Establishment of thermal conductivity model and analysis of enhancement mechanism in nanofluids: A molecular dynamics study
The requirements for high efficient heat exchange technology in many fields are gradually increasing. Nanofluids have attracted extensive attention due to their enhanced thermal conductivity. Revealing the mechanism of thermal conductivity enhancement is key to the preparation of high-efficiency nan...
Ausführliche Beschreibung
Autor*in: |
Li, Yanhua [verfasserIn] Zhai, Yuling [verfasserIn] Xuan, Zihao [verfasserIn] Guo, Wenjie [verfasserIn] Wang, Hua [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of molecular liquids - New York, NY [u.a.] : Elsevier, 1983, 354 |
---|---|
Übergeordnetes Werk: |
volume:354 |
DOI / URN: |
10.1016/j.molliq.2022.118877 |
---|
Katalog-ID: |
ELV007695772 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV007695772 | ||
003 | DE-627 | ||
005 | 20230524151307.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230507s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.molliq.2022.118877 |2 doi | |
035 | |a (DE-627)ELV007695772 | ||
035 | |a (ELSEVIER)S0167-7322(22)00415-9 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 540 |q DE-600 |
084 | |a 35.21 |2 bkl | ||
100 | 1 | |a Li, Yanhua |e verfasserin |4 aut | |
245 | 1 | 0 | |a Establishment of thermal conductivity model and analysis of enhancement mechanism in nanofluids: A molecular dynamics study |
264 | 1 | |c 2022 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The requirements for high efficient heat exchange technology in many fields are gradually increasing. Nanofluids have attracted extensive attention due to their enhanced thermal conductivity. Revealing the mechanism of thermal conductivity enhancement is key to the preparation of high-efficiency nanofluids. In molecular dynamics (MD), the accuracy of simulation models is crucial to predict the thermal conductivity of nanofluids. Here, systems with various volume fractions were established by utilizing three different approaches. These approaches, denoted as Model 1, Model 2, and Model 3, involved changing the number of nanoparticles (NPs), the size of NPs, and the size of the simulation box as well as number of water molecules, respectively. The thermal conductivity values obtained from the simulations were validated using experimental data. The mechanism of thermal conductivity enhancement was explained by microscopic parameters. The results show that Model 1 was best able to capture the trends in thermal conductivity seen in the experimental data. Further, the thickness of the interfacial layer, estimated from the RDF and number density, was not affected by volume fraction and temperature, which instead determine the interactive forces between the NPs and the base fluid. The mechanism of enhancement of thermal conductivity may be attributed to the fact that the L-J potential energy of the Cu-O pair (−1.21 Kcal . mol−1) is stronger than that of the O-O pair (−0.15 Kcal . mol−1), thereby bringing water molecules into closer contact with the Cu NPs. As the volume fraction and temperature increase, the heat exchange between water molecules inside and outside the interfacial layer also increases, which accelerates the attainment of thermal equilibrium in the nanofluidic system. | ||
650 | 4 | |a Thermal conductivity | |
650 | 4 | |a Molecular dynamics | |
650 | 4 | |a Radial distribution function | |
650 | 4 | |a Number density | |
650 | 4 | |a Trajectory | |
700 | 1 | |a Zhai, Yuling |e verfasserin |4 aut | |
700 | 1 | |a Xuan, Zihao |e verfasserin |4 aut | |
700 | 1 | |a Guo, Wenjie |e verfasserin |4 aut | |
700 | 1 | |a Wang, Hua |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of molecular liquids |d New York, NY [u.a.] : Elsevier, 1983 |g 354 |h Online-Ressource |w (DE-627)302469664 |w (DE-600)1491496-7 |w (DE-576)259483915 |x 1873-3166 |7 nnns |
773 | 1 | 8 | |g volume:354 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_374 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2807 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 35.21 |j Lösungen |j Flüssigkeiten |x Physikalische Chemie |
951 | |a AR | ||
952 | |d 354 |
author_variant |
y l yl y z yz z x zx w g wg h w hw |
---|---|
matchkey_str |
article:18733166:2022----::salsmnotemlodciiyoeadnlssfnacmnmcaimnao |
hierarchy_sort_str |
2022 |
bklnumber |
35.21 |
publishDate |
2022 |
allfields |
