Diverse effects of metal–organic frameworks on microstructure and compressive strength of cement-based composites
The modern construction industry is continuously demanding the reinforcement of the mechanical properties of cement-based materials. To realize the targets, intensive investigations have been conducted through the fabrication of micro-/nano-particles–cement composites during the past decades. The pr...
Ausführliche Beschreibung
Autor*in: |
Yuan, Ning [verfasserIn] Zhao, Aijing [verfasserIn] Fang, Kuizhen [verfasserIn] Wang, Dongmin [verfasserIn] Zhang, Xinling [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Cement and concrete composites - Amsterdam [u.a.] : Elsevier Science, 1989, 127 |
---|---|
Übergeordnetes Werk: |
volume:127 |
DOI / URN: |
10.1016/j.cemconcomp.2022.104406 |
---|
Katalog-ID: |
ELV007362617 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV007362617 | ||
003 | DE-627 | ||
005 | 20230524144924.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230507s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.cemconcomp.2022.104406 |2 doi | |
035 | |a (DE-627)ELV007362617 | ||
035 | |a (ELSEVIER)S0958-9465(22)00002-6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 690 |q DE-600 |
084 | |a 56.45 |2 bkl | ||
084 | |a 58.45 |2 bkl | ||
100 | 1 | |a Yuan, Ning |e verfasserin |0 (orcid)0000-0002-5470-3209 |4 aut | |
245 | 1 | 0 | |a Diverse effects of metal–organic frameworks on microstructure and compressive strength of cement-based composites |
264 | 1 | |c 2022 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The modern construction industry is continuously demanding the reinforcement of the mechanical properties of cement-based materials. To realize the targets, intensive investigations have been conducted through the fabrication of micro-/nano-particles–cement composites during the past decades. The present work aims to exploit the metal–organic frameworks (MOFs)-doped cement-based materials that have been rarely reported, including MOF-5, HKUST-1, ZIF-8, UiO-66, and MIL-68(Al). Their decomposition behaviors in the simulated cement pore solutions are observed, and results demonstrate that ZIF-8, UiO-66, and MIL-68(Al) maintain structural integrity, while MOF-5 and HUKST-1 are destroyed. With the doping concentration of 0.1 wt%, MOF-5 and ZIF-8 result in significant improvement in the compressive strength of hardened pastes. The 28-day compressive strength of hardened pastes C-MOF-5 increases by 28.75%, and C-ZIF-8 by 24.65%, which benefits from the promoting effect for cement hydration, the optimization for the product structures, and the filling effect. HKUST-1 and UiO-66 improve the 3-day and 7-day compressive strength of cement-based composites, but the enhancement of the 28-day strength is not dramatic. By contrast, the compressive strength of 28-day MIL-68(Al)-doped cement-based materials (C-MIL-68(Al)) decreases because of the augmented porosity, the excessive Ca(OH)2 crystals in the pores, and the generated calcium carbonate. These findings lay a foundation for the utilization of MOFs in cement-based composites. | ||
650 | 4 | |a Cement | |
650 | 4 | |a Metal–organic frameworks | |
650 | 4 | |a Compressive strength | |
650 | 4 | |a Microstructure | |
700 | 1 | |a Zhao, Aijing |e verfasserin |4 aut | |
700 | 1 | |a Fang, Kuizhen |e verfasserin |4 aut | |
700 | 1 | |a Wang, Dongmin |e verfasserin |4 aut | |
700 | 1 | |a Zhang, Xinling |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Cement and concrete composites |d Amsterdam [u.a.] : Elsevier Science, 1989 |g 127 |h Online-Ressource |w (DE-627)308447875 |w (DE-600)1502279-1 |w (DE-576)094503990 |x 0958-9465 |7 nnns |
773 | 1 | 8 | |g volume:127 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 56.45 |j Baustoffkunde |
936 | b | k | |a 58.45 |j Gesteinshüttenkunde |
951 | |a AR | ||
952 | |d 127 |
author_variant |
n y ny a z az k f kf d w dw x z xz |
---|---|
matchkey_str |
article:09589465:2022----::iesefcsfeaogncrmwrsnirsrcuencmrsiete |
hierarchy_sort_str |
2022 |
bklnumber |
56.45 58.45 |
publishDate |
2022 |
allfields |
