One-pot synthesis of m-Bi
Developing efficient photocatalysts is critical for degradation of organic pollutants. Herein, a highly efficient heterojunction photocatalyst (m-Bi2O4/Bi2O4−x/BiOCl) was synthesized by a hydrothermal method. Through changing the added volume of concentrated HCl acid, the ternary composite based on...
Ausführliche Beschreibung
Autor*in: |
Liu, Miaomiao [verfasserIn] Liu, Gang [verfasserIn] Liu, Xinmei [verfasserIn] Wang, Xiaoyi [verfasserIn] Chen, YunLong [verfasserIn] Yang, Wenlong [verfasserIn] Gao, Chunpeng [verfasserIn] Wang, Guanxiang [verfasserIn] Teng, Zhengchun [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Colloids and surfaces / A - Amsterdam [u.a.] : Elsevier Science, 1993, 643 |
---|---|
Übergeordnetes Werk: |
volume:643 |
DOI / URN: |
10.1016/j.colsurfa.2022.128772 |
---|
Katalog-ID: |
ELV00766236X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV00766236X | ||
003 | DE-627 | ||
005 | 20230524152138.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230507s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.colsurfa.2022.128772 |2 doi | |
035 | |a (DE-627)ELV00766236X | ||
035 | |a (ELSEVIER)S0927-7757(22)00527-1 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 540 |q DE-600 |
084 | |a 35.18 |2 bkl | ||
084 | |a 33.68 |2 bkl | ||
084 | |a 52.78 |2 bkl | ||
084 | |a 58.20 |2 bkl | ||
100 | 1 | |a Liu, Miaomiao |e verfasserin |4 aut | |
245 | 1 | 0 | |a One-pot synthesis of m-Bi |
264 | 1 | |c 2022 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Developing efficient photocatalysts is critical for degradation of organic pollutants. Herein, a highly efficient heterojunction photocatalyst (m-Bi2O4/Bi2O4−x/BiOCl) was synthesized by a hydrothermal method. Through changing the added volume of concentrated HCl acid, the ternary composite based on BiOCl nanosheets matrix on which the m-Bi2O4 micro-rods and the Bi2O4−x nanospheres are firmly attached. The prepared m-Bi2O4/Bi2O4−x/BiOCl showed a favorable degradation rate and mineralization ability towards Bisphenol A (BPA) and Ciprofloxacin (CIP) under visible light irradiation, which degraded 98.3% of BPA in 30 min, 82.3% of CIP in 80 min, and the rate constants were around 30.16 and 2.82 times higher than that of pure BiOCl, respectively. This enhanced photocatalytic activity of m-Bi2O4/Bi2O4−x/BiOCl composite can be originated from the improved light adsorption range and the synergistic effect of type-II and the Z-scheme charge transfer on the interfaces of m-Bi2O4, Bi2O4−x and BiOCl, which then lead to an accelerated separation and migration of photo-generated carriers. Meanwhile, the photoluminescence (PL) test and photoelectrochemistry (PEC) test provided strong evidence for the construction of the heterojunction. Moreover, the repeatability of m-Bi2O4/Bi2O4−x/BiOCl heterojunction photocatalyst was also investigated, and it still remained 90% photocatalytic activity after four successive cycles. This work proposed a possible photocatalytic pathway for m-Bi2O4/Bi2O4−x/BiOCl, which would open up a new avenue for water environment treatment utilizing ternary photocatalysts. | ||
650 | 4 | |a Bi | |
650 | 4 | |a Ternary heterojunction | |
650 | 4 | |a Photocatalytic activity | |
650 | 4 | |a Organic pollutant | |
700 | 1 | |a Liu, Gang |e verfasserin |4 aut | |
700 | 1 | |a Liu, Xinmei |e verfasserin |4 aut | |
700 | 1 | |a Wang, Xiaoyi |e verfasserin |4 aut | |
700 | 1 | |a Chen, YunLong |e verfasserin |4 aut | |
700 | 1 | |a Yang, Wenlong |e verfasserin |4 aut | |
700 | 1 | |a Gao, Chunpeng |e verfasserin |4 aut | |
700 | 1 | |a Wang, Guanxiang |e verfasserin |4 aut | |
700 | 1 | |a Teng, Zhengchun |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Colloids and surfaces / A |d Amsterdam [u.a.] : Elsevier Science, 1993 |g 643 |h Online-Ressource |w (DE-627)306659956 |w (DE-600)1500517-3 |w (DE-576)098614843 |x 1873-4359 |7 nnns |
773 | 1 | 8 | |g volume:643 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2411 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 35.18 |j Kolloidchemie |j Grenzflächenchemie |
936 | b | k | |a 33.68 |j Oberflächen |j Dünne Schichten |j Grenzflächen |x Physik |
936 | b | k | |a 52.78 |j Oberflächentechnik |j Wärmebehandlung |
936 | b | k | |a 58.20 |j Chemische Technologien: Allgemeines |
951 | |a AR | ||
952 | |d 643 |
author_variant |
m l ml g l gl x l xl x w xw y c yc w y wy c g cg g w gw z t zt |
