Switching charge transfer of g-C
Constructing type II heterojunction is an efficient strategy to enhance the light absorption and promote the charge transport. However, the improvement effect is limited by the decreased redox ability of charge carriers. The rational design of heterojunction from type II to Z-scheme is expected to o...
Ausführliche Beschreibung
Autor*in: |
Zhou, Ganghua [verfasserIn] Meng, Lirong [verfasserIn] Ning, Xin [verfasserIn] Yin, Weiqin [verfasserIn] Hou, Jianhua [verfasserIn] Xu, Qiao [verfasserIn] Yi, Jianjian [verfasserIn] Wang, Shengsen [verfasserIn] Wang, Xiaozhi [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: International journal of hydrogen energy - New York, NY [u.a.] : Elsevier, 1976, 47 |
---|---|
Übergeordnetes Werk: |
volume:47 |
DOI / URN: |
10.1016/j.ijhydene.2021.12.226 |
---|
Katalog-ID: |
ELV007396279 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV007396279 | ||
003 | DE-627 | ||
005 | 20230524141125.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230507s2021 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ijhydene.2021.12.226 |2 doi | |
035 | |a (DE-627)ELV007396279 | ||
035 | |a (ELSEVIER)S0360-3199(21)05028-X | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 660 |a 620 |q DE-600 |
084 | |a 52.56 |2 bkl | ||
100 | 1 | |a Zhou, Ganghua |e verfasserin |4 aut | |
245 | 1 | 0 | |a Switching charge transfer of g-C |
264 | 1 | |c 2021 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Constructing type II heterojunction is an efficient strategy to enhance the light absorption and promote the charge transport. However, the improvement effect is limited by the decreased redox ability of charge carriers. The rational design of heterojunction from type II to Z-scheme is expected to overcome this obstacle. Herein, we demonstrate that the introduction of interfacial oxygen vacancies (OVs) can switch charge transfer of g-C3N4/BVO heterojunction from type II to Z-scheme. The interfacial OVs acted as the reactive center of charge carriers to quench the electrons of BVO and holes of g-C3N4, thereby promoting charge separation and migration. As a result, the interfacial OVs mediated Z-scheme g-C3N4/BVO heterojunction kept the strong oxidation/reduction potential of two single-component photocatalysts thereby significantly enhancing the photodegradation of tetracycline and CO2 photoreduction. The kinetic constant of tetracycline degradation on the optimal g-C3N4/BVO-20 sample was 2.04-fold and 2.29-fold higher than those on g-C3N4 nanosheets and pure BVO, respectively. This work provides a feasible strategy by the interfacial vacancy engineering of heterojunction for enhanced photocatalysis. | ||
650 | 4 | |a g-C | |
650 | 4 | |a Z-scheme heterojunction | |
650 | 4 | |a Oxygen vacancy | |
650 | 4 | |a Interface design | |
650 | 4 | |a Photocatalysis | |
700 | 1 | |a Meng, Lirong |e verfasserin |4 aut | |
700 | 1 | |a Ning, Xin |e verfasserin |4 aut | |
700 | 1 | |a Yin, Weiqin |e verfasserin |4 aut | |
700 | 1 | |a Hou, Jianhua |e verfasserin |4 aut | |
700 | 1 | |a Xu, Qiao |e verfasserin |4 aut | |
700 | 1 | |a Yi, Jianjian |e verfasserin |4 aut | |
700 | 1 | |a Wang, Shengsen |e verfasserin |4 aut | |
700 | 1 | |a Wang, Xiaozhi |e verfasserin |0 (orcid)0000-0002-9829-9332 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t International journal of hydrogen energy |d New York, NY [u.a.] : Elsevier, 1976 |g 47 |h Online-Ressource |w (DE-627)301511357 |w (DE-600)1484487-4 |w (DE-576)096806397 |x 1879-3487 |7 nnns |
773 | 1 | 8 | |g volume:47 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 52.56 |j Regenerative Energieformen |j alternative Energieformen |
951 | |a AR | ||
952 | |d 47 |
author_variant |
g z gz l m lm x n xn w y wy j h jh q x qx j y jy s w sw x w xw |
---|---|
matchkey_str |
article:18793487:2021----::wthncagta |
hierarchy_sort_str |
2021 |
bklnumber |
52.56 |
publishDate |
2021 |
allfields |
10.1016/j.ijhydene.2021.12.226 doi (DE-627)ELV007396279 (ELSEVIER)S0360-3199(21)05028-X DE-627 ger DE-627 rda eng 660 620 DE-600 52.56 bkl Zhou, Ganghua verfasserin aut Switching charge transfer of g-C 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Constructing type II heterojunction is an efficient strategy to enhance the light absorption and promote the charge transport. However, the improvement effect is limited by the decreased redox ability of charge carriers. The rational design of heterojunction from type II to Z-scheme is expected to overcome this obstacle. Herein, we demonstrate that the introduction of interfacial oxygen vacancies (OVs) can switch charge transfer of g-C3N4/BVO heterojunction from type II to Z-scheme. The interfacial OVs acted as the reactive center of charge carriers to quench the electrons of BVO and holes of g-C3N4, thereby