Numerical investigation of convection heat transfer characteristics in sloshing corium pools
The convection flow and heat transfer actuated by internal decay heat and the sloshing of vessels are the primary problems in the study of thermal behaviors in volumetrically heated reactor corium pools under ocean conditions. The wall-modeled large eddy simulation (WMLES) method, volume of fluid mo...
Ausführliche Beschreibung
Autor*in: |
Deng, Jiajia [verfasserIn] Song, Liye [verfasserIn] Pan, Liangming [verfasserIn] Liu, Bin [verfasserIn] Lu, Jinshu [verfasserIn] Xu, Lin [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Nuclear engineering and design - Amsterdam [u.a.] : Elsevier Science, 1966, 390 |
---|---|
Übergeordnetes Werk: |
volume:390 |
DOI / URN: |
10.1016/j.nucengdes.2022.111710 |
---|
Katalog-ID: |
ELV00764292X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV00764292X | ||
003 | DE-627 | ||
005 | 20230524162428.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230507s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.nucengdes.2022.111710 |2 doi | |
035 | |a (DE-627)ELV00764292X | ||
035 | |a (ELSEVIER)S0029-5493(22)00064-4 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q DE-600 |
084 | |a 52.55 |2 bkl | ||
100 | 1 | |a Deng, Jiajia |e verfasserin |4 aut | |
245 | 1 | 0 | |a Numerical investigation of convection heat transfer characteristics in sloshing corium pools |
264 | 1 | |c 2022 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The convection flow and heat transfer actuated by internal decay heat and the sloshing of vessels are the primary problems in the study of thermal behaviors in volumetrically heated reactor corium pools under ocean conditions. The wall-modeled large eddy simulation (WMLES) method, volume of fluid model, and phase-change model combined with dynamic mesh technology, were used to develop a three-dimensional flow and heat transfer process simulation model of the sloshing corium pool. In addition, the heat conduction behavior in the crust and vessel wall, as well as the pressure-vessel-wall integrity evaluation was considered. The predicted internal heat transfer characteristics (the temperature distribution, the wall heat flux, and the shell thickness) in the corium pool and the evolution feature of the free surface height near the wall were in good agreement with the LIVE-L4 test results and sloshing experimental data, respectively. Furthermore, the coupled heat transfer phenomenon of the melt and vessel was simulated. The simulation results indicated that the time required to reach stable heat transfer was shortened, the structure of thermal stratification was transformed, and the heat flux along the inner surface of the vessel wall of the shell was improved at the resonance state. The comparisons of local Nusselt (Nu) number at the near-wall between static and sloshing corium pool conditions showed that heat transfer characteristics were significantly influenced by sloshing (T = 2.5 s, A = 0.07 rad) motion, and the Nu number of forced convection fraction had a strong correlation with the local Reynolds number in sloshing corium pools. Conclusively, the transient heat flux distribution of the sloshing melting pool differed from that of the static corium pool, increasing the molten range, and molten peak depth of the pressure-vessel-wall. | ||
650 | 4 | |a IVR | |
650 | 4 | |a Corium pool | |
650 | 4 | |a Sloshing | |
650 | 4 | |a Heat transfer | |
650 | 4 | |a Forced convection | |
700 | 1 | |a Song, Liye |e verfasserin |4 aut | |
700 | 1 | |a Pan, Liangming |e verfasserin |4 aut | |
700 | 1 | |a Liu, Bin |e verfasserin |4 aut | |
700 | 1 | |a Lu, Jinshu |e verfasserin |4 aut | |
700 | 1 | |a Xu, Lin |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Nuclear engineering and design |d Amsterdam [u.a.] : Elsevier Science, 1966 |g 390 |h Online-Ressource |w (DE-627)320411087 |w (DE-600)2001319-X |w (DE-576)251938182 |x 0029-5493 |7 nnns |
773 | 1 | 8 | |g volume:390 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 52.55 |j Kerntechnik |j Reaktortechnik |
951 | |a AR | ||
952 | |d 390 |
author_variant |
j d jd l s ls l p lp b l bl j l jl l x lx |
---|---|
matchkey_str |
article:00295493:2022----::ueiaivsiainfovcinetrnfrhrceitc |
hierarchy_sort_str |
2022 |
bklnumber |
52.55 |
publishDate |
2022 |
allfields |