---|---|
matchkey_str |
article:18734359:2022----::nptytei |
hierarchy_sort_str |
2022 |
bklnumber |
35.18 33.68 52.78 58.20 |
publishDate |
2022 |
allfields |
10.1016/j.colsurfa.2022.128772 doi (DE-627)ELV00766236X (ELSEVIER)S0927-7757(22)00527-1 DE-627 ger DE-627 rda eng 540 DE-600 35.18 bkl 33.68 bkl 52.78 bkl 58.20 bkl Liu, Miaomiao verfasserin aut One-pot synthesis of m-Bi 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Developing efficient photocatalysts is critical for degradation of organic pollutants. Herein, a highly efficient heterojunction photocatalyst (m-Bi2O4/Bi2O4−x/BiOCl) was synthesized by a hydrothermal method. Through changing the added volume of concentrated HCl acid, the ternary composite based on BiOCl nanosheets matrix on which the m-Bi2O4 micro-rods and the Bi2O4−x nanospheres are firmly attached. The prepared m-Bi2O4/Bi2O4−x/BiOCl showed a favorable degradation rate and mineralization ability towards Bisphenol A (BPA) and Ciprofloxacin (CIP) under visible light irradiation, which degraded 98.3% of BPA in 30 min, 82.3% of CIP in 80 min, and the rate constants were around 30.16 and 2.82 times higher than that of pure BiOCl, respectively. This enhanced photocatalytic activity of m-Bi2O4/Bi2O4−x/BiOCl composite can be originated from the improved light adsorption range and the synergistic effect of type-II and the Z-scheme charge transfer on the interfaces of m-Bi2O4, Bi2O4−x and BiOCl, which then lead to an accelerated separation and migration of photo-generated carriers. Meanwhile, the photoluminescence (PL) test and photoelectrochemistry (PEC) test provided strong evidence for the construction of the heterojunction. Moreover, the repeatability of m-Bi2O4/Bi2O4−x/BiOCl heterojunction photocatalyst was also investigated, and it still remained 90% photocatalytic activity after four successive cycles. This work proposed a possible photocatalytic pathway for m-Bi2O4/Bi2O4−x/BiOCl, which would open up a new avenue for water environment treatment utilizing ternary photocatalysts. Bi Ternary heterojunction Photocatalytic activity Organic pollutant Liu, Gang verfasserin aut Liu, Xinmei verfasserin aut Wang, Xiaoyi verfasserin aut Chen, YunLong verfasserin aut Yang, Wenlong verfasserin aut Gao, Chunpeng verfasserin aut Wang, Guanxiang verfasserin aut Teng, Zhengchun verfasserin aut Enthalten in Colloids and surfaces / A Amsterdam [u.a.] : Elsevier Science, 1993 643 Online-Ressource (DE-627)306659956 (DE-600)1500517-3 (DE-576)098614843 1873-4359 nnns volume:643 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2411 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 35.18 Kolloidchemie Grenzflächenchemie 33.68 Oberflächen Dünne Schichten Grenzflächen Physik 52.78 Oberflächentechnik Wärmebehandlung 58.20 Chemische Technologien: Allgemeines AR 643 |
spelling |
10.1016/j.colsurfa.2022.128772 doi (DE-627)ELV00766236X (ELSEVIER)S0927-7757(22)00527-1 DE-627 ger DE-627 rda eng 540 DE-600 35.18 bkl 33.68 bkl 52.78 bkl 58.20 bkl Liu, Miaomiao verfasserin aut One-pot synthesis of m-Bi 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Developing efficient photocatalysts is critical for degradation of organic pollutants. Herein, a highly efficient heterojunction photocatalyst (m-Bi2O4/Bi2O4−x/BiOCl) was synthesized by a hydrothermal method. Through changing the added volume of concentrated HCl acid, the ternary composite based on BiOCl nanosheets matrix on which the m-Bi2O4 micro-rods and the Bi2O4−x nanospheres are firmly attached. The prepared m-Bi2O4/Bi2O4−x/BiOCl showed a favorable degradation rate and mineralization ability towards Bisphenol A (BPA) and Ciprofloxacin (CIP) under visible light irradiation, which degraded 98.3% of BPA in 30 min, 82.3% of CIP in 80 min, and the rate constants were around 30.16 and 2.82 times higher than that of pure BiOCl, respectively. This enhanced photocatalytic activity of m-Bi2O4/Bi2O4−x/BiOCl composite can be originated from the improved light adsorption range and the synergistic effect of type-II and the Z-scheme charge transfer on the interfaces of m-Bi2O4, Bi2O4−x and BiOCl, which then lead to an accelerated separation and migration of photo-generated carriers. Meanwhile, the photoluminescence (PL) test and photoelectrochemistry (PEC) test provided strong evidence for the construction of the heterojunction. Moreover, the repeatability of