promoting charge separation and migration. As a result, the interfacial OVs mediated Z-scheme g-C3N4/BVO heterojunction kept the strong oxidation/reduction potential of two single-component photocatalysts thereby significantly enhancing the photodegradation of tetracycline and CO2 photoreduction. The kinetic constant of tetracycline degradation on the optimal g-C3N4/BVO-20 sample was 2.04-fold and 2.29-fold higher than those on g-C3N4 nanosheets and pure BVO, respectively. This work provides a feasible strategy by the interfacial vacancy engineering of heterojunction for enhanced photocatalysis. g-C Z-scheme heterojunction Oxygen vacancy Interface design Photocatalysis Meng, Lirong verfasserin aut Ning, Xin verfasserin aut Yin, Weiqin verfasserin aut Hou, Jianhua verfasserin aut Xu, Qiao verfasserin aut Yi, Jianjian verfasserin aut Wang, Shengsen verfasserin aut Wang, Xiaozhi verfasserin (orcid)0000-0002-9829-9332 aut Enthalten in International journal of hydrogen energy New York, NY [u.a.] : Elsevier, 1976 47 Online-Ressource (DE-627)301511357 (DE-600)1484487-4 (DE-576)096806397 1879-3487 nnns volume:47 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.56 Regenerative Energieformen alternative Energieformen AR 47 |
spelling |
10.1016/j.ijhydene.2021.12.226 doi (DE-627)ELV007396279 (ELSEVIER)S0360-3199(21)05028-X DE-627 ger DE-627 rda eng 660 620 DE-600 52.56 bkl Zhou, Ganghua verfasserin aut Switching charge transfer of g-C 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Constructing type II heterojunction is an efficient strategy to enhance the light absorption and promote the charge transport. However, the improvement effect is limited by the decreased redox ability of charge carriers. The rational design of heterojunction from type II to Z-scheme is expected to overcome this obstacle. Herein, we demonstrate that the introduction of interfacial oxygen vacancies (OVs) can switch charge transfer of g-C3N4/BVO heterojunction from type II to Z-scheme. The interfacial OVs acted as the reactive center of charge carriers to quench the electrons of BVO and holes of g-C3N4, thereby promoting charge separation and migration. As a result, the interfacial OVs mediated Z-scheme g-C3N4/BVO heterojunction kept the strong oxidation/reduction potential of two single-component photocatalysts thereby significantly enhancing the photodegradation of tetracycline and CO2 photoreduction. The kinetic constant of tetracycline degradation on the optimal g-C3N4/BVO-20 sample was 2.04-fold and 2.29-fold higher than those on g-C3N4 nanosheets and pure BVO, respectively. This work provides a feasible strategy by the interfacial vacancy engineering of heterojunction for enhanced photocatalysis. g-C Z-scheme heterojunction Oxygen vacancy Interface design Photocatalysis Meng, Lirong verfasserin aut Ning, Xin verfasserin aut Yin, Weiqin verfasserin aut Hou, Jianhua verfasserin aut Xu, Qiao verfasserin aut Yi, Jianjian verfasserin aut Wang, Shengsen verfasserin aut Wang, Xiaozhi verfasserin (orcid)0000-0002-9829-9332 aut Enthalten in International journal of hydrogen energy New York, NY [u.a.] : Elsevier, 1976 47 Online-Ressource (DE-627)301511357 (DE-600)1484487-4 (DE-576)096806397 1879-3487 nnns volume:47 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.56 Regenerative Energieformen alternative Energieformen AR 47 |
allfields_unstemmed |
10.1016/j.ijhydene.2021.12.226 doi (DE-627)ELV007396279 (ELSEVIER)S0360-3199(21)05028-X DE-627 ger DE-627 rda eng 660 620 DE-600 52.56 bkl Zhou, Ganghua verfasserin aut Switching charge transfer of g-C 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Constructing type II heterojunction is an efficient strategy to enhance the light absorption and promote the charge transport. However, the improvement effect is limited by the decreased redox ability of charge carriers. The rational design of heterojunction from type II to Z-scheme is expected to overcome this obstacle. Herein, we demonstrate that the introduction of interfacial oxygen vacancies (OVs) can switch charge transfer of g-C3N4/BVO heterojunction from type II to Z-scheme. The interfacial OVs acted as the reactive center of charge carriers to quench the electrons of BVO and holes of g-C3N4, thereby promoting charge separation and migration. As a result, the interfacial OVs mediated Z-scheme g-C3N4/BVO heterojunction kept the strong oxidation/reduction potential of two single-component photocatalysts thereby significantly enhancing the photodegradation of tetracycline and CO2 photoreduction. The kinetic constant of tetracycline degradation on the optimal g-C3N4/BVO-20 sample was 2.04-fold and 2.29-fold higher than those on g-C3N4 nanosheets and pure BVO, respectively. This work provides a feasible strategy by the interfacial vacancy engineering of heterojunction for enhanced photocatalysis. g-C Z-scheme heterojunction Oxygen vacancy Interface design Photocatalysis Meng, Lirong verfasserin aut Ning, Xin verfasserin aut Yin, Weiqin verfasserin aut Hou, Jianhua verfasserin aut Xu, Qiao verfasserin aut Yi, Jianjian verfasserin aut Wang, Shengsen verfasserin aut Wang, Xiaozhi verfasserin (orcid)0000-0002-9829-9332 aut Enthalten in International journal of hydrogen energy New York, NY [u.a.] : Elsevier, 1976 47 Online-Ressource (DE-627)301511357 (DE-600)1484487-4 (DE-576)096806397 1879-3487 nnns volume:47 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.56 Regenerative Energieformen alternative Energieformen AR 47 |
