Modeling the decomposition of urea-water-solution in films and droplets under SCR conditions with chemistry in the liquid phase
Due to strict environmental regulations in the automotive sector selective catalytic reduction with urea-water-solution is often used to reduce nitrogen oxide emissions. To improve and solve technical problems, like the formation of solid residuals, detailed simulations of the exhaust gas system are...
Ausführliche Beschreibung
Autor*in: |
Stein, M. [verfasserIn] Bykov, V. [verfasserIn] Kuntz, C. [verfasserIn] Börnhorst, M. [verfasserIn] Deutschmann, O. [verfasserIn] Maas, U. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: International journal of heat and fluid flow - Amsterdam [u.a.] : Elsevier Science, 1979, 94 |
---|---|
Übergeordnetes Werk: |
volume:94 |
DOI / URN: |
10.1016/j.ijheatfluidflow.2022.108936 |
---|
Katalog-ID: |
ELV007457677 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV007457677 | ||
003 | DE-627 | ||
005 | 20230524144442.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230507s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ijheatfluidflow.2022.108936 |2 doi | |
035 | |a (DE-627)ELV007457677 | ||
035 | |a (ELSEVIER)S0142-727X(22)00011-X | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 600 |q DE-600 |
084 | |a 50.38 |2 bkl | ||
100 | 1 | |a Stein, M. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Modeling the decomposition of urea-water-solution in films and droplets under SCR conditions with chemistry in the liquid phase |
264 | 1 | |c 2022 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Due to strict environmental regulations in the automotive sector selective catalytic reduction with urea-water-solution is often used to reduce nitrogen oxide emissions. To improve and solve technical problems, like the formation of solid residuals, detailed simulations of the exhaust gas system are used. Such simulations have high computational needs due to the multitude of different processes involved at strongly differing spatial and time scales. For this reason, simplified or reduced models are applied and urea decomposition is often modeled with a vapor pressure curve fitted to experimental results. This method is incapable of describing the formation of solid residuals. A recently developed chemical mechanism for urea decomposition in the liquid phase is used in this work to simulate the decomposition of spherical droplets and planar wall films of urea-water-solution in exhaust gas. For droplets, the overall behavior with liquid chemistry is similar for the whole range of ambient temperatures. Less ammonia and nearly no isocyanic acid is produced compared to the evaporation model and residuals of liquid biuret and solid triuret remain. For wall films, the behavior as well as the composition of the residuals strongly depends on the temperature. The mechanism predicts the production of a similar amount of ammonia but less isocyanic acid compared to the evaporation model. The remaining mass loss is mostly composed of cyanuric acid. It is found that the process of urea decomposition is much slower with liquid chemistry and complete decomposition only happens at 673 K or above. The analysis of the chemical time scales results in a skeletal mechanism for the droplet decomposition with 6 out of 13 reactions among 7 out of 13 species that can describe the whole process with good accuracy, where the mass of the produced gases deviates by less than 5%. | ||
650 | 4 | |a SCR | |
650 | 4 | |a Urea-water-solution | |
650 | 4 | |a Droplet | |
650 | 4 | |a Model reduction | |
650 | 4 | |a Deposit formation | |
650 | 4 | |a Evaporation | |
700 | 1 | |a Bykov, V. |e verfasserin |4 aut | |
700 | 1 | |a Kuntz, C. |e verfasserin |4 aut | |
700 | 1 | |a Börnhorst, M. |e verfasserin |4 aut | |
700 | 1 | |a Deutschmann, O. |e verfasserin |4 aut | |
700 | 1 | |a Maas, U. |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t International journal of heat and fluid flow |d Amsterdam [u.a.] : Elsevier Science, 1979 |g 94 |h Online-Ressource |w (DE-627)320526194 |w (DE-600)2015204-8 |w (DE-576)120883597 |x 1879-2278 |7 nnns |
773 | 1 | 8 | |g volume:94 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 50.38 |j Technische Thermodynamik |
951 | |a AR | ||
952 | |d 94 |
author_variant |
m s ms v b vb c k ck m b mb o d od u m um |
---|---|
matchkey_str |
article:18792278:2022----::oeighdcmoiinfraaesltoiflsndoltudrccniinw |
hierarchy_sort_str |
2022 |
bklnumber |
50.38 |
publishDate |
2022 |
allfields |