10.1016/j.nucengdes.2022.111710 doi (DE-627)ELV00764292X (ELSEVIER)S0029-5493(22)00064-4 DE-627 ger DE-627 rda eng 620 DE-600 52.55 bkl Deng, Jiajia verfasserin aut Numerical investigation of convection heat transfer characteristics in sloshing corium pools 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The convection flow and heat transfer actuated by internal decay heat and the sloshing of vessels are the primary problems in the study of thermal behaviors in volumetrically heated reactor corium pools under ocean conditions. The wall-modeled large eddy simulation (WMLES) method, volume of fluid model, and phase-change model combined with dynamic mesh technology, were used to develop a three-dimensional flow and heat transfer process simulation model of the sloshing corium pool. In addition, the heat conduction behavior in the crust and vessel wall, as well as the pressure-vessel-wall integrity evaluation was considered. The predicted internal heat transfer characteristics (the temperature distribution, the wall heat flux, and the shell thickness) in the corium pool and the evolution feature of the free surface height near the wall were in good agreement with the LIVE-L4 test results and sloshing experimental data, respectively. Furthermore, the coupled heat transfer phenomenon of the melt and vessel was simulated. The simulation results indicated that the time required to reach stable heat transfer was shortened, the structure of thermal stratification was transformed, and the heat flux along the inner surface of the vessel wall of the shell was improved at the resonance state. The comparisons of local Nusselt (Nu) number at the near-wall between static and sloshing corium pool conditions showed that heat transfer characteristics were significantly influenced by sloshing (T = 2.5 s, A = 0.07 rad) motion, and the Nu number of forced convection fraction had a strong correlation with the local Reynolds number in sloshing corium pools. Conclusively, the transient heat flux distribution of the sloshing melting pool differed from that of the static corium pool, increasing the molten range, and molten peak depth of the pressure-vessel-wall. IVR Corium pool Sloshing Heat transfer Forced convection Song, Liye verfasserin aut Pan, Liangming verfasserin aut Liu, Bin verfasserin aut Lu, Jinshu verfasserin aut Xu, Lin verfasserin aut Enthalten in Nuclear engineering and design Amsterdam [u.a.] : Elsevier Science, 1966 390 Online-Ressource (DE-627)320411087 (DE-600)2001319-X (DE-576)251938182 0029-5493 nnns volume:390 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.55 Kerntechnik Reaktortechnik AR 390 |
spelling |
10.1016/j.nucengdes.2022.111710 doi (DE-627)ELV00764292X (ELSEVIER)S0029-5493(22)00064-4 DE-627 ger DE-627 rda eng 620 DE-600 52.55 bkl Deng, Jiajia verfasserin aut Numerical investigation of convection heat transfer characteristics in sloshing corium pools 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The convection flow and heat transfer actuated by internal decay heat and the sloshing of vessels are the primary problems in the study of thermal behaviors in volumetrically heated reactor corium pools under ocean conditions. The wall-modeled large eddy simulation (WMLES) method, volume of fluid model, and phase-change model combined with dynamic mesh technology, were used to develop a three-dimensional flow and heat transfer process simulation model of the sloshing corium pool. In addition, the heat conduction behavior in the crust and vessel wall, as well as the pressure-vessel-wall integrity evaluation was considered. The predicted internal heat transfer characteristics (the temperature distribution, the wall heat flux, and the shell thickness) in the corium pool and the evolution feature of the free surface height near the wall were in good agreement with the LIVE-L4 test results and sloshing experimental data, respectively. Furthermore, the coupled heat transfer phenomenon of the melt and vessel was simulated. The simulation results indicated that the time required to reach stable heat transfer was shortened, the structure of thermal stratification was transformed, and the heat flux along the inner surface of the vessel wall of the shell was improved at the resonance state. The comparisons of local Nusselt (Nu) number at the near-wall between static and sloshing corium pool conditions showed that heat transfer characteristics were significantly influenced by sloshing (T = 2.5 s, A = 0.07 rad) motion, and the Nu number of forced convection fraction had a strong correlation with the local Reynolds number in sloshing corium pools. Conclusively, the transient heat flux distribution of the sloshing melting pool differed from that of the static corium pool, increasing the molten range, and molten peak depth of the pressure-vessel-wall. IVR Corium pool Sloshing Heat transfer Forced convection Song, Liye verfasserin aut Pan, Liangming verfasserin aut Liu, Bin verfasserin aut Lu, Jinshu verfasserin aut Xu, Lin verfasserin aut Enthalten in Nuclear engineering and design Amsterdam [u.a.] : Elsevier Science, 1966 390 Online-Ressource (DE-627)320411087 (DE-600)2001319-X (DE-576)251938182 0029-5493 nnns volume:390 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.55 Kerntechnik Reaktortechnik AR 390 |
allfields_unstemmed |