m-Bi2O4/Bi2O4−x/BiOCl heterojunction photocatalyst was also investigated, and it still remained 90% photocatalytic activity after four successive cycles. This work proposed a possible photocatalytic pathway for m-Bi2O4/Bi2O4−x/BiOCl, which would open up a new avenue for water environment treatment utilizing ternary photocatalysts. Bi Ternary heterojunction Photocatalytic activity Organic pollutant Liu, Gang verfasserin aut Liu, Xinmei verfasserin aut Wang, Xiaoyi verfasserin aut Chen, YunLong verfasserin aut Yang, Wenlong verfasserin aut Gao, Chunpeng verfasserin aut Wang, Guanxiang verfasserin aut Teng, Zhengchun verfasserin aut Enthalten in Colloids and surfaces / A Amsterdam [u.a.] : Elsevier Science, 1993 643 Online-Ressource (DE-627)306659956 (DE-600)1500517-3 (DE-576)098614843 1873-4359 nnns volume:643 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2411 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 35.18 Kolloidchemie Grenzflächenchemie 33.68 Oberflächen Dünne Schichten Grenzflächen Physik 52.78 Oberflächentechnik Wärmebehandlung 58.20 Chemische Technologien: Allgemeines AR 643 |
allfields_unstemmed |
10.1016/j.colsurfa.2022.128772 doi (DE-627)ELV00766236X (ELSEVIER)S0927-7757(22)00527-1 DE-627 ger DE-627 rda eng 540 DE-600 35.18 bkl 33.68 bkl 52.78 bkl 58.20 bkl Liu, Miaomiao verfasserin aut One-pot synthesis of m-Bi 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Developing efficient photocatalysts is critical for degradation of organic pollutants. Herein, a highly efficient heterojunction photocatalyst (m-Bi2O4/Bi2O4−x/BiOCl) was synthesized by a hydrothermal method. Through changing the added volume of concentrated HCl acid, the ternary composite based on BiOCl nanosheets matrix on which the m-Bi2O4 micro-rods and the Bi2O4−x nanospheres are firmly attached. The prepared m-Bi2O4/Bi2O4−x/BiOCl showed a favorable degradation rate and mineralization ability towards Bisphenol A (BPA) and Ciprofloxacin (CIP) under visible light irradiation, which degraded 98.3% of BPA in 30 min, 82.3% of CIP in 80 min, and the rate constants were around 30.16 and 2.82 times higher than that of pure BiOCl, respectively. This enhanced photocatalytic activity of m-Bi2O4/Bi2O4−x/BiOCl composite can be originated from the improved light adsorption range and the synergistic effect of type-II and the Z-scheme charge transfer on the interfaces of m-Bi2O4, Bi2O4−x and BiOCl, which then lead to an accelerated separation and migration of photo-generated carriers. Meanwhile, the photoluminescence (PL) test and photoelectrochemistry (PEC) test provided strong evidence for the construction of the heterojunction. Moreover, the repeatability of m-Bi2O4/Bi2O4−x/BiOCl heterojunction photocatalyst was also investigated, and it still remained 90% photocatalytic activity after four successive cycles. This work proposed a possible photocatalytic pathway for m-Bi2O4/Bi2O4−x/BiOCl, which would open up a new avenue for water environment treatment utilizing ternary photocatalysts. Bi Ternary heterojunction Photocatalytic activity Organic pollutant Liu, Gang verfasserin aut Liu, Xinmei verfasserin aut Wang, Xiaoyi verfasserin aut Chen, YunLong verfasserin aut Yang, Wenlong verfasserin aut Gao, Chunpeng verfasserin aut Wang, Guanxiang verfasserin aut Teng, Zhengchun verfasserin aut Enthalten in Colloids and surfaces / A Amsterdam [u.a.] : Elsevier Science, 1993 643 Online-Ressource (DE-627)306659956 (DE-600)1500517-3 (DE-576)098614843 1873-4359 nnns volume:643 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2411 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 35.18 Kolloidchemie Grenzflächenchemie 33.68 Oberflächen Dünne Schichten Grenzflächen Physik 52.78 Oberflächentechnik Wärmebehandlung 58.20 Chemische Technologien: Allgemeines AR 643 |
allfieldsGer |