10.1016/j.ijheatfluidflow.2022.108936 doi (DE-627)ELV007457677 (ELSEVIER)S0142-727X(22)00011-X DE-627 ger DE-627 rda eng 600 DE-600 50.38 bkl Stein, M. verfasserin aut Modeling the decomposition of urea-water-solution in films and droplets under SCR conditions with chemistry in the liquid phase 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Due to strict environmental regulations in the automotive sector selective catalytic reduction with urea-water-solution is often used to reduce nitrogen oxide emissions. To improve and solve technical problems, like the formation of solid residuals, detailed simulations of the exhaust gas system are used. Such simulations have high computational needs due to the multitude of different processes involved at strongly differing spatial and time scales. For this reason, simplified or reduced models are applied and urea decomposition is often modeled with a vapor pressure curve fitted to experimental results. This method is incapable of describing the formation of solid residuals. A recently developed chemical mechanism for urea decomposition in the liquid phase is used in this work to simulate the decomposition of spherical droplets and planar wall films of urea-water-solution in exhaust gas. For droplets, the overall behavior with liquid chemistry is similar for the whole range of ambient temperatures. Less ammonia and nearly no isocyanic acid is produced compared to the evaporation model and residuals of liquid biuret and solid triuret remain. For wall films, the behavior as well as the composition of the residuals strongly depends on the temperature. The mechanism predicts the production of a similar amount of ammonia but less isocyanic acid compared to the evaporation model. The remaining mass loss is mostly composed of cyanuric acid. It is found that the process of urea decomposition is much slower with liquid chemistry and complete decomposition only happens at 673 K or above. The analysis of the chemical time scales results in a skeletal mechanism for the droplet decomposition with 6 out of 13 reactions among 7 out of 13 species that can describe the whole process with good accuracy, where the mass of the produced gases deviates by less than 5%. SCR Urea-water-solution Droplet Model reduction Deposit formation Evaporation Bykov, V. verfasserin aut Kuntz, C. verfasserin aut Börnhorst, M. verfasserin aut Deutschmann, O. verfasserin aut Maas, U. verfasserin aut Enthalten in International journal of heat and fluid flow Amsterdam [u.a.] : Elsevier Science, 1979 94 Online-Ressource (DE-627)320526194 (DE-600)2015204-8 (DE-576)120883597 1879-2278 nnns volume:94 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.38 Technische Thermodynamik AR 94 |
spelling |
10.1016/j.ijheatfluidflow.2022.108936 doi (DE-627)ELV007457677 (ELSEVIER)S0142-727X(22)00011-X DE-627 ger DE-627 rda eng 600 DE-600 50.38 bkl Stein, M. verfasserin aut Modeling the decomposition of urea-water-solution in films and droplets under SCR conditions with chemistry in the liquid phase 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Due to strict environmental regulations in the automotive sector selective catalytic reduction with urea-water-solution is often used to reduce nitrogen oxide emissions. To improve and solve technical problems, like the formation of solid residuals, detailed simulations of the exhaust gas system are used. Such simulations have high computational needs due to the multitude of different processes involved at strongly differing spatial and time scales. For this reason, simplified or reduced models are applied and urea decomposition is often modeled with a vapor pressure curve fitted to experimental results. This method is incapable of describing the formation of solid residuals. A recently developed chemical mechanism for urea decomposition in the liquid phase is used in this work to simulate the decomposition of spherical droplets and planar wall films of urea-water-solution in exhaust gas. For droplets, the overall behavior with liquid chemistry is similar for the whole range of ambient temperatures. Less ammonia and nearly no isocyanic acid is produced compared to the evaporation model and residuals of liquid biuret and solid triuret remain. For wall films, the behavior as well as the composition of the residuals strongly depends on the temperature. The mechanism predicts the production of a similar amount of ammonia but less isocyanic acid compared to the evaporation model. The remaining mass loss is mostly composed of cyanuric acid. It is found that the process of urea decomposition is much slower with liquid chemistry and complete decomposition only happens at 673 K or above. The analysis of the chemical time scales results in a skeletal mechanism for the droplet decomposition with 6 out of 13 reactions among 7 out of 13 species that can describe the whole process with good accuracy, where the mass of the produced gases deviates by less than 5%. SCR Urea-water-solution Droplet Model reduction Deposit formation Evaporation Bykov, V. verfasserin aut Kuntz, C. verfasserin aut Börnhorst, M. verfasserin aut Deutschmann, O. verfasserin aut Maas, U. verfasserin aut Enthalten in International journal of heat and fluid flow Amsterdam [u.a.] : Elsevier Science, 1979 94 Online-Ressource (DE-627)320526194 (DE-600)2015204-8 (DE-576)120883597 1879-2278 nnns volume:94 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.38 Technische Thermodynamik AR 94 |
allfields_unstemmed |