allfieldsGer |
10.1016/j.ijhydene.2021.12.226 doi (DE-627)ELV007396279 (ELSEVIER)S0360-3199(21)05028-X DE-627 ger DE-627 rda eng 660 620 DE-600 52.56 bkl Zhou, Ganghua verfasserin aut Switching charge transfer of g-C 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Constructing type II heterojunction is an efficient strategy to enhance the light absorption and promote the charge transport. However, the improvement effect is limited by the decreased redox ability of charge carriers. The rational design of heterojunction from type II to Z-scheme is expected to overcome this obstacle. Herein, we demonstrate that the introduction of interfacial oxygen vacancies (OVs) can switch charge transfer of g-C3N4/BVO heterojunction from type II to Z-scheme. The interfacial OVs acted as the reactive center of charge carriers to quench the electrons of BVO and holes of g-C3N4, thereby promoting charge separation and migration. As a result, the interfacial OVs mediated Z-scheme g-C3N4/BVO heterojunction kept the strong oxidation/reduction potential of two single-component photocatalysts thereby significantly enhancing the photodegradation of tetracycline and CO2 photoreduction. The kinetic constant of tetracycline degradation on the optimal g-C3N4/BVO-20 sample was 2.04-fold and 2.29-fold higher than those on g-C3N4 nanosheets and pure BVO, respectively. This work provides a feasible strategy by the interfacial vacancy engineering of heterojunction for enhanced photocatalysis. g-C Z-scheme heterojunction Oxygen vacancy Interface design Photocatalysis Meng, Lirong verfasserin aut Ning, Xin verfasserin aut Yin, Weiqin verfasserin aut Hou, Jianhua verfasserin aut Xu, Qiao verfasserin aut Yi, Jianjian verfasserin aut Wang, Shengsen verfasserin aut Wang, Xiaozhi verfasserin (orcid)0000-0002-9829-9332 aut Enthalten in International journal of hydrogen energy New York, NY [u.a.] : Elsevier, 1976 47 Online-Ressource (DE-627)301511357 (DE-600)1484487-4 (DE-576)096806397 1879-3487 nnns volume:47 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.56 Regenerative Energieformen alternative Energieformen AR 47 |
allfieldsSound |
10.1016/j.ijhydene.2021.12.226 doi (DE-627)ELV007396279 (ELSEVIER)S0360-3199(21)05028-X DE-627 ger DE-627 rda eng 660 620 DE-600 52.56 bkl Zhou, Ganghua verfasserin aut Switching charge transfer of g-C 2021 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Constructing type II heterojunction is an efficient strategy to enhance the light absorption and promote the charge transport. However, the improvement effect is limited by the decreased redox ability of charge carriers. The rational design of heterojunction from type II to Z-scheme is expected to overcome this obstacle. Herein, we demonstrate that the introduction of interfacial oxygen vacancies (OVs) can switch charge transfer of g-C3N4/BVO heterojunction from type II to Z-scheme. The interfacial OVs acted as the reactive center of charge carriers to quench the electrons of BVO and holes of g-C3N4, thereby promoting charge separation and migration. As a result, the interfacial OVs mediated Z-scheme g-C3N4/BVO heterojunction kept the strong oxidation/reduction potential of two single-component photocatalysts thereby significantly enhancing the photodegradation of tetracycline and CO2 photoreduction. The kinetic constant of tetracycline degradation on the optimal g-C3N4/BVO-20 sample was 2.04-fold and 2.29-fold higher than those on g-C3N4 nanosheets and pure BVO, respectively. This work provides a feasible strategy by the interfacial vacancy engineering of heterojunction for enhanced photocatalysis. g-C Z-scheme heterojunction Oxygen vacancy Interface design Photocatalysis Meng, Lirong verfasserin aut Ning, Xin verfasserin aut Yin, Weiqin verfasserin aut Hou, Jianhua verfasserin aut Xu, Qiao verfasserin aut Yi, Jianjian verfasserin aut Wang, Shengsen verfasserin aut Wang, Xiaozhi verfasserin (orcid)0000-0002-9829-9332 aut Enthalten in International journal of hydrogen energy New York, NY [u.a.] : Elsevier, 1976 47 Online-Ressource (DE-627)301511357 (DE-600)1484487-4 (DE-576)096806397 1879-3487 nnns volume:47 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.56 Regenerative Energieformen alternative Energieformen AR 47 |
