Solar energy density as a benchmark to improve daylight availability and energy performance in buildings: A single metric for a single-objective optimization
Different simulation engines are currently required to perform daylight and energy evaluations of complex fenestration systems: Radiance has been validated to evaluate complex geometries but EnergyPlus cannot deal with them, making infeasible the thermal evaluations. The Shading Coefficient method a...
Ausführliche Beschreibung
Autor*in: |
Chi, Doris A [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Solar energy - Amsterdam [u.a.] : Elsevier Science, 1957, 234, Seite 304-318 |
---|---|
Übergeordnetes Werk: |
volume:234 ; pages:304-318 |
DOI / URN: |
10.1016/j.solener.2022.01.068 |
---|
Katalog-ID: |
ELV007458681 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV007458681 | ||
003 | DE-627 | ||
005 | 20230524143242.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230507s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.solener.2022.01.068 |2 doi | |
035 | |a (DE-627)ELV007458681 | ||
035 | |a (ELSEVIER)S0038-092X(22)00079-2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q DE-600 |
084 | |a 52.56 |2 bkl | ||
100 | 1 | |a Chi, Doris A |e verfasserin |4 aut | |
245 | 1 | 0 | |a Solar energy density as a benchmark to improve daylight availability and energy performance in buildings: A single metric for a single-objective optimization |
264 | 1 | |c 2022 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Different simulation engines are currently required to perform daylight and energy evaluations of complex fenestration systems: Radiance has been validated to evaluate complex geometries but EnergyPlus cannot deal with them, making infeasible the thermal evaluations. The Shading Coefficient method adds an extra step to overcome that limitation: it runs irradiance simulations to create shading schedules that are shared between the simulation engines. This work supports the premise that Solar Energy Density (SED) can be used as a benchmark to evaluate the dual performance of perforated screens (PS). Therefore, only irradiance calculations will be required in evaluations – instead of running three different simulations. Orthogonal Arrays and Principal Component Analysis were the statistical techniques used to select the PS sample and weight the simulation results. The resultant SED thresholds concurrently fostered the accomplishment of daylighting and energy goals, at five different orientations: they maximised the daylit area and minimised the overlit area and total energy use. This work also presents an application example of the single-metric approach to test its effectiveness to perform single-objective optimization of PS design by using Evolutionary Algorithms. The SED approach has the advantage of reducing considerably the simulation time needed to perform the parametric optimization of PS. | ||
650 | 4 | |a Solar energy density | |
650 | 4 | |a Daylight availability | |
650 | 4 | |a Total annual energy | |
650 | 4 | |a Façade orientation | |
650 | 4 | |a Multi-factor statistical analysis | |
650 | 4 | |a Evolutionary algorithms | |
773 | 0 | 8 | |i Enthalten in |t Solar energy |d Amsterdam [u.a.] : Elsevier Science, 1957 |g 234, Seite 304-318 |h Online-Ressource |w (DE-627)320525597 |w (DE-600)2015126-3 |w (DE-576)096806648 |x 1471-1257 |7 nnns |
773 | 1 | 8 | |g volume:234 |g pages:304-318 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2116 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 52.56 |j Regenerative Energieformen |j alternative Energieformen |
951 | |a AR | ||
952 | |d 234 |h 304-318 |
author_variant |
d a c da dac |
---|---|
matchkey_str |
article:14711257:2022----::oaeegdniysbnhakomrvdyihaalbltadnryefracibidnssnlm |
hierarchy_sort_str |
2022 |
bklnumber |
52.56 |
publishDate |
2022 |
allfields |
10.1016/j.solener.2022.01.068 doi (DE-627)ELV007458681 (ELSEVIER)S0038-092X(22)00079-2 DE-627 ger DE-627 rda eng 530 DE-600 52.56 bkl Chi, Doris A verfasserin aut Solar energy density as a benchmark to improve daylight availability and energy performance in buildings: A single metric for a single-objective optimization 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Different simulation engines are currently required to perform daylight and energy evaluations of complex fenestration systems: Radiance has been validated to evaluate complex geometries but EnergyPlus cannot deal with them, making infeasible the thermal evaluations. The Shading Coefficient method adds an extra step to overcome that limitation: it runs irradiance simulations to create shading schedules that are shared between the simulation engines. This work supports the premise that Solar Energy Density (SED) can be used as a benchmark to evaluate the dual performance of perforated screens (PS). Therefore, only irradiance calculations will be required in evaluations – instead of running three different simulations. Orthogonal Arrays and Principal Component Analysis were the statistical techniques used to select