10.1016/j.ijheatfluidflow.2022.108936 doi (DE-627)ELV007457677 (ELSEVIER)S0142-727X(22)00011-X DE-627 ger DE-627 rda eng 600 DE-600 50.38 bkl Stein, M. verfasserin aut Modeling the decomposition of urea-water-solution in films and droplets under SCR conditions with chemistry in the liquid phase 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Due to strict environmental regulations in the automotive sector selective catalytic reduction with urea-water-solution is often used to reduce nitrogen oxide emissions. To improve and solve technical problems, like the formation of solid residuals, detailed simulations of the exhaust gas system are used. Such simulations have high computational needs due to the multitude of different processes involved at strongly differing spatial and time scales. For this reason, simplified or reduced models are applied and urea decomposition is often modeled with a vapor pressure curve fitted to experimental results. This method is incapable of describing the formation of solid residuals. A recently developed chemical mechanism for urea decomposition in the liquid phase is used in this work to simulate the decomposition of spherical droplets and planar wall films of urea-water-solution in exhaust gas. For droplets, the overall behavior with liquid chemistry is similar for the whole range of ambient temperatures. Less ammonia and nearly no isocyanic acid is produced compared to the evaporation model and residuals of liquid biuret and solid triuret remain. For wall films, the behavior as well as the composition of the residuals strongly depends on the temperature. The mechanism predicts the production of a similar amount of ammonia but less isocyanic acid compared to the evaporation model. The remaining mass loss is mostly composed of cyanuric acid. It is found that the process of urea decomposition is much slower with liquid chemistry and complete decomposition only happens at 673 K or above. The analysis of the chemical time scales results in a skeletal mechanism for the droplet decomposition with 6 out of 13 reactions among 7 out of 13 species that can describe the whole process with good accuracy, where the mass of the produced gases deviates by less than 5%. SCR Urea-water-solution Droplet Model reduction Deposit formation Evaporation Bykov, V. verfasserin aut Kuntz, C. verfasserin aut Börnhorst, M. verfasserin aut Deutschmann, O. verfasserin aut Maas, U. verfasserin aut Enthalten in International journal of heat and fluid flow Amsterdam [u.a.] : Elsevier Science, 1979 94 Online-Ressource (DE-627)320526194 (DE-600)2015204-8 (DE-576)120883597 1879-2278 nnns volume:94 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.38 Technische Thermodynamik AR 94 |
allfieldsGer |
10.1016/j.ijheatfluidflow.2022.108936 doi (DE-627)ELV007457677 (ELSEVIER)S0142-727X(22)00011-X DE-627 ger DE-627 rda eng 600 DE-600 50.38 bkl Stein, M. verfasserin aut Modeling the decomposition of urea-water-solution in films and droplets under SCR conditions with chemistry in the liquid phase 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Due to strict environmental regulations in the automotive sector selective catalytic reduction with urea-water-solution is often used to reduce nitrogen oxide emissions. To improve and solve technical problems, like the formation of solid residuals, detailed simulations of the exhaust gas system are used. Such simulations have high computational needs due to the multitude of different processes involved at strongly differing spatial and time scales. For this reason, simplified or reduced models are applied and urea decomposition is often modeled with a vapor pressure curve fitted to experimental results. This method is incapable of describing the formation of solid residuals. A recently developed chemical mechanism for urea decomposition in the liquid phase is used in this work to simulate the decomposition of spherical droplets and planar wall films of urea-water-solution in exhaust gas. For droplets, the overall behavior with liquid chemistry is similar for the whole range of ambient temperatures. Less ammonia and nearly no isocyanic acid is produced compared to the evaporation model and residuals of liquid biuret and solid triuret remain. For wall films, the behavior as well as the composition of the residuals strongly depends on the temperature. The mechanism predicts the production of a similar amount of ammonia but less isocyanic acid compared to the evaporation model. The remaining mass loss is mostly composed of cyanuric acid. It is found that the process of urea decomposition is much slower with liquid chemistry and complete decomposition only happens at 673 K or above. The analysis of the chemical time scales results in a skeletal mechanism for the droplet decomposition with 6 out of 13 reactions among 7 out of 13 species that can describe the whole process with good accuracy, where the mass of the produced gases deviates by less than 5%. SCR Urea-water-solution Droplet Model reduction Deposit formation Evaporation Bykov, V. verfasserin aut Kuntz, C. verfasserin aut Börnhorst, M. verfasserin aut Deutschmann, O. verfasserin aut Maas, U. verfasserin aut Enthalten in International journal of heat and fluid flow Amsterdam [u.a.] : Elsevier Science, 1979 94 Online-Ressource (DE-627)320526194 (DE-600)2015204-8 (DE-576)120883597 1879-2278 nnns volume:94 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.38 Technische Thermodynamik AR 94 |