10.1016/j.cemconcomp.2022.104406 doi (DE-627)ELV007362617 (ELSEVIER)S0958-9465(22)00002-6 DE-627 ger DE-627 rda eng 690 DE-600 56.45 bkl 58.45 bkl Yuan, Ning verfasserin (orcid)0000-0002-5470-3209 aut Diverse effects of metal–organic frameworks on microstructure and compressive strength of cement-based composites 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The modern construction industry is continuously demanding the reinforcement of the mechanical properties of cement-based materials. To realize the targets, intensive investigations have been conducted through the fabrication of micro-/nano-particles–cement composites during the past decades. The present work aims to exploit the metal–organic frameworks (MOFs)-doped cement-based materials that have been rarely reported, including MOF-5, HKUST-1, ZIF-8, UiO-66, and MIL-68(Al). Their decomposition behaviors in the simulated cement pore solutions are observed, and results demonstrate that ZIF-8, UiO-66, and MIL-68(Al) maintain structural integrity, while MOF-5 and HUKST-1 are destroyed. With the doping concentration of 0.1 wt%, MOF-5 and ZIF-8 result in significant improvement in the compressive strength of hardened pastes. The 28-day compressive strength of hardened pastes C-MOF-5 increases by 28.75%, and C-ZIF-8 by 24.65%, which benefits from the promoting effect for cement hydration, the optimization for the product structures, and the filling effect. HKUST-1 and UiO-66 improve the 3-day and 7-day compressive strength of cement-based composites, but the enhancement of the 28-day strength is not dramatic. By contrast, the compressive strength of 28-day MIL-68(Al)-doped cement-based materials (C-MIL-68(Al)) decreases because of the augmented porosity, the excessive Ca(OH)2 crystals in the pores, and the generated calcium carbonate. These findings lay a foundation for the utilization of MOFs in cement-based composites. Cement Metal–organic frameworks Compressive strength Microstructure Zhao, Aijing verfasserin aut Fang, Kuizhen verfasserin aut Wang, Dongmin verfasserin aut Zhang, Xinling verfasserin aut Enthalten in Cement and concrete composites Amsterdam [u.a.] : Elsevier Science, 1989 127 Online-Ressource (DE-627)308447875 (DE-600)1502279-1 (DE-576)094503990 0958-9465 nnns volume:127 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 56.45 Baustoffkunde 58.45 Gesteinshüttenkunde AR 127 |
spelling |
10.1016/j.cemconcomp.2022.104406 doi (DE-627)ELV007362617 (ELSEVIER)S0958-9465(22)00002-6 DE-627 ger DE-627 rda eng 690 DE-600 56.45 bkl 58.45 bkl Yuan, Ning verfasserin (orcid)0000-0002-5470-3209 aut Diverse effects of metal–organic frameworks on microstructure and compressive strength of cement-based composites 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The modern construction industry is continuously demanding the reinforcement of the mechanical properties of cement-based materials. To realize the targets, intensive investigations have been conducted through the fabrication of micro-/nano-particles–cement composites during the past decades. The present work aims to exploit the metal–organic frameworks (MOFs)-doped cement-based materials that have been rarely reported, including MOF-5, HKUST-1, ZIF-8, UiO-66, and MIL-68(Al). Their decomposition behaviors in the simulated cement pore solutions are observed, and results demonstrate that ZIF-8, UiO-66, and MIL-68(Al) maintain structural integrity, while MOF-5 and HUKST-1 are destroyed. With the doping concentration of 0.1 wt%, MOF-5 and ZIF-8 result in significant improvement in the compressive strength of hardened pastes. The 28-day compressive strength of hardened pastes C-MOF-5 increases by 28.75%, and C-ZIF-8 by 24.65%, which benefits from the promoting effect for cement hydration, the optimization for the product structures, and the filling effect. HKUST-1 and UiO-66 improve the 3-day and 7-day compressive strength of cement-based composites, but the enhancement of the 28-day strength is not dramatic. By contrast, the compressive strength of 28-day MIL-68(Al)-doped cement-based materials (C-MIL-68(Al)) decreases because of the augmented porosity, the excessive Ca(OH)2 crystals in the pores, and the generated calcium carbonate. These findings lay a foundation for the utilization of MOFs in cement-based composites. Cement Metal–organic frameworks Compressive strength Microstructure Zhao, Aijing verfasserin aut Fang, Kuizhen verfasserin aut Wang, Dongmin verfasserin aut Zhang, Xinling verfasserin aut Enthalten in Cement and concrete composites Amsterdam [u.a.] : Elsevier Science, 1989 127 Online-Ressource (DE-627)308447875 (DE-600)1502279-1 (DE-576)094503990 0958-9465 nnns volume:127 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 56.45 Baustoffkunde 58.45 Gesteinshüttenkunde AR 127 |
allfields_unstemmed |