10.1016/j.nucengdes.2022.111710 doi (DE-627)ELV00764292X (ELSEVIER)S0029-5493(22)00064-4 DE-627 ger DE-627 rda eng 620 DE-600 52.55 bkl Deng, Jiajia verfasserin aut Numerical investigation of convection heat transfer characteristics in sloshing corium pools 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The convection flow and heat transfer actuated by internal decay heat and the sloshing of vessels are the primary problems in the study of thermal behaviors in volumetrically heated reactor corium pools under ocean conditions. The wall-modeled large eddy simulation (WMLES) method, volume of fluid model, and phase-change model combined with dynamic mesh technology, were used to develop a three-dimensional flow and heat transfer process simulation model of the sloshing corium pool. In addition, the heat conduction behavior in the crust and vessel wall, as well as the pressure-vessel-wall integrity evaluation was considered. The predicted internal heat transfer characteristics (the temperature distribution, the wall heat flux, and the shell thickness) in the corium pool and the evolution feature of the free surface height near the wall were in good agreement with the LIVE-L4 test results and sloshing experimental data, respectively. Furthermore, the coupled heat transfer phenomenon of the melt and vessel was simulated. The simulation results indicated that the time required to reach stable heat transfer was shortened, the structure of thermal stratification was transformed, and the heat flux along the inner surface of the vessel wall of the shell was improved at the resonance state. The comparisons of local Nusselt (Nu) number at the near-wall between static and sloshing corium pool conditions showed that heat transfer characteristics were significantly influenced by sloshing (T = 2.5 s, A = 0.07 rad) motion, and the Nu number of forced convection fraction had a strong correlation with the local Reynolds number in sloshing corium pools. Conclusively, the transient heat flux distribution of the sloshing melting pool differed from that of the static corium pool, increasing the molten range, and molten peak depth of the pressure-vessel-wall. IVR Corium pool Sloshing Heat transfer Forced convection Song, Liye verfasserin aut Pan, Liangming verfasserin aut Liu, Bin verfasserin aut Lu, Jinshu verfasserin aut Xu, Lin verfasserin aut Enthalten in Nuclear engineering and design Amsterdam [u.a.] : Elsevier Science, 1966 390 Online-Ressource (DE-627)320411087 (DE-600)2001319-X (DE-576)251938182 0029-5493 nnns volume:390 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.55 Kerntechnik Reaktortechnik AR 390 |
allfieldsGer |
10.1016/j.nucengdes.2022.111710 doi (DE-627)ELV00764292X (ELSEVIER)S0029-5493(22)00064-4 DE-627 ger DE-627 rda eng 620 DE-600 52.55 bkl Deng, Jiajia verfasserin aut Numerical investigation of convection heat transfer characteristics in sloshing corium pools 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The convection flow and heat transfer actuated by internal decay heat and the sloshing of vessels are the primary problems in the study of thermal behaviors in volumetrically heated reactor corium pools under ocean conditions. The wall-modeled large eddy simulation (WMLES) method, volume of fluid model, and phase-change model combined with dynamic mesh technology, were used to develop a three-dimensional flow and heat transfer process simulation model of the sloshing corium pool. In addition, the heat conduction behavior in the crust and vessel wall, as well as the pressure-vessel-wall integrity evaluation was considered. The predicted internal heat transfer characteristics (the temperature distribution, the wall heat flux, and the shell thickness) in the corium pool and the evolution feature of the free surface height near the wall were in good agreement with the LIVE-L4 test results and sloshing experimental data, respectively. Furthermore, the coupled heat transfer phenomenon of the melt and vessel was simulated. The simulation results indicated that the time required to reach stable heat transfer was shortened, the structure of thermal stratification was transformed, and the heat flux along the inner surface of the vessel wall of the shell was improved at the resonance state. The comparisons of local Nusselt (Nu) number at the near-wall between static and sloshing corium pool conditions showed that heat transfer characteristics were significantly influenced by sloshing (T = 2.5 s, A = 0.07 rad) motion, and the Nu number of forced convection fraction had a strong correlation with the local Reynolds number in sloshing corium pools. Conclusively, the transient heat flux distribution of the sloshing melting pool differed from that of the static corium pool, increasing the molten range, and molten peak depth of the pressure-vessel-wall. IVR Corium pool Sloshing Heat transfer Forced convection Song, Liye verfasserin aut Pan, Liangming verfasserin aut Liu, Bin verfasserin aut Lu, Jinshu verfasserin aut Xu, Lin verfasserin aut Enthalten in Nuclear engineering and design Amsterdam [u.a.] : Elsevier Science, 1966 390 Online-Ressource (DE-627)320411087 (DE-600)2001319-X (DE-576)251938182 0029-5493 nnns volume:390 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.55 Kerntechnik Reaktortechnik AR 390 |