allfieldsSound |
10.1016/j.ijheatfluidflow.2022.108936 doi (DE-627)ELV007457677 (ELSEVIER)S0142-727X(22)00011-X DE-627 ger DE-627 rda eng 600 DE-600 50.38 bkl Stein, M. verfasserin aut Modeling the decomposition of urea-water-solution in films and droplets under SCR conditions with chemistry in the liquid phase 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Due to strict environmental regulations in the automotive sector selective catalytic reduction with urea-water-solution is often used to reduce nitrogen oxide emissions. To improve and solve technical problems, like the formation of solid residuals, detailed simulations of the exhaust gas system are used. Such simulations have high computational needs due to the multitude of different processes involved at strongly differing spatial and time scales. For this reason, simplified or reduced models are applied and urea decomposition is often modeled with a vapor pressure curve fitted to experimental results. This method is incapable of describing the formation of solid residuals. A recently developed chemical mechanism for urea decomposition in the liquid phase is used in this work to simulate the decomposition of spherical droplets and planar wall films of urea-water-solution in exhaust gas. For droplets, the overall behavior with liquid chemistry is similar for the whole range of ambient temperatures. Less ammonia and nearly no isocyanic acid is produced compared to the evaporation model and residuals of liquid biuret and solid triuret remain. For wall films, the behavior as well as the composition of the residuals strongly depends on the temperature. The mechanism predicts the production of a similar amount of ammonia but less isocyanic acid compared to the evaporation model. The remaining mass loss is mostly composed of cyanuric acid. It is found that the process of urea decomposition is much slower with liquid chemistry and complete decomposition only happens at 673 K or above. The analysis of the chemical time scales results in a skeletal mechanism for the droplet decomposition with 6 out of 13 reactions among 7 out of 13 species that can describe the whole process with good accuracy, where the mass of the produced gases deviates by less than 5%. SCR Urea-water-solution Droplet Model reduction Deposit formation Evaporation Bykov, V. verfasserin aut Kuntz, C. verfasserin aut Börnhorst, M. verfasserin aut Deutschmann, O. verfasserin aut Maas, U. verfasserin aut Enthalten in International journal of heat and fluid flow Amsterdam [u.a.] : Elsevier Science, 1979 94 Online-Ressource (DE-627)320526194 (DE-600)2015204-8 (DE-576)120883597 1879-2278 nnns volume:94 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.38 Technische Thermodynamik AR 94 |
language |
English |
source |
Enthalten in International journal of heat and fluid flow 94 volume:94 |
sourceStr |
Enthalten in International journal of heat and fluid flow 94 volume:94 |
format_phy_str_mv |
Article |
bklname |
Technische Thermodynamik |
institution |
findex.gbv.de |
topic_facet |
SCR Urea-water-solution Droplet Model reduction Deposit formation Evaporation |
dewey-raw |
600 |
isfreeaccess_bool |
false |
container_title |
International journal of heat and fluid flow |
authorswithroles_txt_mv |
Stein, M. @@aut@@ Bykov, V. @@aut@@ Kuntz, C. @@aut@@ Börnhorst, M. @@aut@@ Deutschmann, O. @@aut@@ Maas, U. @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
320526194 |
dewey-sort |
3600 |
id |
ELV007457677 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV007457677</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524144442.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230507s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijheatfluidflow.2022.108936</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV007457677</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0142-727X(22)00011-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Stein, M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modeling the decomposition of urea-water-solution in films and droplets under SCR conditions with chemistry in the liquid phase</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Due to strict environmental regulations in the automotive sector selective catalytic reduction with urea-water-solution is often used to reduce nitrogen oxide emissions. To improve and solve technical problems, like the formation of solid residuals, detailed simulations of the exhaust gas system are used. Such simulations have high computational needs due to the multitude of different processes involved at strongly differing spatial and time scales. For this reason, simplified or reduced models are applied and urea decomposition is often modeled with a vapor pressure curve fitted to experimental results. This method is incapable of describing the formation of solid residuals. A recently developed chemical