the PS sample and weight the simulation results. The resultant SED thresholds concurrently fostered the accomplishment of daylighting and energy goals, at five different orientations: they maximised the daylit area and minimised the overlit area and total energy use. This work also presents an application example of the single-metric approach to test its effectiveness to perform single-objective optimization of PS design by using Evolutionary Algorithms. The SED approach has the advantage of reducing considerably the simulation time needed to perform the parametric optimization of PS. Solar energy density Daylight availability Total annual energy Façade orientation Multi-factor statistical analysis Evolutionary algorithms Enthalten in Solar energy Amsterdam [u.a.] : Elsevier Science, 1957 234, Seite 304-318 Online-Ressource (DE-627)320525597 (DE-600)2015126-3 (DE-576)096806648 1471-1257 nnns volume:234 pages:304-318 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.56 Regenerative Energieformen alternative Energieformen AR 234 304-318 |
spelling |
10.1016/j.solener.2022.01.068 doi (DE-627)ELV007458681 (ELSEVIER)S0038-092X(22)00079-2 DE-627 ger DE-627 rda eng 530 DE-600 52.56 bkl Chi, Doris A verfasserin aut Solar energy density as a benchmark to improve daylight availability and energy performance in buildings: A single metric for a single-objective optimization 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Different simulation engines are currently required to perform daylight and energy evaluations of complex fenestration systems: Radiance has been validated to evaluate complex geometries but EnergyPlus cannot deal with them, making infeasible the thermal evaluations. The Shading Coefficient method adds an extra step to overcome that limitation: it runs irradiance simulations to create shading schedules that are shared between the simulation engines. This work supports the premise that Solar Energy Density (SED) can be used as a benchmark to evaluate the dual performance of perforated screens (PS). Therefore, only irradiance calculations will be required in evaluations – instead of running three different simulations. Orthogonal Arrays and Principal Component Analysis were the statistical techniques used to select the PS sample and weight the simulation results. The resultant SED thresholds concurrently fostered the accomplishment of daylighting and energy goals, at five different orientations: they maximised the daylit area and minimised the overlit area and total energy use. This work also presents an application example of the single-metric approach to test its effectiveness to perform single-objective optimization of PS design by using Evolutionary Algorithms. The SED approach has the advantage of reducing considerably the simulation time needed to perform the parametric optimization of PS. Solar energy density Daylight availability Total annual energy Façade orientation Multi-factor statistical analysis Evolutionary algorithms Enthalten in Solar energy Amsterdam [u.a.] : Elsevier Science, 1957 234, Seite 304-318 Online-Ressource (DE-627)320525597 (DE-600)2015126-3 (DE-576)096806648 1471-1257 nnns volume:234 pages:304-318 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.56 Regenerative Energieformen alternative Energieformen AR 234 304-318 |
allfields_unstemmed |
10.1016/j.solener.2022.01.068 doi (DE-627)ELV007458681 (ELSEVIER)S0038-092X(22)00079-2 DE-627 ger DE-627 rda eng 530 DE-600 52.56 bkl Chi, Doris A verfasserin aut Solar energy density as a benchmark to improve daylight availability and energy performance in buildings: A single metric for a single-objective optimization 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Different simulation engines are currently required to perform daylight and energy evaluations of complex fenestration systems: Radiance has been validated to evaluate complex geometries but EnergyPlus cannot deal with them, making infeasible the thermal evaluations. The Shading Coefficient method adds an extra step to overcome that limitation: it runs irradiance simulations to create shading schedules that are shared between the simulation engines. This work supports the premise that Solar Energy Density (SED) can be used as a benchmark to evaluate the dual performance of perforated screens (PS). Therefore, only irradiance calculations will be required in evaluations – instead of running three different simulations. Orthogonal Arrays and Principal Component Analysis were the statistical techniques used to select the PS sample and weight the simulation results. The resultant SED thresholds concurrently fostered the accomplishment of daylighting and energy goals, at five different orientations: they maximised the daylit area and minimised the overlit area and total energy use. This work also presents an application example of the single-metric approach to test its effectiveness to perform single-objective optimization of PS design by using Evolutionary Algorithms. The SED approach has the advantage of reducing considerably the simulation time needed to perform the parametric optimization of PS. Solar energy density Daylight availability Total annual energy Façade orientation Multi-factor statistical analysis Evolutionary algorithms Enthalten in Solar energy Amsterdam [u.a.] : Elsevier Science, 1957 234, Seite 304-318 Online-Ressource (DE-627)320525597 (DE-600)2015126-3 (DE-576)096806648 1471-1257 nnns volume:234 pages:304-318 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.56 Regenerative Energieformen alternative Energieformen AR 234 304-318 |