allfieldsSound |
10.1016/j.nucengdes.2022.111710 doi (DE-627)ELV00764292X (ELSEVIER)S0029-5493(22)00064-4 DE-627 ger DE-627 rda eng 620 DE-600 52.55 bkl Deng, Jiajia verfasserin aut Numerical investigation of convection heat transfer characteristics in sloshing corium pools 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The convection flow and heat transfer actuated by internal decay heat and the sloshing of vessels are the primary problems in the study of thermal behaviors in volumetrically heated reactor corium pools under ocean conditions. The wall-modeled large eddy simulation (WMLES) method, volume of fluid model, and phase-change model combined with dynamic mesh technology, were used to develop a three-dimensional flow and heat transfer process simulation model of the sloshing corium pool. In addition, the heat conduction behavior in the crust and vessel wall, as well as the pressure-vessel-wall integrity evaluation was considered. The predicted internal heat transfer characteristics (the temperature distribution, the wall heat flux, and the shell thickness) in the corium pool and the evolution feature of the free surface height near the wall were in good agreement with the LIVE-L4 test results and sloshing experimental data, respectively. Furthermore, the coupled heat transfer phenomenon of the melt and vessel was simulated. The simulation results indicated that the time required to reach stable heat transfer was shortened, the structure of thermal stratification was transformed, and the heat flux along the inner surface of the vessel wall of the shell was improved at the resonance state. The comparisons of local Nusselt (Nu) number at the near-wall between static and sloshing corium pool conditions showed that heat transfer characteristics were significantly influenced by sloshing (T = 2.5 s, A = 0.07 rad) motion, and the Nu number of forced convection fraction had a strong correlation with the local Reynolds number in sloshing corium pools. Conclusively, the transient heat flux distribution of the sloshing melting pool differed from that of the static corium pool, increasing the molten range, and molten peak depth of the pressure-vessel-wall. IVR Corium pool Sloshing Heat transfer Forced convection Song, Liye verfasserin aut Pan, Liangming verfasserin aut Liu, Bin verfasserin aut Lu, Jinshu verfasserin aut Xu, Lin verfasserin aut Enthalten in Nuclear engineering and design Amsterdam [u.a.] : Elsevier Science, 1966 390 Online-Ressource (DE-627)320411087 (DE-600)2001319-X (DE-576)251938182 0029-5493 nnns volume:390 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.55 Kerntechnik Reaktortechnik AR 390 |
language |
English |
source |
Enthalten in Nuclear engineering and design 390 volume:390 |
sourceStr |
Enthalten in Nuclear engineering and design 390 volume:390 |
format_phy_str_mv |
Article |
bklname |
Kerntechnik Reaktortechnik |
institution |
findex.gbv.de |
topic_facet |
IVR Corium pool Sloshing Heat transfer Forced convection |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
Nuclear engineering and design |
authorswithroles_txt_mv |
Deng, Jiajia @@aut@@ Song, Liye @@aut@@ Pan, Liangming @@aut@@ Liu, Bin @@aut@@ Lu, Jinshu @@aut@@ Xu, Lin @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
320411087 |
dewey-sort |
3620 |
id |
ELV00764292X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV00764292X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524162428.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230507s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.nucengdes.2022.111710</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV00764292X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0029-5493(22)00064-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.55</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Deng, Jiajia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerical investigation of convection heat transfer characteristics in sloshing corium pools</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The convection flow and heat transfer actuated by internal decay heat and the sloshing of vessels are the primary problems in the study of thermal behaviors in volumetrically heated reactor corium pools under ocean conditions. The wall-modeled large eddy simulation (WMLES) method, volume of fluid model, and phase-change model combined with dynamic mesh technology, were used to develop a three-dimensional flow and heat transfer process simulation model of the sloshing corium pool. In addition, the heat conduction behavior in the crust and vessel wall, as well as the pressure-vessel-wall integrity evaluation was considered. The predicted internal heat transfer