasserin aut Enthalten in Knowledge-based systems Amsterdam [u.a.] : Elsevier Science, 1987 239 Online-Ressource (DE-627)320580024 (DE-600)2017495-0 (DE-576)253018722 0950-7051 nnns volume:239 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.72 Künstliche Intelligenz AR 239 |
allfields_unstemmed |
10.1016/j.knosys.2021.107970 doi (DE-627)ELV007361963 (ELSEVIER)S0950-7051(21)01095-9 DE-627 ger DE-627 rda eng 004 DE-600 54.72 bkl Shimizu, Ryotaro verfasserin (orcid)0000-0002-4841-1824 aut An explainable recommendation framework based on an improved knowledge graph attention network with massive volumes of side information 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In recent years, explainable recommendation has been a topic of active study. This is because the branch of the machine learning field related to methodologies is enabling human understanding of the reasons for the outputs of recommender systems. The realization of explainable recommendation is widely expected to increase both user satisfaction and the demand for explainable recommendation systems. Explainable recommendation utilizes a wealth of side information (such as sellers, brands, user ages and genders, and bookmark information, among others) to expound the decision-making reasoning applied by recommendation models. In explainable recommendation, although learning side information containing numerous variables leads to rich interpretability, learning too many variables presents a challenge because decreases the amount of learning that a given computational resource can perform, and the accuracy of the recommendation model may be degraded. However, numerous and diverse variables are included in the side information stored by the actual companies operating massive real-world services. Hence, to realize practical applications of this valuable information, it is necessary to resolve problems such as computational cost. In this study, we propose a new framework for explainable recommendation based on an improved knowledge graph attention network model, which utilizes the side information of items and realizes high recommendation accuracy. The proposed framework enables direct interpretation by visualizing the reasons for the recommendations provided. Experimental results show that the proposed framework reduced computational time requirements by approximately 80%, while maintaining recommendation accuracy by enabling the model to learn the probabilistically given edges included in the graph structure. Moreover, the results show that the proposed framework exhibited richer interpretability than the conventional model. Finally, a multifaceted analysis suggests that the proposed framework is not only effective as an explainable recommendation model but also provides a powerful tool for planning various marketing strategies. Explainable artificial intelligence Explainable recommendation Model-intrinsic approach Knowledge graph attention network Knowledge graph embedding Knowledge graph enabled recommendation Matsutani, Megumi verfasserin aut Goto, Masayuki verfasserin aut Enthalten in Knowledge-based systems Amsterdam [u.a.] : Elsevier Science, 1987 239 Online-Ressource (DE-627)320580024 (DE-600)2017495-0 (DE-576)253018722 0950-7051 nnns volume:239 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.72 Künstliche Intelligenz AR 239 |
allfieldsGer |
10.1016/j.knosys.2021.107970 doi (DE-627)ELV007361963 (ELSEVIER)S0950-7051(21)01095-9 DE-627 ger DE-627 rda eng 004 DE-600 54.72 bkl Shimizu, Ryotaro verfasserin (orcid)0000-0002-4841-1824 aut An explainable recommendation framework based on an improved knowledge graph attention network with massive volumes of side information 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In recent years, explainable recommendation has been a topic of active study. This is because the branch of the machine learning field related to methodologies is enabling human understanding of the reasons for the outputs of recommender systems. The realization of explainable recommendation is widely expected to increase both user satisfaction and the demand for explainable recommendation systems. Explainable recommendation utilizes a wealth of side information (such as sellers, brands, user ages and genders, and bookmark information, among others) to expound the decision-making reasoning applied by recommendation models. In explainable recommendation, although learning side information containing numerous variables leads to rich interpretability, learning too many variables presents a challenge because decreases the amount of learning that a given computational resource can perform, and the accuracy of the recommendation model may be degraded. However, numerous and diverse variables are included in the side information stored by the actual companies operating massive real-world services. Hence, to realize practical applications of this valuable information, it is necessary to resolve problems such as computational cost. In this study, we propose a new framework for explainable recommendation based on an improved knowledge graph attention network model, which utilizes the side information of items and realizes high recommendation accuracy. The proposed framework enables direct interpretation by visualizing the reasons for the recommendations provided. Experimental results show that the proposed framework reduced computational time requirements by approximately 80%, while maintaining recommendation accuracy by enabling the model to learn the probabilistically given edges included in the graph structure. Moreover, the results show that the proposed framework exhibited richer interpretability than the conventional model. Finally, a multifaceted analysis suggests that the proposed framework is not only effective as an explainable recommendation model but also provides a powerful tool for planning various marketing strategies. Explainable artificial intelligence Explainable recommendation Model-intrinsic approach Knowledge graph attention network Knowledge graph embedding Knowledge graph enabled recommendation Matsutani, Megumi verfasserin aut Goto, Masayuki verfasserin aut Enthalten in Knowledge-based systems Amsterdam [u.a.] : Elsevier Science, 1987 239 Online-Ressource (DE-627)320580024 (DE-600)2017495-0 (DE-576)253018722 0950-7051 nnns volume:239 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.72 Künstliche Intelligenz AR 239 |