10.1016/j.colsurfa.2022.128772 doi (DE-627)ELV00766236X (ELSEVIER)S0927-7757(22)00527-1 DE-627 ger DE-627 rda eng 540 DE-600 35.18 bkl 33.68 bkl 52.78 bkl 58.20 bkl Liu, Miaomiao verfasserin aut One-pot synthesis of m-Bi 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Developing efficient photocatalysts is critical for degradation of organic pollutants. Herein, a highly efficient heterojunction photocatalyst (m-Bi2O4/Bi2O4−x/BiOCl) was synthesized by a hydrothermal method. Through changing the added volume of concentrated HCl acid, the ternary composite based on BiOCl nanosheets matrix on which the m-Bi2O4 micro-rods and the Bi2O4−x nanospheres are firmly attached. The prepared m-Bi2O4/Bi2O4−x/BiOCl showed a favorable degradation rate and mineralization ability towards Bisphenol A (BPA) and Ciprofloxacin (CIP) under visible light irradiation, which degraded 98.3% of BPA in 30 min, 82.3% of CIP in 80 min, and the rate constants were around 30.16 and 2.82 times higher than that of pure BiOCl, respectively. This enhanced photocatalytic activity of m-Bi2O4/Bi2O4−x/BiOCl composite can be originated from the improved light adsorption range and the synergistic effect of type-II and the Z-scheme charge transfer on the interfaces of m-Bi2O4, Bi2O4−x and BiOCl, which then lead to an accelerated separation and migration of photo-generated carriers. Meanwhile, the photoluminescence (PL) test and photoelectrochemistry (PEC) test provided strong evidence for the construction of the heterojunction. Moreover, the repeatability of m-Bi2O4/Bi2O4−x/BiOCl heterojunction photocatalyst was also investigated, and it still remained 90% photocatalytic activity after four successive cycles. This work proposed a possible photocatalytic pathway for m-Bi2O4/Bi2O4−x/BiOCl, which would open up a new avenue for water environment treatment utilizing ternary photocatalysts. Bi Ternary heterojunction Photocatalytic activity Organic pollutant Liu, Gang verfasserin aut Liu, Xinmei verfasserin aut Wang, Xiaoyi verfasserin aut Chen, YunLong verfasserin aut Yang, Wenlong verfasserin aut Gao, Chunpeng verfasserin aut Wang, Guanxiang verfasserin aut Teng, Zhengchun verfasserin aut Enthalten in Colloids and surfaces / A Amsterdam [u.a.] : Elsevier Science, 1993 643 Online-Ressource (DE-627)306659956 (DE-600)1500517-3 (DE-576)098614843 1873-4359 nnns volume:643 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2411 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 35.18 Kolloidchemie Grenzflächenchemie 33.68 Oberflächen Dünne Schichten Grenzflächen Physik 52.78 Oberflächentechnik Wärmebehandlung 58.20 Chemische Technologien: Allgemeines AR 643 |
allfieldsSound |
10.1016/j.colsurfa.2022.128772 doi (DE-627)ELV00766236X (ELSEVIER)S0927-7757(22)00527-1 DE-627 ger DE-627 rda eng 540 DE-600 35.18 bkl 33.68 bkl 52.78 bkl 58.20 bkl Liu, Miaomiao verfasserin aut One-pot synthesis of m-Bi 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Developing efficient photocatalysts is critical for degradation of organic pollutants. Herein, a highly efficient heterojunction photocatalyst (m-Bi2O4/Bi2O4−x/BiOCl) was synthesized by a hydrothermal method. Through changing the added volume of concentrated HCl acid, the ternary composite based on BiOCl nanosheets matrix on which the m-Bi2O4 micro-rods and the Bi2O4−x nanospheres are firmly attached. The prepared m-Bi2O4/Bi2O4−x/BiOCl showed a favorable degradation rate and mineralization ability towards Bisphenol A (BPA) and Ciprofloxacin (CIP) under visible light irradiation, which degraded 98.3% of BPA in 30 min, 82.3% of CIP in 80 min, and the rate constants were around 30.16 and 2.82 times higher than that of pure BiOCl, respectively. This enhanced photocatalytic activity of m-Bi2O4/Bi2O4−x/BiOCl composite can be originated from the improved light adsorption range and the synergistic effect of type-II and the Z-scheme charge transfer on the interfaces of m-Bi2O4, Bi2O4−x and BiOCl, which then lead to an accelerated separation and migration of photo-generated carriers. Meanwhile, the photoluminescence (PL) test and photoelectrochemistry (PEC) test provided strong evidence for the construction of the heterojunction. Moreover, the repeatability of m-Bi2O4/Bi2O4−x/BiOCl heterojunction photocatalyst was also investigated, and it still remained 90% photocatalytic activity after four successive cycles. This work proposed a possible photocatalytic pathway for m-Bi2O4/Bi2O4−x/BiOCl, which would open up a new avenue for water environment treatment utilizing ternary photocatalysts. Bi Ternary heterojunction Photocatalytic activity Organic pollutant Liu, Gang verfasserin aut Liu, Xinmei verfasserin aut Wang, Xiaoyi verfasserin aut Chen, YunLong verfasserin aut Yang, Wenlong verfasserin aut Gao, Chunpeng verfasserin aut Wang, Guanxiang verfasserin aut Teng, Zhengchun verfasserin aut Enthalten in Colloids and surfaces / A Amsterdam [u.a.] : Elsevier Science, 1993 643 Online-Ressource (DE-627)306659956 (DE-600)1500517-3 (DE-576)098614843 1873-4359 nnns volume:643 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2411 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 35.18 Kolloidchemie Grenzflächenchemie 33.68 Oberflächen Dünne Schichten Grenzflächen Physik 52.78 Oberflächentechnik Wärmebehandlung 58.20 Chemische Technologien: Allgemeines AR 643 |