10.1016/j.cemconcomp.2022.104406 doi (DE-627)ELV007362617 (ELSEVIER)S0958-9465(22)00002-6 DE-627 ger DE-627 rda eng 690 DE-600 56.45 bkl 58.45 bkl Yuan, Ning verfasserin (orcid)0000-0002-5470-3209 aut Diverse effects of metal–organic frameworks on microstructure and compressive strength of cement-based composites 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The modern construction industry is continuously demanding the reinforcement of the mechanical properties of cement-based materials. To realize the targets, intensive investigations have been conducted through the fabrication of micro-/nano-particles–cement composites during the past decades. The present work aims to exploit the metal–organic frameworks (MOFs)-doped cement-based materials that have been rarely reported, including MOF-5, HKUST-1, ZIF-8, UiO-66, and MIL-68(Al). Their decomposition behaviors in the simulated cement pore solutions are observed, and results demonstrate that ZIF-8, UiO-66, and MIL-68(Al) maintain structural integrity, while MOF-5 and HUKST-1 are destroyed. With the doping concentration of 0.1 wt%, MOF-5 and ZIF-8 result in significant improvement in the compressive strength of hardened pastes. The 28-day compressive strength of hardened pastes C-MOF-5 increases by 28.75%, and C-ZIF-8 by 24.65%, which benefits from the promoting effect for cement hydration, the optimization for the product structures, and the filling effect. HKUST-1 and UiO-66 improve the 3-day and 7-day compressive strength of cement-based composites, but the enhancement of the 28-day strength is not dramatic. By contrast, the compressive strength of 28-day MIL-68(Al)-doped cement-based materials (C-MIL-68(Al)) decreases because of the augmented porosity, the excessive Ca(OH)2 crystals in the pores, and the generated calcium carbonate. These findings lay a foundation for the utilization of MOFs in cement-based composites. Cement Metal–organic frameworks Compressive strength Microstructure Zhao, Aijing verfasserin aut Fang, Kuizhen verfasserin aut Wang, Dongmin verfasserin aut Zhang, Xinling verfasserin aut Enthalten in Cement and concrete composites Amsterdam [u.a.] : Elsevier Science, 1989 127 Online-Ressource (DE-627)308447875 (DE-600)1502279-1 (DE-576)094503990 0958-9465 nnns volume:127 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 56.45 Baustoffkunde 58.45 Gesteinshüttenkunde AR 127 |
allfieldsGer |
10.1016/j.cemconcomp.2022.104406 doi (DE-627)ELV007362617 (ELSEVIER)S0958-9465(22)00002-6 DE-627 ger DE-627 rda eng 690 DE-600 56.45 bkl 58.45 bkl Yuan, Ning verfasserin (orcid)0000-0002-5470-3209 aut Diverse effects of metal–organic frameworks on microstructure and compressive strength of cement-based composites 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The modern construction industry is continuously demanding the reinforcement of the mechanical properties of cement-based materials. To realize the targets, intensive investigations have been conducted through the fabrication of micro-/nano-particles–cement composites during the past decades. The present work aims to exploit the metal–organic frameworks (MOFs)-doped cement-based materials that have been rarely reported, including MOF-5, HKUST-1, ZIF-8, UiO-66, and MIL-68(Al). Their decomposition behaviors in the simulated cement pore solutions are observed, and results demonstrate that ZIF-8, UiO-66, and MIL-68(Al) maintain structural integrity, while MOF-5 and HUKST-1 are destroyed. With the doping concentration of 0.1 wt%, MOF-5 and ZIF-8 result in significant improvement in the compressive strength of hardened pastes. The 28-day compressive strength of hardened pastes C-MOF-5 increases by 28.75%, and C-ZIF-8 by 24.65%, which benefits from the promoting effect for cement hydration, the optimization for the product structures, and the filling effect. HKUST-1 and UiO-66 improve the 3-day and 7-day compressive strength of cement-based composites, but the enhancement of the 28-day strength is not dramatic. By contrast, the compressive strength of 28-day MIL-68(Al)-doped cement-based materials (C-MIL-68(Al)) decreases because of the augmented porosity, the excessive Ca(OH)2 crystals in the pores, and the generated calcium carbonate. These findings lay a foundation for the utilization of MOFs in cement-based composites. Cement Metal–organic frameworks Compressive strength Microstructure Zhao, Aijing verfasserin aut Fang, Kuizhen verfasserin aut Wang, Dongmin verfasserin aut Zhang, Xinling verfasserin aut Enthalten in Cement and concrete composites Amsterdam [u.a.] : Elsevier Science, 1989 127 Online-Ressource (DE-627)308447875 (DE-600)1502279-1 (DE-576)094503990 0958-9465 nnns volume:127 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 56.45 Baustoffkunde 58.45 Gesteinshüttenkunde AR 127 |