allfieldsGer |
10.1016/j.solener.2022.01.068 doi (DE-627)ELV007458681 (ELSEVIER)S0038-092X(22)00079-2 DE-627 ger DE-627 rda eng 530 DE-600 52.56 bkl Chi, Doris A verfasserin aut Solar energy density as a benchmark to improve daylight availability and energy performance in buildings: A single metric for a single-objective optimization 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Different simulation engines are currently required to perform daylight and energy evaluations of complex fenestration systems: Radiance has been validated to evaluate complex geometries but EnergyPlus cannot deal with them, making infeasible the thermal evaluations. The Shading Coefficient method adds an extra step to overcome that limitation: it runs irradiance simulations to create shading schedules that are shared between the simulation engines. This work supports the premise that Solar Energy Density (SED) can be used as a benchmark to evaluate the dual performance of perforated screens (PS). Therefore, only irradiance calculations will be required in evaluations – instead of running three different simulations. Orthogonal Arrays and Principal Component Analysis were the statistical techniques used to select the PS sample and weight the simulation results. The resultant SED thresholds concurrently fostered the accomplishment of daylighting and energy goals, at five different orientations: they maximised the daylit area and minimised the overlit area and total energy use. This work also presents an application example of the single-metric approach to test its effectiveness to perform single-objective optimization of PS design by using Evolutionary Algorithms. The SED approach has the advantage of reducing considerably the simulation time needed to perform the parametric optimization of PS. Solar energy density Daylight availability Total annual energy Façade orientation Multi-factor statistical analysis Evolutionary algorithms Enthalten in Solar energy Amsterdam [u.a.] : Elsevier Science, 1957 234, Seite 304-318 Online-Ressource (DE-627)320525597 (DE-600)2015126-3 (DE-576)096806648 1471-1257 nnns volume:234 pages:304-318 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.56 Regenerative Energieformen alternative Energieformen AR 234 304-318 |
allfieldsSound |
10.1016/j.solener.2022.01.068 doi (DE-627)ELV007458681 (ELSEVIER)S0038-092X(22)00079-2 DE-627 ger DE-627 rda eng 530 DE-600 52.56 bkl Chi, Doris A verfasserin aut Solar energy density as a benchmark to improve daylight availability and energy performance in buildings: A single metric for a single-objective optimization 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Different simulation engines are currently required to perform daylight and energy evaluations of complex fenestration systems: Radiance has been validated to evaluate complex geometries but EnergyPlus cannot deal with them, making infeasible the thermal evaluations. The Shading Coefficient method adds an extra step to overcome that limitation: it runs irradiance simulations to create shading schedules that are shared between the simulation engines. This work supports the premise that Solar Energy Density (SED) can be used as a benchmark to evaluate the dual performance of perforated screens (PS). Therefore, only irradiance calculations will be required in evaluations – instead of running three different simulations. Orthogonal Arrays and Principal Component Analysis were the statistical techniques used to select the PS sample and weight the simulation results. The resultant SED thresholds concurrently fostered the accomplishment of daylighting and energy goals, at five different orientations: they maximised the daylit area and minimised the overlit area and total energy use. This work also presents an application example of the single-metric approach to test its effectiveness to perform single-objective optimization of PS design by using Evolutionary Algorithms. The SED approach has the advantage of reducing considerably the simulation time needed to perform the parametric optimization of PS. Solar energy density Daylight availability Total annual energy Façade orientation Multi-factor statistical analysis Evolutionary algorithms Enthalten in Solar energy Amsterdam [u.a.] : Elsevier Science, 1957 234, Seite 304-318 Online-Ressource (DE-627)320525597 (DE-600)2015126-3 (DE-576)096806648 1471-1257 nnns volume:234 pages:304-318 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.56 Regenerative Energieformen alternative Energieformen AR 234 304-318 |