mechanism for urea decomposition in the liquid phase is used in this work to simulate the decomposition of spherical droplets and planar wall films of urea-water-solution in exhaust gas. For droplets, the overall behavior with liquid chemistry is similar for the whole range of ambient temperatures. Less ammonia and nearly no isocyanic acid is produced compared to the evaporation model and residuals of liquid biuret and solid triuret remain. For wall films, the behavior as well as the composition of the residuals strongly depends on the temperature. The mechanism predicts the production of a similar amount of ammonia but less isocyanic acid compared to the evaporation model. The remaining mass loss is mostly composed of cyanuric acid. It is found that the process of urea decomposition is much slower with liquid chemistry and complete decomposition only happens at 673 K or above. The analysis of the chemical time scales results in a skeletal mechanism for the droplet decomposition with 6 out of 13 reactions among 7 out of 13 species that can describe the whole process with good accuracy, where the mass of the produced gases deviates by less than 5%.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SCR</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Urea-water-solution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Droplet</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Model reduction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deposit formation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Evaporation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bykov, V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kuntz, C.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Börnhorst, M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Deutschmann, O.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Maas, U.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of heat and fluid flow</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1979</subfield><subfield code="g">94</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320526194</subfield><subfield code="w">(DE-600)2015204-8</subfield><subfield code="w">(DE-576)120883597</subfield><subfield code="x">1879-2278</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:94</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.38</subfield><subfield code="j">Technische Thermodynamik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">94</subfield></datafield></record></collection>
|
author |
Stein, M. |
spellingShingle |
Stein, M. ddc 600 bkl 50.38 misc SCR misc Urea-water-solution misc Droplet misc Model reduction misc Deposit formation misc Evaporation Modeling the decomposition of urea-water-solution in films and droplets under SCR conditions with chemistry in the liquid phase |
authorStr |
Stein, M. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320526194 |
format |
electronic Article |
dewey-ones |
600 - Technology |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1879-2278 |
topic_title |
600 DE-600 50.38 bkl Modeling the decomposition of urea-water-solution in films and droplets under SCR conditions with chemistry in the liquid phase SCR Urea-water-solution Droplet Model reduction Deposit formation Evaporation |
topic |
ddc 600 bkl 50.38 misc SCR misc Urea-water-solution misc Droplet misc Model reduction misc Deposit formation misc Evaporation |
topic_unstemmed |
ddc 600 bkl 50.38 misc SCR misc Urea-water-solution misc Droplet misc Model reduction misc Deposit formation misc Evaporation |
topic_browse |
ddc 600 bkl 50.38 misc SCR misc Urea-water-solution misc Droplet misc Model reduction misc Deposit formation misc Evaporation |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International journal of heat and fluid flow |
hierarchy_parent_id |
320526194 |
dewey-tens |
600 - Technology |
hierarchy_top_title |
International journal of heat and fluid flow |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320526194 (DE-600)2015204-8 (DE-576)120883597 |
title |
Modeling the decomposition of urea-water-solution in films and droplets under SCR conditions with chemistry in the liquid phase |
ctrlnum |
(DE-627)ELV007457677 (ELSEVIER)S0142-727X(22)00011-X |
title_full |
Modeling the decomposition of urea-water-solution in films and droplets under SCR conditions with chemistry in the liquid phase |
author_sort |
Stein, M. |
journal |
International journal of heat and fluid flow |
journalStr |
International journal of heat and fluid flow |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
author_browse |
Stein, M. Bykov, V. Kuntz, C. Börnhorst, M. Deutschmann, O. Maas, U. |
container_volume |
94 |
class |
600 DE-600 50.38 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Stein, M. |
doi_str_mv |
10.1016/j.ijheatfluidflow.2022.108936 |
dewey-full |
600 |
author2-role |
verfasserin |
title_sort |
modeling the decomposition of urea-water-solution in films and droplets under scr conditions with chemistry in the liquid phase |
title_auth |
Modeling the decomposition of urea-water-solution in films and droplets under SCR conditions with chemistry in the liquid phase |