allfieldsSound |
10.1016/j.knosys.2021.107970 doi (DE-627)ELV007361963 (ELSEVIER)S0950-7051(21)01095-9 DE-627 ger DE-627 rda eng 004 DE-600 54.72 bkl Shimizu, Ryotaro verfasserin (orcid)0000-0002-4841-1824 aut An explainable recommendation framework based on an improved knowledge graph attention network with massive volumes of side information 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In recent years, explainable recommendation has been a topic of active study. This is because the branch of the machine learning field related to methodologies is enabling human understanding of the reasons for the outputs of recommender systems. The realization of explainable recommendation is widely expected to increase both user satisfaction and the demand for explainable recommendation systems. Explainable recommendation utilizes a wealth of side information (such as sellers, brands, user ages and genders, and bookmark information, among others) to expound the decision-making reasoning applied by recommendation models. In explainable recommendation, although learning side information containing numerous variables leads to rich interpretability, learning too many variables presents a challenge because decreases the amount of learning that a given computational resource can perform, and the accuracy of the recommendation model may be degraded. However, numerous and diverse variables are included in the side information stored by the actual companies operating massive real-world services. Hence, to realize practical applications of this valuable information, it is necessary to resolve problems such as computational cost. In this study, we propose a new framework for explainable recommendation based on an improved knowledge graph attention network model, which utilizes the side information of items and realizes high recommendation accuracy. The proposed framework enables direct interpretation by visualizing the reasons for the recommendations provided. Experimental results show that the proposed framework reduced computational time requirements by approximately 80%, while maintaining recommendation accuracy by enabling the model to learn the probabilistically given edges included in the graph structure. Moreover, the results show that the proposed framework exhibited richer interpretability than the conventional model. Finally, a multifaceted analysis suggests that the proposed framework is not only effective as an explainable recommendation model but also provides a powerful tool for planning various marketing strategies. Explainable artificial intelligence Explainable recommendation Model-intrinsic approach Knowledge graph attention network Knowledge graph embedding Knowledge graph enabled recommendation Matsutani, Megumi verfasserin aut Goto, Masayuki verfasserin aut Enthalten in Knowledge-based systems Amsterdam [u.a.] : Elsevier Science, 1987 239 Online-Ressource (DE-627)320580024 (DE-600)2017495-0 (DE-576)253018722 0950-7051 nnns volume:239 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.72 Künstliche Intelligenz AR 239 |
language |
English |
source |
Enthalten in Knowledge-based systems 239 volume:239 |
sourceStr |
Enthalten in Knowledge-based systems 239 volume:239 |
format_phy_str_mv |
Article |
bklname |
Künstliche Intelligenz |
institution |
findex.gbv.de |
topic_facet |
Explainable artificial intelligence Explainable recommendation Model-intrinsic approach Knowledge graph attention network Knowledge graph embedding Knowledge graph enabled recommendation |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Knowledge-based systems |
authorswithroles_txt_mv |
Shimizu, Ryotaro @@aut@@ Matsutani, Megumi @@aut@@ Goto, Masayuki @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
320580024 |
dewey-sort |
14 |
id |
ELV007361963 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV007361963</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524164151.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230507s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.knosys.2021.107970</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV007361963</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0950-7051(21)01095-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.72</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shimizu, Ryotaro</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-4841-1824</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An explainable recommendation framework based on an improved knowledge graph attention network with massive volumes of side information</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In recent years, explainable recommendation has been a topic of active study. This is because the branch of the machine learning field related to methodologies is enabling human understanding of the reasons for the outputs of recommender systems. The realization of explainable recommendation is widely expected to increase both user satisfaction and the demand for explainable recommendation systems. Explainable recommendation utilizes a wealth of side information (such as sellers, brands, user ages and genders, and