language |
English |
source |
Enthalten in International journal of hydrogen energy 47 volume:47 |
sourceStr |
Enthalten in International journal of hydrogen energy 47 volume:47 |
format_phy_str_mv |
Article |
bklname |
Regenerative Energieformen alternative Energieformen |
institution |
findex.gbv.de |
topic_facet |
g-C Z-scheme heterojunction Oxygen vacancy Interface design Photocatalysis |
dewey-raw |
660 |
isfreeaccess_bool |
false |
container_title |
International journal of hydrogen energy |
authorswithroles_txt_mv |
Zhou, Ganghua @@aut@@ Meng, Lirong @@aut@@ Ning, Xin @@aut@@ Yin, Weiqin @@aut@@ Hou, Jianhua @@aut@@ Xu, Qiao @@aut@@ Yi, Jianjian @@aut@@ Wang, Shengsen @@aut@@ Wang, Xiaozhi @@aut@@ |
publishDateDaySort_date |
2021-01-01T00:00:00Z |
hierarchy_top_id |
301511357 |
dewey-sort |
3660 |
id |
ELV007396279 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV007396279</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524141125.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230507s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijhydene.2021.12.226</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV007396279</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0360-3199(21)05028-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.56</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhou, Ganghua</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Switching charge transfer of g-C</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Constructing type II heterojunction is an efficient strategy to enhance the light absorption and promote the charge transport. However, the improvement effect is limited by the decreased redox ability of charge carriers. The rational design of heterojunction from type II to Z-scheme is expected to overcome this obstacle. Herein, we demonstrate that the introduction of interfacial oxygen vacancies (OVs) can switch charge transfer of g-C3N4/BVO heterojunction from type II to Z-scheme. The interfacial OVs acted as the reactive center of charge carriers to quench the electrons of BVO and holes of g-C3N4, thereby promoting charge separation and migration. As a result, the interfacial OVs mediated Z-scheme g-C3N4/BVO heterojunction kept the strong oxidation/reduction potential of two single-component photocatalysts thereby significantly enhancing the photodegradation of tetracycline and CO2 photoreduction. The kinetic constant of tetracycline degradation on the optimal g-C3N4/BVO-20 sample was 2.04-fold and 2.29-fold higher than those on g-C3N4 nanosheets and pure BVO, respectively. This work provides a feasible strategy by the interfacial vacancy engineering of heterojunction for enhanced photocatalysis.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">g-C</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Z-scheme heterojunction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Oxygen vacancy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interface design</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photocatalysis</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Meng, Lirong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ning, Xin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yin, Weiqin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hou, Jianhua</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Qiao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yi, Jianjian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Shengsen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Xiaozhi</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-9829-9332</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of hydrogen energy</subfield><subfield code="d">New York, NY [u.a.] : Elsevier, 1976</subfield><subfield code="g">47</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)301511357</subfield><subfield code="w">(DE-600)1484487-4</subfield><subfield code="w">(DE-576)096806397</subfield><subfield code="x">1879-3487</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:47</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.56</subfield><subfield code="j">Regenerative Energieformen</subfield><subfield code="j">alternative Energieformen</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">47</subfield></datafield></record></collection>
|
author |
Zhou, Ganghua |
spellingShingle |
Zhou, Ganghua ddc 660 bkl 52.56 misc g-C misc Z-scheme heterojunction misc Oxygen vacancy misc Interface design misc Photocatalysis Switching charge transfer of g-C |
authorStr |
Zhou, Ganghua |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)301511357 |
format |
electronic Article |
dewey-ones |