characteristics (the temperature distribution, the wall heat flux, and the shell thickness) in the corium pool and the evolution feature of the free surface height near the wall were in good agreement with the LIVE-L4 test results and sloshing experimental data, respectively. Furthermore, the coupled heat transfer phenomenon of the melt and vessel was simulated. The simulation results indicated that the time required to reach stable heat transfer was shortened, the structure of thermal stratification was transformed, and the heat flux along the inner surface of the vessel wall of the shell was improved at the resonance state. The comparisons of local Nusselt (Nu) number at the near-wall between static and sloshing corium pool conditions showed that heat transfer characteristics were significantly influenced by sloshing (T = 2.5 s, A = 0.07 rad) motion, and the Nu number of forced convection fraction had a strong correlation with the local Reynolds number in sloshing corium pools. Conclusively, the transient heat flux distribution of the sloshing melting pool differed from that of the static corium pool, increasing the molten range, and molten peak depth of the pressure-vessel-wall.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">IVR</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Corium pool</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sloshing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heat transfer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Forced convection</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Song, Liye</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pan, Liangming</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Bin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lu, Jinshu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Lin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Nuclear engineering and design</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1966</subfield><subfield code="g">390</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320411087</subfield><subfield code="w">(DE-600)2001319-X</subfield><subfield code="w">(DE-576)251938182</subfield><subfield code="x">0029-5493</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:390</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.55</subfield><subfield code="j">Kerntechnik</subfield><subfield code="j">Reaktortechnik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">390</subfield></datafield></record></collection>
|
author |
Deng, Jiajia |
spellingShingle |
Deng, Jiajia ddc 620 bkl 52.55 misc IVR misc Corium pool misc Sloshing misc Heat transfer misc Forced convection Numerical investigation of convection heat transfer characteristics in sloshing corium pools |
authorStr |
Deng, Jiajia |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320411087 |
format |
electronic Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0029-5493 |
topic_title |
620 DE-600 52.55 bkl Numerical investigation of convection heat transfer characteristics in sloshing corium pools IVR Corium pool Sloshing Heat transfer Forced convection |
topic |
ddc 620 bkl 52.55 misc IVR misc Corium pool misc Sloshing misc Heat transfer misc Forced convection |
topic_unstemmed |
ddc 620 bkl 52.55 misc IVR misc Corium pool misc Sloshing misc Heat transfer misc Forced convection |
topic_browse |
ddc 620 bkl 52.55 misc IVR misc Corium pool misc Sloshing misc Heat transfer misc Forced convection |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Nuclear engineering and design |
hierarchy_parent_id |
320411087 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
Nuclear engineering and design |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320411087 (DE-600)2001319-X (DE-576)251938182 |
title |
Numerical investigation of convection heat transfer characteristics in sloshing corium pools |
ctrlnum |
(DE-627)ELV00764292X (ELSEVIER)S0029-5493(22)00064-4 |
title_full |
Numerical investigation of convection heat transfer characteristics in sloshing corium pools |
author_sort |
Deng, Jiajia |
journal |
Nuclear engineering and design |
journalStr |
Nuclear engineering and design |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
author_browse |
Deng, Jiajia Song, Liye Pan, Liangming Liu, Bin Lu, Jinshu Xu, Lin |
container_volume |
390 |
class |
620 DE-600 52.55 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Deng, Jiajia |
doi_str_mv |
10.1016/j.nucengdes.2022.111710 |
dewey-full |
620 |
author2-role |
verfasserin |
title_sort |
numerical investigation of convection heat transfer characteristics in sloshing corium pools |
title_auth |
Numerical investigation of convection heat transfer characteristics in sloshing corium pools |
abstract |