10.1016/j.molliq.2022.118877 doi (DE-627)ELV007695772 (ELSEVIER)S0167-7322(22)00415-9 DE-627 ger DE-627 rda eng 540 DE-600 35.21 bkl Li, Yanhua verfasserin aut Establishment of thermal conductivity model and analysis of enhancement mechanism in nanofluids: A molecular dynamics study 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The requirements for high efficient heat exchange technology in many fields are gradually increasing. Nanofluids have attracted extensive attention due to their enhanced thermal conductivity. Revealing the mechanism of thermal conductivity enhancement is key to the preparation of high-efficiency nanofluids. In molecular dynamics (MD), the accuracy of simulation models is crucial to predict the thermal conductivity of nanofluids. Here, systems with various volume fractions were established by utilizing three different approaches. These approaches, denoted as Model 1, Model 2, and Model 3, involved changing the number of nanoparticles (NPs), the size of NPs, and the size of the simulation box as well as number of water molecules, respectively. The thermal conductivity values obtained from the simulations were validated using experimental data. The mechanism of thermal conductivity enhancement was explained by microscopic parameters. The results show that Model 1 was best able to capture the trends in thermal conductivity seen in the experimental data. Further, the thickness of the interfacial layer, estimated from the RDF and number density, was not affected by volume fraction and temperature, which instead determine the interactive forces between the NPs and the base fluid. The mechanism of enhancement of thermal conductivity may be attributed to the fact that the L-J potential energy of the Cu-O pair (−1.21 Kcal . mol−1) is stronger than that of the O-O pair (−0.15 Kcal . mol−1), thereby bringing water molecules into closer contact with the Cu NPs. As the volume fraction and temperature increase, the heat exchange between water molecules inside and outside the interfacial layer also increases, which accelerates the attainment of thermal equilibrium in the nanofluidic system. Thermal conductivity Molecular dynamics Radial distribution function Number density Trajectory Zhai, Yuling verfasserin aut Xuan, Zihao verfasserin aut Guo, Wenjie verfasserin aut Wang, Hua verfasserin aut Enthalten in Journal of molecular liquids New York, NY [u.a.] : Elsevier, 1983 354 Online-Ressource (DE-627)302469664 (DE-600)1491496-7 (DE-576)259483915 1873-3166 nnns volume:354 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_374 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2807 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 35.21 Lösungen Flüssigkeiten Physikalische Chemie AR 354 |
spelling |
10.1016/j.molliq.2022.118877 doi (DE-627)ELV007695772 (ELSEVIER)S0167-7322(22)00415-9 DE-627 ger DE-627 rda eng 540 DE-600 35.21 bkl Li, Yanhua verfasserin aut Establishment of thermal conductivity model and analysis of enhancement mechanism in nanofluids: A molecular dynamics study 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The requirements for high efficient heat exchange technology in many fields are gradually increasing. Nanofluids have attracted extensive attention due to their enhanced thermal conductivity. Revealing the mechanism of thermal conductivity enhancement is key to the preparation of high-efficiency nanofluids. In molecular dynamics (MD), the accuracy of simulation models is crucial to predict the thermal conductivity of nanofluids. Here, systems with various volume fractions were established by utilizing three different approaches. These approaches, denoted as Model 1, Model 2, and Model 3, involved changing the number of nanoparticles (NPs), the size of NPs, and the size of the simulation box as well as number of water molecules, respectively. The thermal conductivity values obtained from the simulations were validated using experimental data. The mechanism of thermal conductivity enhancement was explained by microscopic parameters. The results show that Model 1 was best able to capture the trends in thermal conductivity seen in the experimental data. Further, the thickness of the interfacial layer, estimated from the RDF and number density, was not affected by volume fraction and temperature, which instead determine the interactive forces between the NPs and the base fluid. The mechanism of enhancement of thermal conductivity may be attributed to the fact that the L-J potential energy of the Cu-O pair (−1.21 Kcal . mol−1) is stronger than that of the O-O pair (−0.15 Kcal . mol−1), thereby bringing water molecules into closer contact with the Cu NPs. As the volume fraction and temperature increase, the heat exchange between water molecules inside and outside the interfacial layer also increases, which accelerates the attainment of thermal equilibrium in the nanofluidic system. Thermal conductivity Molecular dynamics Radial distribution function Number density Trajectory Zhai, Yuling verfasserin aut Xuan, Zihao verfasserin aut Guo, Wenjie verfasserin aut Wang, Hua verfasserin aut Enthalten in Journal of molecular liquids New York, NY [u.a.] : Elsevier, 1983 354 Online-Ressource (DE-627)302469664 (DE-600)1491496-7 (DE-576)259483915 1873-3166 nnns volume:354 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_374 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2807 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 35.21 Lösungen Flüssigkeiten Physikalische Chemie AR 354 |