language |
English |
source |
Enthalten in Colloids and surfaces / A 643 volume:643 |
sourceStr |
Enthalten in Colloids and surfaces / A 643 volume:643 |
format_phy_str_mv |
Article |
bklname |
Kolloidchemie Grenzflächenchemie Oberflächen Dünne Schichten Grenzflächen Oberflächentechnik Wärmebehandlung Chemische Technologien: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Bi Ternary heterojunction Photocatalytic activity Organic pollutant |
dewey-raw |
540 |
isfreeaccess_bool |
false |
container_title |
Colloids and surfaces / A |
authorswithroles_txt_mv |
Liu, Miaomiao @@aut@@ Liu, Gang @@aut@@ Liu, Xinmei @@aut@@ Wang, Xiaoyi @@aut@@ Chen, YunLong @@aut@@ Yang, Wenlong @@aut@@ Gao, Chunpeng @@aut@@ Wang, Guanxiang @@aut@@ Teng, Zhengchun @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
306659956 |
dewey-sort |
3540 |
id |
ELV00766236X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV00766236X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524152138.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230507s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.colsurfa.2022.128772</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV00766236X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0927-7757(22)00527-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.18</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.68</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.78</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.20</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Miaomiao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">One-pot synthesis of m-Bi</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Developing efficient photocatalysts is critical for degradation of organic pollutants. Herein, a highly efficient heterojunction photocatalyst (m-Bi2O4/Bi2O4−x/BiOCl) was synthesized by a hydrothermal method. Through changing the added volume of concentrated HCl acid, the ternary composite based on BiOCl nanosheets matrix on which the m-Bi2O4 micro-rods and the Bi2O4−x nanospheres are firmly attached. The prepared m-Bi2O4/Bi2O4−x/BiOCl showed a favorable degradation rate and mineralization ability towards Bisphenol A (BPA) and Ciprofloxacin (CIP) under visible light irradiation, which degraded 98.3% of BPA in 30 min, 82.3% of CIP in 80 min, and the rate constants were around 30.16 and 2.82 times higher than that of pure BiOCl, respectively. This enhanced photocatalytic activity of m-Bi2O4/Bi2O4−x/BiOCl composite can be originated from the improved light adsorption range and the synergistic effect of type-II and the Z-scheme charge transfer on the interfaces of m-Bi2O4, Bi2O4−x and BiOCl, which then lead to an accelerated separation and migration of photo-generated carriers. Meanwhile, the photoluminescence (PL) test and photoelectrochemistry (PEC) test provided strong evidence for the construction of the heterojunction. Moreover, the repeatability of m-Bi2O4/Bi2O4−x/BiOCl heterojunction photocatalyst was also investigated, and it still remained 90% photocatalytic activity after four successive cycles. This work proposed a possible photocatalytic pathway for m-Bi2O4/Bi2O4−x/BiOCl, which would open up a new avenue for water environment treatment utilizing ternary photocatalysts.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bi</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ternary heterojunction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photocatalytic activity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Organic pollutant</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Gang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Xinmei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Xiaoyi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, YunLong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Wenlong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gao, Chunpeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Guanxiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Teng, Zhengchun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Colloids