The convection flow and heat transfer actuated by internal decay heat and the sloshing of vessels are the primary problems in the study of thermal behaviors in volumetrically heated reactor corium pools under ocean conditions. The wall-modeled large eddy simulation (WMLES) method, volume of fluid model, and phase-change model combined with dynamic mesh technology, were used to develop a three-dimensional flow and heat transfer process simulation model of the sloshing corium pool. In addition, the heat conduction behavior in the crust and vessel wall, as well as the pressure-vessel-wall integrity evaluation was considered. The predicted internal heat transfer characteristics (the temperature distribution, the wall heat flux, and the shell thickness) in the corium pool and the evolution feature of the free surface height near the wall were in good agreement with the LIVE-L4 test results and sloshing experimental data, respectively. Furthermore, the coupled heat transfer phenomenon of the melt and vessel was simulated. The simulation results indicated that the time required to reach stable heat transfer was shortened, the structure of thermal stratification was transformed, and the heat flux along the inner surface of the vessel wall of the shell was improved at the resonance state. The comparisons of local Nusselt (Nu) number at the near-wall between static and sloshing corium pool conditions showed that heat transfer characteristics were significantly influenced by sloshing (T = 2.5 s, A = 0.07 rad) motion, and the Nu number of forced convection fraction had a strong correlation with the local Reynolds number in sloshing corium pools. Conclusively, the transient heat flux distribution of the sloshing melting pool differed from that of the static corium pool, increasing the molten range, and molten peak depth of the pressure-vessel-wall. |
abstractGer |
The convection flow and heat transfer actuated by internal decay heat and the sloshing of vessels are the primary problems in the study of thermal behaviors in volumetrically heated reactor corium pools under ocean conditions. The wall-modeled large eddy simulation (WMLES) method, volume of fluid model, and phase-change model combined with dynamic mesh technology, were used to develop a three-dimensional flow and heat transfer process simulation model of the sloshing corium pool. In addition, the heat conduction behavior in the crust and vessel wall, as well as the pressure-vessel-wall integrity evaluation was considered. The predicted internal heat transfer characteristics (the temperature distribution, the wall heat flux, and the shell thickness) in the corium pool and the evolution feature of the free surface height near the wall were in good agreement with the LIVE-L4 test results and sloshing experimental data, respectively. Furthermore, the coupled heat transfer phenomenon of the melt and vessel was simulated. The simulation results indicated that the time required to reach stable heat transfer was shortened, the structure of thermal stratification was transformed, and the heat flux along the inner surface of the vessel wall of the shell was improved at the resonance state. The comparisons of local Nusselt (Nu) number at the near-wall between static and sloshing corium pool conditions showed that heat transfer characteristics were significantly influenced by sloshing (T = 2.5 s, A = 0.07 rad) motion, and the Nu number of forced convection fraction had a strong correlation with the local Reynolds number in sloshing corium pools. Conclusively, the transient heat flux distribution of the sloshing melting pool differed from that of the static corium pool, increasing the molten range, and molten peak depth of the pressure-vessel-wall. |
abstract_unstemmed |
The convection flow and heat transfer actuated by internal decay heat and the sloshing of vessels are the primary problems in the study of thermal behaviors in volumetrically heated reactor corium pools under ocean conditions. The wall-modeled large eddy simulation (WMLES) method, volume of fluid model, and phase-change model combined with dynamic mesh technology, were used to develop a three-dimensional flow and heat transfer process simulation model of the sloshing corium pool. In addition, the heat conduction behavior in the crust and vessel wall, as well as the pressure-vessel-wall integrity evaluation was considered. The predicted internal heat transfer characteristics (the temperature distribution, the wall heat flux, and the shell thickness) in the corium pool and the evolution feature of the free surface height near the wall were in good agreement with the LIVE-L4 test results and sloshing experimental data, respectively. Furthermore, the coupled heat transfer phenomenon of the melt and vessel was simulated. The simulation results indicated that the time required to reach stable heat transfer was shortened, the structure of thermal stratification was transformed, and the heat flux along the inner surface of the vessel wall of the shell was improved at the resonance state. The comparisons of local Nusselt (Nu) number at the near-wall between static and sloshing corium pool conditions showed that heat transfer characteristics were significantly influenced by sloshing (T = 2.5 s, A = 0.07 rad) motion, and the Nu number of forced convection fraction had a strong correlation with the local Reynolds number in sloshing corium pools. Conclusively, the transient heat flux distribution of the sloshing melting pool differed from that of the static corium pool, increasing the molten range, and molten peak depth of the pressure-vessel-wall. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Numerical investigation of convection heat transfer characteristics in sloshing corium pools |