allfieldsSound |
10.1016/j.cemconcomp.2022.104406 doi (DE-627)ELV007362617 (ELSEVIER)S0958-9465(22)00002-6 DE-627 ger DE-627 rda eng 690 DE-600 56.45 bkl 58.45 bkl Yuan, Ning verfasserin (orcid)0000-0002-5470-3209 aut Diverse effects of metal–organic frameworks on microstructure and compressive strength of cement-based composites 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The modern construction industry is continuously demanding the reinforcement of the mechanical properties of cement-based materials. To realize the targets, intensive investigations have been conducted through the fabrication of micro-/nano-particles–cement composites during the past decades. The present work aims to exploit the metal–organic frameworks (MOFs)-doped cement-based materials that have been rarely reported, including MOF-5, HKUST-1, ZIF-8, UiO-66, and MIL-68(Al). Their decomposition behaviors in the simulated cement pore solutions are observed, and results demonstrate that ZIF-8, UiO-66, and MIL-68(Al) maintain structural integrity, while MOF-5 and HUKST-1 are destroyed. With the doping concentration of 0.1 wt%, MOF-5 and ZIF-8 result in significant improvement in the compressive strength of hardened pastes. The 28-day compressive strength of hardened pastes C-MOF-5 increases by 28.75%, and C-ZIF-8 by 24.65%, which benefits from the promoting effect for cement hydration, the optimization for the product structures, and the filling effect. HKUST-1 and UiO-66 improve the 3-day and 7-day compressive strength of cement-based composites, but the enhancement of the 28-day strength is not dramatic. By contrast, the compressive strength of 28-day MIL-68(Al)-doped cement-based materials (C-MIL-68(Al)) decreases because of the augmented porosity, the excessive Ca(OH)2 crystals in the pores, and the generated calcium carbonate. These findings lay a foundation for the utilization of MOFs in cement-based composites. Cement Metal–organic frameworks Compressive strength Microstructure Zhao, Aijing verfasserin aut Fang, Kuizhen verfasserin aut Wang, Dongmin verfasserin aut Zhang, Xinling verfasserin aut Enthalten in Cement and concrete composites Amsterdam [u.a.] : Elsevier Science, 1989 127 Online-Ressource (DE-627)308447875 (DE-600)1502279-1 (DE-576)094503990 0958-9465 nnns volume:127 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 56.45 Baustoffkunde 58.45 Gesteinshüttenkunde AR 127 |
language |
English |
source |
Enthalten in Cement and concrete composites 127 volume:127 |
sourceStr |
Enthalten in Cement and concrete composites 127 volume:127 |
format_phy_str_mv |
Article |
bklname |
Baustoffkunde Gesteinshüttenkunde |
institution |
findex.gbv.de |
topic_facet |
Cement Metal–organic frameworks Compressive strength Microstructure |
dewey-raw |
690 |
isfreeaccess_bool |
false |
container_title |
Cement and concrete composites |
authorswithroles_txt_mv |
Yuan, Ning @@aut@@ Zhao, Aijing @@aut@@ Fang, Kuizhen @@aut@@ Wang, Dongmin @@aut@@ Zhang, Xinling @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
308447875 |
dewey-sort |
3690 |
id |
ELV007362617 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV007362617</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524144924.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230507s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.cemconcomp.2022.104406</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV007362617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0958-9465(22)00002-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">56.45</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.45</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yuan, Ning</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-5470-3209</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Diverse effects of metal–organic frameworks on microstructure and compressive strength of cement-based composites</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The modern construction industry is continuously demanding the reinforcement of the mechanical properties of cement-based materials. To realize the targets, intensive investigations have been conducted through the fabrication of micro-/nano-particles–cement composites during the past decades. The present work aims to exploit the metal–organic frameworks (MOFs)-doped cement-based materials that have been rarely reported, including MOF-5, HKUST-1, ZIF-8, UiO-66, and MIL-68(Al). Their decomposition behaviors in