and surfaces / A</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1993</subfield><subfield code="g">643</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306659956</subfield><subfield code="w">(DE-600)1500517-3</subfield><subfield code="w">(DE-576)098614843</subfield><subfield code="x">1873-4359</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:643</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2411</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.18</subfield><subfield code="j">Kolloidchemie</subfield><subfield code="j">Grenzflächenchemie</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.68</subfield><subfield code="j">Oberflächen</subfield><subfield code="j">Dünne Schichten</subfield><subfield code="j">Grenzflächen</subfield><subfield code="x">Physik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.78</subfield><subfield code="j">Oberflächentechnik</subfield><subfield code="j">Wärmebehandlung</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.20</subfield><subfield code="j">Chemische Technologien: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">643</subfield></datafield></record></collection>
|
author |
Liu, Miaomiao |
spellingShingle |
Liu, Miaomiao ddc 540 bkl 35.18 bkl 33.68 bkl 52.78 bkl 58.20 misc Bi misc Ternary heterojunction misc Photocatalytic activity misc Organic pollutant One-pot synthesis of m-Bi |
authorStr |
Liu, Miaomiao |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)306659956 |
format |
electronic Article |
dewey-ones |
540 - Chemistry & allied sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1873-4359 |
topic_title |
540 DE-600 35.18 bkl 33.68 bkl 52.78 bkl 58.20 bkl One-pot synthesis of m-Bi Bi Ternary heterojunction Photocatalytic activity Organic pollutant |
topic |
ddc 540 bkl 35.18 bkl 33.68 bkl 52.78 bkl 58.20 misc Bi misc Ternary heterojunction misc Photocatalytic activity misc Organic pollutant |
topic_unstemmed |
ddc 540 bkl 35.18 bkl 33.68 bkl 52.78 bkl 58.20 misc Bi misc Ternary heterojunction misc Photocatalytic activity misc Organic pollutant |
topic_browse |
ddc 540 bkl 35.18 bkl 33.68 bkl 52.78 bkl 58.20 misc Bi misc Ternary heterojunction misc Photocatalytic activity misc Organic pollutant |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Colloids and surfaces / A |
hierarchy_parent_id |
306659956 |
dewey-tens |
540 - Chemistry |
hierarchy_top_title |
Colloids and surfaces / A |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)306659956 (DE-600)1500517-3 (DE-576)098614843 |
title |
One-pot synthesis of m-Bi |
ctrlnum |
(DE-627)ELV00766236X (ELSEVIER)S0927-7757(22)00527-1 |
title_full |
One-pot synthesis of m-Bi |
author_sort |
Liu, Miaomiao |
journal |
Colloids and surfaces / A |
journalStr |
Colloids and surfaces / A |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
author_browse |
Liu, Miaomiao Liu, Gang Liu, Xinmei Wang, Xiaoyi Chen, YunLong Yang, Wenlong Gao, Chunpeng Wang, Guanxiang Teng, Zhengchun |
container_volume |
643 |
class |
540 DE-600 35.18 bkl 33.68 bkl 52.78 bkl 58.20 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Liu, Miaomiao |
doi_str_mv |
10.1016/j.colsurfa.2022.128772 |
dewey-full |
540 |
author2-role |
verfasserin |
title_sort |
one-pot synthesis of m-bi |
title_auth |
One-pot synthesis of m-Bi |
abstract |
Developing efficient photocatalysts is critical for degradation of organic pollutants. Herein, a highly efficient heterojunction photocatalyst (m-Bi2O4/Bi2O4−x/BiOCl) was synthesized by a hydrothermal method. Through changing the added volume of concentrated HCl acid, the ternary composite based on BiOCl nanosheets matrix on which the m-Bi2O4 micro-rods and the Bi2O4−x nanospheres are firmly attached. The prepared m-Bi2O4/Bi2O4−x/BiOCl showed a favorable degradation rate and mineralization ability towards Bisphenol A (BPA) and Ciprofloxacin (CIP) under visible light irradiation, which degraded 98.3% of BPA in 30 min, 82.3% of CIP in 80 min, and the rate constants were around 30.16 and 2.82 times higher than that of pure BiOCl, respectively. This enhanced photocatalytic activity of m-Bi2O4/Bi2O4−x/BiOCl composite can be originated from the improved light adsorption range and the synergistic effect of type-II and the Z-scheme charge transfer on the interfaces of m-Bi2O4, Bi2O4−x and BiOCl, which then lead to an accelerated separation and migration of photo-generated carriers. Meanwhile, the photoluminescence (PL) test and photoelectrochemistry (PEC) test provided strong evidence for the construction of the heterojunction. Moreover, the repeatability of m-Bi2O4/Bi2O4−x/BiOCl heterojunction photocatalyst was also investigated, and it still remained 90% photocatalytic activity after four successive cycles. This work proposed a possible photocatalytic pathway for m-Bi2O4/Bi2O4−x/BiOCl, which would open up a new avenue for water environment treatment utilizing ternary photocatalysts. |