bookmark information, among others) to expound the decision-making reasoning applied by recommendation models. In explainable recommendation, although learning side information containing numerous variables leads to rich interpretability, learning too many variables presents a challenge because decreases the amount of learning that a given computational resource can perform, and the accuracy of the recommendation model may be degraded. However, numerous and diverse variables are included in the side information stored by the actual companies operating massive real-world services. Hence, to realize practical applications of this valuable information, it is necessary to resolve problems such as computational cost. In this study, we propose a new framework for explainable recommendation based on an improved knowledge graph attention network model, which utilizes the side information of items and realizes high recommendation accuracy. The proposed framework enables direct interpretation by visualizing the reasons for the recommendations provided. Experimental results show that the proposed framework reduced computational time requirements by approximately 80%, while maintaining recommendation accuracy by enabling the model to learn the probabilistically given edges included in the graph structure. Moreover, the results show that the proposed framework exhibited richer interpretability than the conventional model. Finally, a multifaceted analysis suggests that the proposed framework is not only effective as an explainable recommendation model but also provides a powerful tool for planning various marketing strategies.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Explainable artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Explainable recommendation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Model-intrinsic approach</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Knowledge graph attention network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Knowledge graph embedding</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Knowledge graph enabled recommendation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Matsutani, Megumi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Goto, Masayuki</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Knowledge-based systems</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1987</subfield><subfield code="g">239</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320580024</subfield><subfield code="w">(DE-600)2017495-0</subfield><subfield code="w">(DE-576)253018722</subfield><subfield code="x">0950-7051</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:239</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.72</subfield><subfield code="j">Künstliche Intelligenz</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">239</subfield></datafield></record></collection>
|
author |
Shimizu, Ryotaro |
spellingShingle |
Shimizu, Ryotaro ddc 004 bkl 54.72 misc Explainable artificial intelligence misc Explainable recommendation misc Model-intrinsic approach misc Knowledge graph attention network misc Knowledge graph embedding misc Knowledge graph enabled recommendation An explainable recommendation framework based on an improved knowledge graph attention network with massive volumes of side information |
authorStr |
Shimizu, Ryotaro |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320580024 |
format |
electronic Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0950-7051 |
topic_title |
004 DE-600 54.72 bkl An explainable recommendation framework based on an improved knowledge graph attention network with massive volumes of side information Explainable artificial intelligence Explainable recommendation Model-intrinsic approach Knowledge graph attention network Knowledge graph embedding Knowledge graph enabled recommendation |
topic |
ddc 004 bkl 54.72 misc Explainable artificial intelligence misc Explainable recommendation misc Model-intrinsic approach misc Knowledge graph attention network misc Knowledge graph embedding misc Knowledge graph enabled recommendation |
topic_unstemmed |
ddc 004 bkl 54.72 misc Explainable artificial intelligence misc Explainable recommendation misc Model-intrinsic approach misc Knowledge graph attention network misc Knowledge graph embedding misc Knowledge graph enabled recommendation |
topic_browse |
ddc 004 bkl 54.72 misc Explainable artificial intelligence misc Explainable recommendation misc Model-intrinsic approach misc Knowledge graph attention network misc Knowledge graph embedding misc Knowledge graph enabled recommendation |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Knowledge-based systems |
hierarchy_parent_id |
320580024 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Knowledge-based systems |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320580024 (DE-600)2017495-0 (DE-576)253018722 |
title |
An explainable recommendation framework based on an improved knowledge graph attention network with massive volumes of side information |
ctrlnum |
(DE-627)ELV007361963 (ELSEVIER)S0950-7051(21)01095-9 |
title_full |
An explainable recommendation framework based on an improved knowledge graph attention network with massive volumes of side information |
author_sort |
Shimizu, Ryotaro |
journal |
Knowledge-based systems |
journalStr |
Knowledge-based systems |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
author_browse |
Shimizu, Ryotaro Matsutani, Megumi Goto, Masayuki |
container_volume |
239 |
class |
004 DE-600 54.72 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Shimizu, Ryotaro |
doi_str_mv |
10.1016/j.knosys.2021.107970 |
normlink |
(ORCID)0000-0002-4841-1824 |
normlink_prefix_str_mv |
(orcid)0000-0002-4841-1824 |
dewey-full |
004 |
author2-role |