the simulated cement pore solutions are observed, and results demonstrate that ZIF-8, UiO-66, and MIL-68(Al) maintain structural integrity, while MOF-5 and HUKST-1 are destroyed. With the doping concentration of 0.1 wt%, MOF-5 and ZIF-8 result in significant improvement in the compressive strength of hardened pastes. The 28-day compressive strength of hardened pastes C-MOF-5 increases by 28.75%, and C-ZIF-8 by 24.65%, which benefits from the promoting effect for cement hydration, the optimization for the product structures, and the filling effect. HKUST-1 and UiO-66 improve the 3-day and 7-day compressive strength of cement-based composites, but the enhancement of the 28-day strength is not dramatic. By contrast, the compressive strength of 28-day MIL-68(Al)-doped cement-based materials (C-MIL-68(Al)) decreases because of the augmented porosity, the excessive Ca(OH)2 crystals in the pores, and the generated calcium carbonate. These findings lay a foundation for the utilization of MOFs in cement-based composites.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metal–organic frameworks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Compressive strength</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microstructure</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Aijing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fang, Kuizhen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Dongmin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Xinling</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Cement and concrete composites</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1989</subfield><subfield code="g">127</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)308447875</subfield><subfield code="w">(DE-600)1502279-1</subfield><subfield code="w">(DE-576)094503990</subfield><subfield code="x">0958-9465</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:127</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">56.45</subfield><subfield code="j">Baustoffkunde</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.45</subfield><subfield code="j">Gesteinshüttenkunde</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">127</subfield></datafield></record></collection>
|
author |
Yuan, Ning |
spellingShingle |
Yuan, Ning ddc 690 bkl 56.45 bkl 58.45 misc Cement misc Metal–organic frameworks misc Compressive strength misc Microstructure Diverse effects of metal–organic frameworks on microstructure and compressive strength of cement-based composites |
authorStr |
Yuan, Ning |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)308447875 |
format |
electronic Article |
dewey-ones |
690 - Buildings |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0958-9465 |
topic_title |
690 DE-600 56.45 bkl 58.45 bkl Diverse effects of metal–organic frameworks on microstructure and compressive strength of cement-based composites Cement Metal–organic frameworks Compressive strength Microstructure |
topic |
ddc 690 bkl 56.45 bkl 58.45 misc Cement misc Metal–organic frameworks misc Compressive strength misc Microstructure |
topic_unstemmed |
ddc 690 bkl 56.45 bkl 58.45 misc Cement misc Metal–organic frameworks misc Compressive strength misc Microstructure |
topic_browse |
ddc 690 bkl 56.45 bkl 58.45 misc Cement misc Metal–organic frameworks misc Compressive strength misc Microstructure |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Cement and concrete composites |
hierarchy_parent_id |
308447875 |
dewey-tens |
690 - Building & construction |
hierarchy_top_title |
Cement and concrete composites |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)308447875 (DE-600)1502279-1 (DE-576)094503990 |
title |
Diverse effects of metal–organic frameworks on microstructure and compressive strength of cement-based composites |
ctrlnum |
(DE-627)ELV007362617 (ELSEVIER)S0958-9465(22)00002-6 |
title_full |
Diverse effects of metal–organic frameworks on microstructure and compressive strength of cement-based composites |
author_sort |
Yuan, Ning |
journal |
Cement and concrete composites |
journalStr |
Cement and concrete composites |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
author_browse |
Yuan, Ning Zhao, Aijing Fang, Kuizhen Wang, Dongmin Zhang, Xinling |
container_volume |
127 |
class |
690 DE-600 56.45 bkl 58.45 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Yuan, Ning |
doi_str_mv |
10.1016/j.cemconcomp.2022.104406 |
normlink |
(ORCID)0000-0002-5470-3209 |
normlink_prefix_str_mv |
(orcid)0000-0002-5470-3209 |
dewey-full |
690 |