abstractGer |
Developing efficient photocatalysts is critical for degradation of organic pollutants. Herein, a highly efficient heterojunction photocatalyst (m-Bi2O4/Bi2O4−x/BiOCl) was synthesized by a hydrothermal method. Through changing the added volume of concentrated HCl acid, the ternary composite based on BiOCl nanosheets matrix on which the m-Bi2O4 micro-rods and the Bi2O4−x nanospheres are firmly attached. The prepared m-Bi2O4/Bi2O4−x/BiOCl showed a favorable degradation rate and mineralization ability towards Bisphenol A (BPA) and Ciprofloxacin (CIP) under visible light irradiation, which degraded 98.3% of BPA in 30 min, 82.3% of CIP in 80 min, and the rate constants were around 30.16 and 2.82 times higher than that of pure BiOCl, respectively. This enhanced photocatalytic activity of m-Bi2O4/Bi2O4−x/BiOCl composite can be originated from the improved light adsorption range and the synergistic effect of type-II and the Z-scheme charge transfer on the interfaces of m-Bi2O4, Bi2O4−x and BiOCl, which then lead to an accelerated separation and migration of photo-generated carriers. Meanwhile, the photoluminescence (PL) test and photoelectrochemistry (PEC) test provided strong evidence for the construction of the heterojunction. Moreover, the repeatability of m-Bi2O4/Bi2O4−x/BiOCl heterojunction photocatalyst was also investigated, and it still remained 90% photocatalytic activity after four successive cycles. This work proposed a possible photocatalytic pathway for m-Bi2O4/Bi2O4−x/BiOCl, which would open up a new avenue for water environment treatment utilizing ternary photocatalysts. |
abstract_unstemmed |
Developing efficient photocatalysts is critical for degradation of organic pollutants. Herein, a highly efficient heterojunction photocatalyst (m-Bi2O4/Bi2O4−x/BiOCl) was synthesized by a hydrothermal method. Through changing the added volume of concentrated HCl acid, the ternary composite based on BiOCl nanosheets matrix on which the m-Bi2O4 micro-rods and the Bi2O4−x nanospheres are firmly attached. The prepared m-Bi2O4/Bi2O4−x/BiOCl showed a favorable degradation rate and mineralization ability towards Bisphenol A (BPA) and Ciprofloxacin (CIP) under visible light irradiation, which degraded 98.3% of BPA in 30 min, 82.3% of CIP in 80 min, and the rate constants were around 30.16 and 2.82 times higher than that of pure BiOCl, respectively. This enhanced photocatalytic activity of m-Bi2O4/Bi2O4−x/BiOCl composite can be originated from the improved light adsorption range and the synergistic effect of type-II and the Z-scheme charge transfer on the interfaces of m-Bi2O4, Bi2O4−x and BiOCl, which then lead to an accelerated separation and migration of photo-generated carriers. Meanwhile, the photoluminescence (PL) test and photoelectrochemistry (PEC) test provided strong evidence for the construction of the heterojunction. Moreover, the repeatability of m-Bi2O4/Bi2O4−x/BiOCl heterojunction photocatalyst was also investigated, and it still remained 90% photocatalytic activity after four successive cycles. This work proposed a possible photocatalytic pathway for m-Bi2O4/Bi2O4−x/BiOCl, which would open up a new avenue for water environment treatment utilizing ternary photocatalysts. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2411 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
One-pot synthesis of m-Bi |
remote_bool |
true |
author2 |
Liu, Gang Liu, Xinmei Wang, Xiaoyi Chen, YunLong Yang, Wenlong Gao, Chunpeng Wang, Guanxiang Teng, Zhengchun |
author2Str |
Liu, Gang Liu, Xinmei Wang, Xiaoyi Chen, YunLong Yang, Wenlong Gao, Chunpeng Wang, Guanxiang Teng, Zhengchun |
ppnlink |
306659956 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.colsurfa.2022.128772 |
up_date |
2024-07-06T17:02:22.977Z |
_version_ |