660 - Chemical engineering 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1879-3487 |
topic_title |
660 620 DE-600 52.56 bkl Switching charge transfer of g-C g-C Z-scheme heterojunction Oxygen vacancy Interface design Photocatalysis |
topic |
ddc 660 bkl 52.56 misc g-C misc Z-scheme heterojunction misc Oxygen vacancy misc Interface design misc Photocatalysis |
topic_unstemmed |
ddc 660 bkl 52.56 misc g-C misc Z-scheme heterojunction misc Oxygen vacancy misc Interface design misc Photocatalysis |
topic_browse |
ddc 660 bkl 52.56 misc g-C misc Z-scheme heterojunction misc Oxygen vacancy misc Interface design misc Photocatalysis |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International journal of hydrogen energy |
hierarchy_parent_id |
301511357 |
dewey-tens |
660 - Chemical engineering 620 - Engineering |
hierarchy_top_title |
International journal of hydrogen energy |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)301511357 (DE-600)1484487-4 (DE-576)096806397 |
title |
Switching charge transfer of g-C |
ctrlnum |
(DE-627)ELV007396279 (ELSEVIER)S0360-3199(21)05028-X |
title_full |
Switching charge transfer of g-C |
author_sort |
Zhou, Ganghua |
journal |
International journal of hydrogen energy |
journalStr |
International journal of hydrogen energy |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
zzz |
author_browse |
Zhou, Ganghua Meng, Lirong Ning, Xin Yin, Weiqin Hou, Jianhua Xu, Qiao Yi, Jianjian Wang, Shengsen Wang, Xiaozhi |
container_volume |
47 |
class |
660 620 DE-600 52.56 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Zhou, Ganghua |
doi_str_mv |
10.1016/j.ijhydene.2021.12.226 |
normlink |
(ORCID)0000-0002-9829-9332 |
normlink_prefix_str_mv |
(orcid)0000-0002-9829-9332 |
dewey-full |
660 620 |
author2-role |
verfasserin |
title_sort |
switching charge transfer of g-c |
title_auth |
Switching charge transfer of g-C |
abstract |
Constructing type II heterojunction is an efficient strategy to enhance the light absorption and promote the charge transport. However, the improvement effect is limited by the decreased redox ability of charge carriers. The rational design of heterojunction from type II to Z-scheme is expected to overcome this obstacle. Herein, we demonstrate that the introduction of interfacial oxygen vacancies (OVs) can switch charge transfer of g-C3N4/BVO heterojunction from type II to Z-scheme. The interfacial OVs acted as the reactive center of charge carriers to quench the electrons of BVO and holes of g-C3N4, thereby promoting charge separation and migration. As a result, the interfacial OVs mediated Z-scheme g-C3N4/BVO heterojunction kept the strong oxidation/reduction potential of two single-component photocatalysts thereby significantly enhancing the photodegradation of tetracycline and CO2 photoreduction. The kinetic constant of tetracycline degradation on the optimal g-C3N4/BVO-20 sample was 2.04-fold and 2.29-fold higher than those on g-C3N4 nanosheets and pure BVO, respectively. This work provides a feasible strategy by the interfacial vacancy engineering of heterojunction for enhanced photocatalysis. |
abstractGer |
Constructing type II heterojunction is an efficient strategy to enhance the light absorption and promote the charge transport. However, the improvement effect is limited by the decreased redox ability of charge carriers. The rational design of heterojunction from type II to Z-scheme is expected to overcome this obstacle. Herein, we demonstrate that the introduction of interfacial oxygen vacancies (OVs) can switch charge transfer of g-C3N4/BVO heterojunction from type II to Z-scheme. The interfacial OVs acted as the reactive center of charge carriers to quench the electrons of BVO and holes of g-C3N4, thereby promoting charge separation and migration. As a result, the interfacial OVs mediated Z-scheme g-C3N4/BVO heterojunction kept the strong oxidation/reduction potential of two single-component photocatalysts thereby significantly enhancing the photodegradation of tetracycline and CO2 photoreduction. The kinetic constant of tetracycline degradation on the optimal g-C3N4/BVO-20 sample was 2.04-fold and 2.29-fold higher than those on g-C3N4 nanosheets and pure BVO, respectively. This work provides a feasible strategy by the interfacial vacancy engineering of heterojunction for enhanced photocatalysis. |
abstract_unstemmed |