verfasserin |
title_sort |
an explainable recommendation framework based on an improved knowledge graph attention network with massive volumes of side information |
title_auth |
An explainable recommendation framework based on an improved knowledge graph attention network with massive volumes of side information |
abstract |
In recent years, explainable recommendation has been a topic of active study. This is because the branch of the machine learning field related to methodologies is enabling human understanding of the reasons for the outputs of recommender systems. The realization of explainable recommendation is widely expected to increase both user satisfaction and the demand for explainable recommendation systems. Explainable recommendation utilizes a wealth of side information (such as sellers, brands, user ages and genders, and bookmark information, among others) to expound the decision-making reasoning applied by recommendation models. In explainable recommendation, although learning side information containing numerous variables leads to rich interpretability, learning too many variables presents a challenge because decreases the amount of learning that a given computational resource can perform, and the accuracy of the recommendation model may be degraded. However, numerous and diverse variables are included in the side information stored by the actual companies operating massive real-world services. Hence, to realize practical applications of this valuable information, it is necessary to resolve problems such as computational cost. In this study, we propose a new framework for explainable recommendation based on an improved knowledge graph attention network model, which utilizes the side information of items and realizes high recommendation accuracy. The proposed framework enables direct interpretation by visualizing the reasons for the recommendations provided. Experimental results show that the proposed framework reduced computational time requirements by approximately 80%, while maintaining recommendation accuracy by enabling the model to learn the probabilistically given edges included in the graph structure. Moreover, the results show that the proposed framework exhibited richer interpretability than the conventional model. Finally, a multifaceted analysis suggests that the proposed framework is not only effective as an explainable recommendation model but also provides a powerful tool for planning various marketing strategies. |
abstractGer |
In recent years, explainable recommendation has been a topic of active study. This is because the branch of the machine learning field related to methodologies is enabling human understanding of the reasons for the outputs of recommender systems. The realization of explainable recommendation is widely expected to increase both user satisfaction and the demand for explainable recommendation systems. Explainable recommendation utilizes a wealth of side information (such as sellers, brands, user ages and genders, and bookmark information, among others) to expound the decision-making reasoning applied by recommendation models. In explainable recommendation, although learning side information containing numerous variables leads to rich interpretability, learning too many variables presents a challenge because decreases the amount of learning that a given computational resource can perform, and the accuracy of the recommendation model may be degraded. However, numerous and diverse variables are included in the side information stored by the actual companies operating massive real-world services. Hence, to realize practical applications of this valuable information, it is necessary to resolve problems such as computational cost. In this study, we propose a new framework for explainable recommendation based on an improved knowledge graph attention network model, which utilizes the side information of items and realizes high recommendation accuracy. The proposed framework enables direct interpretation by visualizing the reasons for the recommendations provided. Experimental results show that the proposed framework reduced computational time requirements by approximately 80%, while maintaining recommendation accuracy by enabling the model to learn the probabilistically given edges included in the graph structure. Moreover, the results show that the proposed framework exhibited richer interpretability than the conventional model. Finally, a multifaceted analysis suggests that the proposed framework is not only effective as an explainable recommendation model but also provides a powerful tool for planning various marketing strategies. |
abstract_unstemmed |
In recent years, explainable recommendation has been a topic of active study. This is because the branch of the machine learning field related to methodologies is enabling human understanding of the reasons for the outputs of recommender systems. The realization of explainable recommendation is widely expected to increase both user satisfaction and the demand for explainable recommendation systems. Explainable recommendation utilizes a wealth of side information (such as sellers, brands, user ages and genders, and bookmark information, among others) to expound the decision-making reasoning applied by recommendation models. In explainable recommendation, although learning side information containing numerous variables leads to rich interpretability, learning too many variables presents a challenge because decreases the amount of learning that a given computational resource can perform, and the accuracy of the recommendation model may be degraded. However, numerous and diverse variables are included in the side information stored by the actual companies operating massive real-world services. Hence, to