1803849923801645056 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV00766236X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524152138.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230507s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.colsurfa.2022.128772</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV00766236X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0927-7757(22)00527-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.18</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.68</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.78</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.20</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Miaomiao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">One-pot synthesis of m-Bi</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Developing efficient photocatalysts is critical for degradation of organic pollutants. Herein, a highly efficient heterojunction photocatalyst (m-Bi2O4/Bi2O4−x/BiOCl) was synthesized by a hydrothermal method. Through changing the added volume of concentrated HCl acid, the ternary composite based on BiOCl nanosheets matrix on which the m-Bi2O4 micro-rods and the Bi2O4−x nanospheres are firmly attached. The prepared m-Bi2O4/Bi2O4−x/BiOCl showed a favorable degradation rate and mineralization ability towards Bisphenol A (BPA) and Ciprofloxacin (CIP) under visible light irradiation, which degraded 98.3% of BPA in 30 min, 82.3% of CIP in 80 min, and the rate constants were around 30.16 and 2.82 times higher than that of pure BiOCl, respectively. This enhanced photocatalytic activity of m-Bi2O4/Bi2O4−x/BiOCl composite can be originated from the improved light adsorption range and the synergistic effect of type-II and the Z-scheme charge transfer on the interfaces of m-Bi2O4, Bi2O4−x and BiOCl, which then lead to an accelerated separation and migration of photo-generated carriers. Meanwhile, the photoluminescence (PL) test and photoelectrochemistry (PEC) test provided strong evidence for the construction of the heterojunction. Moreover, the repeatability of m-Bi2O4/Bi2O4−x/BiOCl heterojunction photocatalyst was also investigated, and it still remained 90% photocatalytic activity after four successive cycles. This work proposed a possible photocatalytic pathway for m-Bi2O4/Bi2O4−x/BiOCl, which would open up a new avenue for water environment treatment utilizing ternary photocatalysts.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bi</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ternary heterojunction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photocatalytic activity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Organic pollutant</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Gang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Xinmei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Xiaoyi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, YunLong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Wenlong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gao, Chunpeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Guanxiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Teng, Zhengchun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Colloids and surfaces / A</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1993</subfield><subfield code="g">643</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306659956</subfield><subfield code="w">(DE-600)1500517-3</subfield><subfield code="w">(DE-576)098614843</subfield><subfield code="x">1873-4359</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:643</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2411</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.18</subfield><subfield code="j">Kolloidchemie</subfield><subfield code="j">Grenzflächenchemie</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.68</subfield><subfield code="j">Oberflächen</subfield><subfield code="j">Dünne Schichten</subfield><subfield code="j">Grenzflächen</subfield><subfield code="x">Physik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.78</subfield><subfield code="j">Oberflächentechnik</subfield><subfield code="j">Wärmebehandlung</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.20</subfield><subfield code="j">Chemische Technologien: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">643</subfield></datafield></record></collection>
|
score |
7.4009047 |