Constructing type II heterojunction is an efficient strategy to enhance the light absorption and promote the charge transport. However, the improvement effect is limited by the decreased redox ability of charge carriers. The rational design of heterojunction from type II to Z-scheme is expected to overcome this obstacle. Herein, we demonstrate that the introduction of interfacial oxygen vacancies (OVs) can switch charge transfer of g-C3N4/BVO heterojunction from type II to Z-scheme. The interfacial OVs acted as the reactive center of charge carriers to quench the electrons of BVO and holes of g-C3N4, thereby promoting charge separation and migration. As a result, the interfacial OVs mediated Z-scheme g-C3N4/BVO heterojunction kept the strong oxidation/reduction potential of two single-component photocatalysts thereby significantly enhancing the photodegradation of tetracycline and CO2 photoreduction. The kinetic constant of tetracycline degradation on the optimal g-C3N4/BVO-20 sample was 2.04-fold and 2.29-fold higher than those on g-C3N4 nanosheets and pure BVO, respectively. This work provides a feasible strategy by the interfacial vacancy engineering of heterojunction for enhanced photocatalysis. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Switching charge transfer of g-C |
remote_bool |
true |
author2 |
Meng, Lirong Ning, Xin Yin, Weiqin Hou, Jianhua Xu, Qiao Yi, Jianjian Wang, Shengsen Wang, Xiaozhi |
author2Str |
Meng, Lirong Ning, Xin Yin, Weiqin Hou, Jianhua Xu, Qiao Yi, Jianjian Wang, Shengsen Wang, Xiaozhi |
ppnlink |
301511357 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.ijhydene.2021.12.226 |
up_date |
2024-07-07T00:36:26.616Z |
_version_ |
1803878490825555968 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV007396279</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524141125.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230507s2021 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijhydene.2021.12.226</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV007396279</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0360-3199(21)05028-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.56</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhou, Ganghua</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Switching charge transfer of g-C</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Constructing type II heterojunction is an efficient strategy to enhance the light absorption and promote the charge transport. However, the improvement effect is limited by the decreased redox ability of charge carriers. The rational design of heterojunction from type II to Z-scheme is expected to overcome this obstacle. Herein, we demonstrate that the introduction of interfacial oxygen vacancies (OVs) can switch charge transfer of g-C3N4/BVO heterojunction from type II to Z-scheme. The interfacial OVs acted as the reactive center of charge carriers to quench the electrons of BVO and holes of g-C3N4, thereby promoting charge separation and migration. As a result, the interfacial OVs mediated Z-scheme g-C3N4/BVO heterojunction kept the strong oxidation/reduction potential of two single-component photocatalysts thereby significantly enhancing the photodegradation of tetracycline and CO2 photoreduction. The kinetic constant of tetracycline degradation on the optimal g-C3N4/BVO-20 sample was 2.04-fold and 2.29-fold higher than those on g-C3N4 nanosheets and pure BVO, respectively. This work provides a feasible strategy by the interfacial vacancy engineering of heterojunction for enhanced photocatalysis.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">g-C</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Z-scheme heterojunction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Oxygen vacancy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interface design</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photocatalysis</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Meng, Lirong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ning, Xin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yin, Weiqin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hou, Jianhua</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Qiao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yi, Jianjian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Shengsen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Xiaozhi</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-9829-9332</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of hydrogen energy</subfield><subfield code="d">New York, NY [u.a.] : Elsevier, 1976</subfield><subfield code="g">47</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)301511357</subfield><subfield code="w">(DE-600)1484487-4</subfield><subfield code="w">(DE-576)096806397</subfield><subfield code="x">1879-3487</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:47</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.56</subfield><subfield code="j">Regenerative Energieformen</subfield><subfield code="j">alternative Energieformen</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">47</subfield></datafield></record></collection>
|
score |
7.4027348 |