abstract |
Due to strict environmental regulations in the automotive sector selective catalytic reduction with urea-water-solution is often used to reduce nitrogen oxide emissions. To improve and solve technical problems, like the formation of solid residuals, detailed simulations of the exhaust gas system are used. Such simulations have high computational needs due to the multitude of different processes involved at strongly differing spatial and time scales. For this reason, simplified or reduced models are applied and urea decomposition is often modeled with a vapor pressure curve fitted to experimental results. This method is incapable of describing the formation of solid residuals. A recently developed chemical mechanism for urea decomposition in the liquid phase is used in this work to simulate the decomposition of spherical droplets and planar wall films of urea-water-solution in exhaust gas. For droplets, the overall behavior with liquid chemistry is similar for the whole range of ambient temperatures. Less ammonia and nearly no isocyanic acid is produced compared to the evaporation model and residuals of liquid biuret and solid triuret remain. For wall films, the behavior as well as the composition of the residuals strongly depends on the temperature. The mechanism predicts the production of a similar amount of ammonia but less isocyanic acid compared to the evaporation model. The remaining mass loss is mostly composed of cyanuric acid. It is found that the process of urea decomposition is much slower with liquid chemistry and complete decomposition only happens at 673 K or above. The analysis of the chemical time scales results in a skeletal mechanism for the droplet decomposition with 6 out of 13 reactions among 7 out of 13 species that can describe the whole process with good accuracy, where the mass of the produced gases deviates by less than 5%. |
abstractGer |
Due to strict environmental regulations in the automotive sector selective catalytic reduction with urea-water-solution is often used to reduce nitrogen oxide emissions. To improve and solve technical problems, like the formation of solid residuals, detailed simulations of the exhaust gas system are used. Such simulations have high computational needs due to the multitude of different processes involved at strongly differing spatial and time scales. For this reason, simplified or reduced models are applied and urea decomposition is often modeled with a vapor pressure curve fitted to experimental results. This method is incapable of describing the formation of solid residuals. A recently developed chemical mechanism for urea decomposition in the liquid phase is used in this work to simulate the decomposition of spherical droplets and planar wall films of urea-water-solution in exhaust gas. For droplets, the overall behavior with liquid chemistry is similar for the whole range of ambient temperatures. Less ammonia and nearly no isocyanic acid is produced compared to the evaporation model and residuals of liquid biuret and solid triuret remain. For wall films, the behavior as well as the composition of the residuals strongly depends on the temperature. The mechanism predicts the production of a similar amount of ammonia but less isocyanic acid compared to the evaporation model. The remaining mass loss is mostly composed of cyanuric acid. It is found that the process of urea decomposition is much slower with liquid chemistry and complete decomposition only happens at 673 K or above. The analysis of the chemical time scales results in a skeletal mechanism for the droplet decomposition with 6 out of 13 reactions among 7 out of 13 species that can describe the whole process with good accuracy, where the mass of the produced gases deviates by less than 5%. |
abstract_unstemmed |
Due to strict environmental regulations in the automotive sector selective catalytic reduction with urea-water-solution is often used to reduce nitrogen oxide emissions. To improve and solve technical problems, like the formation of solid residuals, detailed simulations of the exhaust gas system are used. Such simulations have high computational needs due to the multitude of different processes involved at strongly differing spatial and time scales. For this reason, simplified or reduced models are applied and urea decomposition is often modeled with a vapor pressure curve fitted to experimental results. This method is incapable of describing the formation of solid residuals. A recently developed chemical mechanism for urea decomposition in the liquid phase is used in this work to simulate the decomposition of spherical droplets and planar wall films of urea-water-solution in exhaust gas. For droplets, the overall behavior with liquid chemistry is similar for the whole range of ambient temperatures. Less ammonia and nearly no isocyanic acid is produced compared to the evaporation model and residuals of liquid biuret and solid triuret remain. For wall films, the behavior as well as the composition of the residuals strongly depends on the temperature. The mechanism predicts the production of a similar amount of ammonia but less isocyanic acid compared to the evaporation model. The remaining mass loss is mostly composed of cyanuric acid. It is found that the process of urea decomposition is much slower with liquid chemistry and complete decomposition only happens at 673 K or above. The analysis of the chemical time scales results in a skeletal mechanism for the droplet decomposition with 6 out of 13 reactions among 7 out of 13 species that can describe the whole process with good accuracy, where the mass of the produced gases deviates by less than 5%. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Modeling the decomposition of urea-water-solution in films and droplets under SCR conditions with chemistry in the liquid phase |
remote_bool |
true |
author2 |
Bykov, V. Kuntz, C. Börnhorst, M. Deutschmann, O. Maas, U. |
author2Str |
Bykov, V. Kuntz, C. Börnhorst, M. Deutschmann, O. Maas, U. |
ppnlink |
320526194 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.ijheatfluidflow.2022.108936 |
up_date |
2024-07-07T00:48:44.356Z |
_version_ |
1803879264400965632 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV007457677</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524144442.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230507s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijheatfluidflow.2022.108936</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV007457677</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0142-727X(22)00011-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Stein, M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modeling the decomposition of urea-water-solution in films and droplets under SCR conditions with chemistry in the liquid phase</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Due to strict environmental regulations in the automotive sector selective catalytic reduction with urea-water-solution is often used to reduce nitrogen oxide emissions. To improve and solve technical problems, like the formation of solid residuals, detailed simulations of the exhaust gas system are used. Such simulations have high computational needs due to the multitude of different processes involved at strongly differing spatial and time scales. For this reason, simplified or reduced models are applied and urea decomposition is often modeled with a vapor pressure curve fitted to experimental results. This method is incapable of describing the formation of solid residuals. A recently developed chemical mechanism for urea decomposition in the liquid phase is used in this work to simulate the decomposition of spherical droplets and planar wall films of urea-water-solution in exhaust gas. For droplets, the overall behavior with liquid chemistry is similar for the whole range of ambient temperatures. Less ammonia and nearly no isocyanic acid is produced compared to the evaporation model and residuals of liquid biuret and solid triuret remain. For wall films, the behavior as well as the composition of the residuals strongly depends on the temperature. The mechanism predicts the production of a similar amount of ammonia but less isocyanic acid compared to the evaporation model. The remaining mass loss is mostly composed of cyanuric acid. It is found that the process of urea decomposition is much slower with liquid chemistry and complete decomposition only happens at 673 K or above. The analysis of the chemical time scales results in a skeletal mechanism for the droplet decomposition with 6 out of 13 reactions among 7 out of 13 species that can describe the whole process with good accuracy, where the mass of the produced gases deviates by less than 5%.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SCR</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Urea-water-solution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Droplet</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Model reduction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deposit formation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Evaporation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bykov, V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kuntz, C.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Börnhorst, M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Deutschmann, O.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Maas, U.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of heat and fluid flow</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1979</subfield><subfield code="g">94</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320526194</subfield><subfield code="w">(DE-600)2015204-8</subfield><subfield code="w">(DE-576)120883597</subfield><subfield code="x">1879-2278</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:94</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.38</subfield><subfield code="j">Technische Thermodynamik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">94</subfield></datafield></record></collection>
|
score |
7.401513 |