language |
English |
source |
Enthalten in Solar energy 234, Seite 304-318 volume:234 pages:304-318 |
sourceStr |
Enthalten in Solar energy 234, Seite 304-318 volume:234 pages:304-318 |
format_phy_str_mv |
Article |
bklname |
Regenerative Energieformen alternative Energieformen |
institution |
findex.gbv.de |
topic_facet |
Solar energy density Daylight availability Total annual energy Façade orientation Multi-factor statistical analysis Evolutionary algorithms |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Solar energy |
authorswithroles_txt_mv |
Chi, Doris A @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
320525597 |
dewey-sort |
3530 |
id |
ELV007458681 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV007458681</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524143242.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230507s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.solener.2022.01.068</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV007458681</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0038-092X(22)00079-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.56</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chi, Doris A</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Solar energy density as a benchmark to improve daylight availability and energy performance in buildings: A single metric for a single-objective optimization</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Different simulation engines are currently required to perform daylight and energy evaluations of complex fenestration systems: Radiance has been validated to evaluate complex geometries but EnergyPlus cannot deal with them, making infeasible the thermal evaluations. The Shading Coefficient method adds an extra step to overcome that limitation: it runs irradiance simulations to create shading schedules that are shared between the simulation engines. This work supports the premise that Solar Energy Density (SED) can be used as a benchmark to evaluate the dual performance of perforated screens (PS). Therefore, only irradiance calculations will be required in evaluations – instead of running three different simulations. Orthogonal Arrays and Principal Component Analysis were the statistical techniques used to select the PS sample and weight the simulation results. The resultant SED thresholds concurrently fostered the accomplishment of daylighting and energy goals, at five different orientations: they maximised the daylit area and minimised the overlit area and total energy use. This work also presents an application example of the single-metric approach to test its effectiveness to perform single-objective optimization of PS design by using Evolutionary Algorithms. The SED approach has the advantage of reducing considerably the simulation time needed to perform the parametric optimization of PS.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solar energy density</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Daylight availability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Total annual energy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Façade orientation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multi-factor statistical analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Evolutionary algorithms</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Solar energy</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1957</subfield><subfield code="g">234, Seite 304-318</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320525597</subfield><subfield code="w">(DE-600)2015126-3</subfield><subfield code="w">(DE-576)096806648</subfield><subfield code="x">1471-1257</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:234</subfield><subfield code="g">pages:304-318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.56</subfield><subfield code="j">Regenerative Energieformen</subfield><subfield code="j">alternative Energieformen</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">234</subfield><subfield code="h">304-318</subfield></datafield></record></collection>
|
author |
Chi, Doris A |
spellingShingle |
Chi, Doris A ddc 530 bkl 52.56 misc Solar energy density misc Daylight availability misc Total annual energy misc Façade orientation misc Multi-factor statistical analysis misc Evolutionary algorithms Solar energy density as a benchmark to improve daylight availability and energy performance in buildings: A single metric for a single-objective optimization |
authorStr |
Chi, Doris A |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320525597 |
format |
electronic Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1471-1257 |
topic_title |
530 DE-600 52.56 bkl Solar energy density as a benchmark to improve daylight availability and energy performance in buildings: A single metric for a single-objective optimization Solar energy density Daylight availability Total annual energy Façade orientation Multi-factor statistical analysis Evolutionary algorithms |
topic |