author2-role |
verfasserin |
title_sort |
diverse effects of metal–organic frameworks on microstructure and compressive strength of cement-based composites |
title_auth |
Diverse effects of metal–organic frameworks on microstructure and compressive strength of cement-based composites |
abstract |
The modern construction industry is continuously demanding the reinforcement of the mechanical properties of cement-based materials. To realize the targets, intensive investigations have been conducted through the fabrication of micro-/nano-particles–cement composites during the past decades. The present work aims to exploit the metal–organic frameworks (MOFs)-doped cement-based materials that have been rarely reported, including MOF-5, HKUST-1, ZIF-8, UiO-66, and MIL-68(Al). Their decomposition behaviors in the simulated cement pore solutions are observed, and results demonstrate that ZIF-8, UiO-66, and MIL-68(Al) maintain structural integrity, while MOF-5 and HUKST-1 are destroyed. With the doping concentration of 0.1 wt%, MOF-5 and ZIF-8 result in significant improvement in the compressive strength of hardened pastes. The 28-day compressive strength of hardened pastes C-MOF-5 increases by 28.75%, and C-ZIF-8 by 24.65%, which benefits from the promoting effect for cement hydration, the optimization for the product structures, and the filling effect. HKUST-1 and UiO-66 improve the 3-day and 7-day compressive strength of cement-based composites, but the enhancement of the 28-day strength is not dramatic. By contrast, the compressive strength of 28-day MIL-68(Al)-doped cement-based materials (C-MIL-68(Al)) decreases because of the augmented porosity, the excessive Ca(OH)2 crystals in the pores, and the generated calcium carbonate. These findings lay a foundation for the utilization of MOFs in cement-based composites. |
abstractGer |
The modern construction industry is continuously demanding the reinforcement of the mechanical properties of cement-based materials. To realize the targets, intensive investigations have been conducted through the fabrication of micro-/nano-particles–cement composites during the past decades. The present work aims to exploit the metal–organic frameworks (MOFs)-doped cement-based materials that have been rarely reported, including MOF-5, HKUST-1, ZIF-8, UiO-66, and MIL-68(Al). Their decomposition behaviors in the simulated cement pore solutions are observed, and results demonstrate that ZIF-8, UiO-66, and MIL-68(Al) maintain structural integrity, while MOF-5 and HUKST-1 are destroyed. With the doping concentration of 0.1 wt%, MOF-5 and ZIF-8 result in significant improvement in the compressive strength of hardened pastes. The 28-day compressive strength of hardened pastes C-MOF-5 increases by 28.75%, and C-ZIF-8 by 24.65%, which benefits from the promoting effect for cement hydration, the optimization for the product structures, and the filling effect. HKUST-1 and UiO-66 improve the 3-day and 7-day compressive strength of cement-based composites, but the enhancement of the 28-day strength is not dramatic. By contrast, the compressive strength of 28-day MIL-68(Al)-doped cement-based materials (C-MIL-68(Al)) decreases because of the augmented porosity, the excessive Ca(OH)2 crystals in the pores, and the generated calcium carbonate. These findings lay a foundation for the utilization of MOFs in cement-based composites. |
abstract_unstemmed |
The modern construction industry is continuously demanding the reinforcement of the mechanical properties of cement-based materials. To realize the targets, intensive investigations have been conducted through the fabrication of micro-/nano-particles–cement composites during the past decades. The present work aims to exploit the metal–organic frameworks (MOFs)-doped cement-based materials that have been rarely reported, including MOF-5, HKUST-1, ZIF-8, UiO-66, and MIL-68(Al). Their decomposition behaviors in the simulated cement pore solutions are observed, and results demonstrate that ZIF-8, UiO-66, and MIL-68(Al) maintain structural integrity, while MOF-5 and HUKST-1 are destroyed. With the doping concentration of 0.1 wt%, MOF-5 and ZIF-8 result in significant improvement in the compressive strength of hardened pastes. The 28-day compressive strength of hardened pastes C-MOF-5 increases by 28.75%, and C-ZIF-8 by 24.65%, which benefits from the promoting effect for cement hydration, the optimization for the product structures, and the filling effect. HKUST-1 and UiO-66 improve the 3-day and 7-day compressive strength of cement-based composites, but the enhancement of the 28-day strength is not dramatic. By contrast, the compressive strength of 28-day MIL-68(Al)-doped cement-based materials (C-MIL-68(Al)) decreases because of the augmented porosity, the excessive Ca(OH)2 crystals in the pores, and the generated calcium carbonate. These findings lay a foundation for the utilization of MOFs in cement-based composites. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Diverse effects of metal–organic frameworks on microstructure and compressive strength of cement-based composites |