realize practical applications of this valuable information, it is necessary to resolve problems such as computational cost. In this study, we propose a new framework for explainable recommendation based on an improved knowledge graph attention network model, which utilizes the side information of items and realizes high recommendation accuracy. The proposed framework enables direct interpretation by visualizing the reasons for the recommendations provided. Experimental results show that the proposed framework reduced computational time requirements by approximately 80%, while maintaining recommendation accuracy by enabling the model to learn the probabilistically given edges included in the graph structure. Moreover, the results show that the proposed framework exhibited richer interpretability than the conventional model. Finally, a multifaceted analysis suggests that the proposed framework is not only effective as an explainable recommendation model but also provides a powerful tool for planning various marketing strategies. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
An explainable recommendation framework based on an improved knowledge graph attention network with massive volumes of side information |
remote_bool |
true |
author2 |
Matsutani, Megumi Goto, Masayuki |
author2Str |
Matsutani, Megumi Goto, Masayuki |
ppnlink |
320580024 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.knosys.2021.107970 |
up_date |
2024-07-07T00:29:28.960Z |
_version_ |
1803878052882546688 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV007361963</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524164151.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230507s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.knosys.2021.107970</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV007361963</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0950-7051(21)01095-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.72</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shimizu, Ryotaro</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-4841-1824</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An explainable recommendation framework based on an improved knowledge graph attention network with massive volumes of side information</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In recent years, explainable recommendation has been a topic of active study. This is because the branch of the machine learning field related to methodologies is enabling human understanding of the reasons for the outputs of recommender systems. The realization of explainable recommendation is widely expected to increase both user satisfaction and the demand for explainable recommendation systems. Explainable recommendation utilizes a wealth of side information (such as sellers, brands, user ages and genders, and bookmark information, among others) to expound the decision-making reasoning applied by recommendation models. In explainable recommendation, although learning side information containing numerous variables leads to rich interpretability, learning too many variables presents a challenge because decreases the amount of learning that a given computational resource can perform, and the accuracy of the recommendation model may be degraded. However, numerous and diverse variables are included in the side information stored by the actual companies operating massive real-world services. Hence, to realize practical applications of this valuable information, it is necessary to resolve problems such as computational cost. In this study, we propose a new framework for explainable recommendation based on an improved knowledge graph attention network model, which utilizes the side information of items and realizes high recommendation accuracy. The proposed framework enables direct interpretation by visualizing the reasons for the recommendations provided. Experimental results show that the proposed framework reduced computational time requirements by approximately 80%, while maintaining recommendation accuracy by enabling the model to learn the probabilistically given edges included in the graph structure. Moreover, the results show that the proposed framework exhibited richer interpretability than the conventional model. Finally, a multifaceted analysis suggests that the proposed framework is not only effective as an explainable recommendation model but also provides a powerful tool for planning various marketing strategies.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Explainable artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Explainable recommendation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Model-intrinsic approach</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Knowledge graph attention network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Knowledge graph embedding</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Knowledge graph enabled recommendation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Matsutani, Megumi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Goto, Masayuki</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Knowledge-based systems</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1987</subfield><subfield code="g">239</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320580024</subfield><subfield code="w">(DE-600)2017495-0</subfield><subfield code="w">(DE-576)253018722</subfield><subfield code="x">0950-7051</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:239</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.72</subfield><subfield code="j">Künstliche Intelligenz</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">239</subfield></datafield></record></collection>
|
score |
7.4005423 |