ddc 530 bkl 52.56 misc Solar energy density misc Daylight availability misc Total annual energy misc Façade orientation misc Multi-factor statistical analysis misc Evolutionary algorithms |
topic_unstemmed |
ddc 530 bkl 52.56 misc Solar energy density misc Daylight availability misc Total annual energy misc Façade orientation misc Multi-factor statistical analysis misc Evolutionary algorithms |
topic_browse |
ddc 530 bkl 52.56 misc Solar energy density misc Daylight availability misc Total annual energy misc Façade orientation misc Multi-factor statistical analysis misc Evolutionary algorithms |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Solar energy |
hierarchy_parent_id |
320525597 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Solar energy |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320525597 (DE-600)2015126-3 (DE-576)096806648 |
title |
Solar energy density as a benchmark to improve daylight availability and energy performance in buildings: A single metric for a single-objective optimization |
ctrlnum |
(DE-627)ELV007458681 (ELSEVIER)S0038-092X(22)00079-2 |
title_full |
Solar energy density as a benchmark to improve daylight availability and energy performance in buildings: A single metric for a single-objective optimization |
author_sort |
Chi, Doris A |
journal |
Solar energy |
journalStr |
Solar energy |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
container_start_page |
304 |
author_browse |
Chi, Doris A |
container_volume |
234 |
class |
530 DE-600 52.56 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Chi, Doris A |
doi_str_mv |
10.1016/j.solener.2022.01.068 |
dewey-full |
530 |
title_sort |
solar energy density as a benchmark to improve daylight availability and energy performance in buildings: a single metric for a single-objective optimization |
title_auth |
Solar energy density as a benchmark to improve daylight availability and energy performance in buildings: A single metric for a single-objective optimization |
abstract |
Different simulation engines are currently required to perform daylight and energy evaluations of complex fenestration systems: Radiance has been validated to evaluate complex geometries but EnergyPlus cannot deal with them, making infeasible the thermal evaluations. The Shading Coefficient method adds an extra step to overcome that limitation: it runs irradiance simulations to create shading schedules that are shared between the simulation engines. This work supports the premise that Solar Energy Density (SED) can be used as a benchmark to evaluate the dual performance of perforated screens (PS). Therefore, only irradiance calculations will be required in evaluations – instead of running three different simulations. Orthogonal Arrays and Principal Component Analysis were the statistical techniques used to select the PS sample and weight the simulation results. The resultant SED thresholds concurrently fostered the accomplishment of daylighting and energy goals, at five different orientations: they maximised the daylit area and minimised the overlit area and total energy use. This work also presents an application example of the single-metric approach to test its effectiveness to perform single-objective optimization of PS design by using Evolutionary Algorithms. The SED approach has the advantage of reducing considerably the simulation time needed to perform the parametric optimization of PS. |
abstractGer |
Different simulation engines are currently required to perform daylight and energy evaluations of complex fenestration systems: Radiance has been validated to evaluate complex geometries but EnergyPlus cannot deal with them, making infeasible the thermal evaluations. The Shading Coefficient method adds an extra step to overcome that limitation: it runs irradiance simulations to create shading schedules that are shared between the simulation engines. This work supports the premise that Solar Energy Density (SED) can be used as a benchmark to evaluate the dual performance of perforated screens (PS). Therefore, only irradiance calculations will be required in evaluations – instead of running three different simulations. Orthogonal Arrays and Principal Component Analysis were the statistical techniques used to select the PS sample and weight the simulation results. The resultant SED thresholds concurrently fostered the accomplishment of daylighting and energy goals, at five different orientations: they maximised the daylit area and minimised the overlit area and total energy use. This work also presents an application example of the single-metric approach to test its effectiveness to perform single-objective optimization of PS design by using Evolutionary Algorithms. The SED approach has the advantage of reducing considerably the simulation time needed to perform the parametric optimization of PS. |
abstract_unstemmed |