remote_bool |
true |
author2 |
Zhao, Aijing Fang, Kuizhen Wang, Dongmin Zhang, Xinling |
author2Str |
Zhao, Aijing Fang, Kuizhen Wang, Dongmin Zhang, Xinling |
ppnlink |
308447875 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.cemconcomp.2022.104406 |
up_date |
2024-07-07T00:29:36.919Z |
_version_ |
1803878061227114496 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV007362617</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524144924.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230507s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.cemconcomp.2022.104406</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV007362617</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0958-9465(22)00002-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">56.45</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.45</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yuan, Ning</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-5470-3209</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Diverse effects of metal–organic frameworks on microstructure and compressive strength of cement-based composites</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The modern construction industry is continuously demanding the reinforcement of the mechanical properties of cement-based materials. To realize the targets, intensive investigations have been conducted through the fabrication of micro-/nano-particles–cement composites during the past decades. The present work aims to exploit the metal–organic frameworks (MOFs)-doped cement-based materials that have been rarely reported, including MOF-5, HKUST-1, ZIF-8, UiO-66, and MIL-68(Al). Their decomposition behaviors in the simulated cement pore solutions are observed, and results demonstrate that ZIF-8, UiO-66, and MIL-68(Al) maintain structural integrity, while MOF-5 and HUKST-1 are destroyed. With the doping concentration of 0.1 wt%, MOF-5 and ZIF-8 result in significant improvement in the compressive strength of hardened pastes. The 28-day compressive strength of hardened pastes C-MOF-5 increases by 28.75%, and C-ZIF-8 by 24.65%, which benefits from the promoting effect for cement hydration, the optimization for the product structures, and the filling effect. HKUST-1 and UiO-66 improve the 3-day and 7-day compressive strength of cement-based composites, but the enhancement of the 28-day strength is not dramatic. By contrast, the compressive strength of 28-day MIL-68(Al)-doped cement-based materials (C-MIL-68(Al)) decreases because of the augmented porosity, the excessive Ca(OH)2 crystals in the pores, and the generated calcium carbonate. These findings lay a foundation for the utilization of MOFs in cement-based composites.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metal–organic frameworks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Compressive strength</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microstructure</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Aijing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fang, Kuizhen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Dongmin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Xinling</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Cement and concrete composites</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1989</subfield><subfield code="g">127</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)308447875</subfield><subfield code="w">(DE-600)1502279-1</subfield><subfield code="w">(DE-576)094503990</subfield><subfield code="x">0958-9465</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:127</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">56.45</subfield><subfield code="j">Baustoffkunde</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.45</subfield><subfield code="j">Gesteinshüttenkunde</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">127</subfield></datafield></record></collection>
|
score |
7.401886 |