remote_bool |
true |
author2 |
Song, Liye Pan, Liangming Liu, Bin Lu, Jinshu Xu, Lin |
author2Str |
Song, Liye Pan, Liangming Liu, Bin Lu, Jinshu Xu, Lin |
ppnlink |
320411087 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.nucengdes.2022.111710 |
up_date |
2024-07-06T16:58:11.854Z |
_version_ |
1803849660480094208 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV00764292X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524162428.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230507s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.nucengdes.2022.111710</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV00764292X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0029-5493(22)00064-4</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.55</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Deng, Jiajia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerical investigation of convection heat transfer characteristics in sloshing corium pools</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The convection flow and heat transfer actuated by internal decay heat and the sloshing of vessels are the primary problems in the study of thermal behaviors in volumetrically heated reactor corium pools under ocean conditions. The wall-modeled large eddy simulation (WMLES) method, volume of fluid model, and phase-change model combined with dynamic mesh technology, were used to develop a three-dimensional flow and heat transfer process simulation model of the sloshing corium pool. In addition, the heat conduction behavior in the crust and vessel wall, as well as the pressure-vessel-wall integrity evaluation was considered. The predicted internal heat transfer characteristics (the temperature distribution, the wall heat flux, and the shell thickness) in the corium pool and the evolution feature of the free surface height near the wall were in good agreement with the LIVE-L4 test results and sloshing experimental data, respectively. Furthermore, the coupled heat transfer phenomenon of the melt and vessel was simulated. The simulation results indicated that the time required to reach stable heat transfer was shortened, the structure of thermal stratification was transformed, and the heat flux along the inner surface of the vessel wall of the shell was improved at the resonance state. The comparisons of local Nusselt (Nu) number at the near-wall between static and sloshing corium pool conditions showed that heat transfer characteristics were significantly influenced by sloshing (T = 2.5 s, A = 0.07 rad) motion, and the Nu number of forced convection fraction had a strong correlation with the local Reynolds number in sloshing corium pools. Conclusively, the transient heat flux distribution of the sloshing melting pool differed from that of the static corium pool, increasing the molten range, and molten peak depth of the pressure-vessel-wall.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">IVR</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Corium pool</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sloshing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heat transfer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Forced convection</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Song, Liye</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pan, Liangming</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Bin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lu, Jinshu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Lin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Nuclear engineering and design</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1966</subfield><subfield code="g">390</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320411087</subfield><subfield code="w">(DE-600)2001319-X</subfield><subfield code="w">(DE-576)251938182</subfield><subfield code="x">0029-5493</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:390</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.55</subfield><subfield code="j">Kerntechnik</subfield><subfield code="j">Reaktortechnik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">390</subfield></datafield></record></collection>
|
score |
7.4007425 |