Different simulation engines are currently required to perform daylight and energy evaluations of complex fenestration systems: Radiance has been validated to evaluate complex geometries but EnergyPlus cannot deal with them, making infeasible the thermal evaluations. The Shading Coefficient method adds an extra step to overcome that limitation: it runs irradiance simulations to create shading schedules that are shared between the simulation engines. This work supports the premise that Solar Energy Density (SED) can be used as a benchmark to evaluate the dual performance of perforated screens (PS). Therefore, only irradiance calculations will be required in evaluations – instead of running three different simulations. Orthogonal Arrays and Principal Component Analysis were the statistical techniques used to select the PS sample and weight the simulation results. The resultant SED thresholds concurrently fostered the accomplishment of daylighting and energy goals, at five different orientations: they maximised the daylit area and minimised the overlit area and total energy use. This work also presents an application example of the single-metric approach to test its effectiveness to perform single-objective optimization of PS design by using Evolutionary Algorithms. The SED approach has the advantage of reducing considerably the simulation time needed to perform the parametric optimization of PS. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Solar energy density as a benchmark to improve daylight availability and energy performance in buildings: A single metric for a single-objective optimization |
remote_bool |
true |
ppnlink |
320525597 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.solener.2022.01.068 |
up_date |
2024-07-07T00:48:56.058Z |
_version_ |
1803879276673499136 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV007458681</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524143242.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230507s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.solener.2022.01.068</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV007458681</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0038-092X(22)00079-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.56</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chi, Doris A</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Solar energy density as a benchmark to improve daylight availability and energy performance in buildings: A single metric for a single-objective optimization</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Different simulation engines are currently required to perform daylight and energy evaluations of complex fenestration systems: Radiance has been validated to evaluate complex geometries but EnergyPlus cannot deal with them, making infeasible the thermal evaluations. The Shading Coefficient method adds an extra step to overcome that limitation: it runs irradiance simulations to create shading schedules that are shared between the simulation engines. This work supports the premise that Solar Energy Density (SED) can be used as a benchmark to evaluate the dual performance of perforated screens (PS). Therefore, only irradiance calculations will be required in evaluations – instead of running three different simulations. Orthogonal Arrays and Principal Component Analysis were the statistical techniques used to select the PS sample and weight the simulation results. The resultant SED thresholds concurrently fostered the accomplishment of daylighting and energy goals, at five different orientations: they maximised the daylit area and minimised the overlit area and total energy use. This work also presents an application example of the single-metric approach to test its effectiveness to perform single-objective optimization of PS design by using Evolutionary Algorithms. The SED approach has the advantage of reducing considerably the simulation time needed to perform the parametric optimization of PS.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solar energy density</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Daylight availability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Total annual energy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Façade orientation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multi-factor statistical analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Evolutionary algorithms</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Solar energy</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1957</subfield><subfield code="g">234, Seite 304-318</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320525597</subfield><subfield code="w">(DE-600)2015126-3</subfield><subfield code="w">(DE-576)096806648</subfield><subfield code="x">1471-1257</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:234</subfield><subfield code="g">pages:304-318</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.56</subfield><subfield code="j">Regenerative Energieformen</subfield><subfield code="j">alternative Energieformen</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">234</subfield><subfield code="h">304-318</subfield></datafield></record></collection>
|
score |
7.401664 |