allfields_unstemmed |
10.1016/j.molliq.2022.118877 doi (DE-627)ELV007695772 (ELSEVIER)S0167-7322(22)00415-9 DE-627 ger DE-627 rda eng 540 DE-600 35.21 bkl Li, Yanhua verfasserin aut Establishment of thermal conductivity model and analysis of enhancement mechanism in nanofluids: A molecular dynamics study 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The requirements for high efficient heat exchange technology in many fields are gradually increasing. Nanofluids have attracted extensive attention due to their enhanced thermal conductivity. Revealing the mechanism of thermal conductivity enhancement is key to the preparation of high-efficiency nanofluids. In molecular dynamics (MD), the accuracy of simulation models is crucial to predict the thermal conductivity of nanofluids. Here, systems with various volume fractions were established by utilizing three different approaches. These approaches, denoted as Model 1, Model 2, and Model 3, involved changing the number of nanoparticles (NPs), the size of NPs, and the size of the simulation box as well as number of water molecules, respectively. The thermal conductivity values obtained from the simulations were validated using experimental data. The mechanism of thermal conductivity enhancement was explained by microscopic parameters. The results show that Model 1 was best able to capture the trends in thermal conductivity seen in the experimental data. Further, the thickness of the interfacial layer, estimated from the RDF and number density, was not affected by volume fraction and temperature, which instead determine the interactive forces between the NPs and the base fluid. The mechanism of enhancement of thermal conductivity may be attributed to the fact that the L-J potential energy of the Cu-O pair (−1.21 Kcal . mol−1) is stronger than that of the O-O pair (−0.15 Kcal . mol−1), thereby bringing water molecules into closer contact with the Cu NPs. As the volume fraction and temperature increase, the heat exchange between water molecules inside and outside the interfacial layer also increases, which accelerates the attainment of thermal equilibrium in the nanofluidic system. Thermal conductivity Molecular dynamics Radial distribution function Number density Trajectory Zhai, Yuling verfasserin aut Xuan, Zihao verfasserin aut Guo, Wenjie verfasserin aut Wang, Hua verfasserin aut Enthalten in Journal of molecular liquids New York, NY [u.a.] : Elsevier, 1983 354 Online-Ressource (DE-627)302469664 (DE-600)1491496-7 (DE-576)259483915 1873-3166 nnns volume:354 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_374 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2807 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 35.21 Lösungen Flüssigkeiten Physikalische Chemie AR 354 |
allfieldsGer |
10.1016/j.molliq.2022.118877 doi (DE-627)ELV007695772 (ELSEVIER)S0167-7322(22)00415-9 DE-627 ger DE-627 rda eng 540 DE-600 35.21 bkl Li, Yanhua verfasserin aut Establishment of thermal conductivity model and analysis of enhancement mechanism in nanofluids: A molecular dynamics study 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The requirements for high efficient heat exchange technology in many fields are gradually increasing. Nanofluids have attracted extensive attention due to their enhanced thermal conductivity. Revealing the mechanism of thermal conductivity enhancement is key to the preparation of high-efficiency nanofluids. In molecular dynamics (MD), the accuracy of simulation models is crucial to predict the thermal conductivity of nanofluids. Here, systems with various volume fractions were established by utilizing three different approaches. These approaches, denoted as Model 1, Model 2, and Model 3, involved changing the number of nanoparticles (NPs), the size of NPs, and the size of the simulation box as well as number of water molecules, respectively. The thermal conductivity values obtained from the simulations were validated using experimental data. The mechanism of thermal conductivity enhancement was explained by microscopic parameters. The results show that Model 1 was best able to capture the trends in thermal conductivity seen in the experimental data. Further, the thickness of the interfacial layer, estimated from the RDF and number density, was not affected by volume fraction and temperature, which instead determine the interactive forces between the NPs and the base fluid. The mechanism of enhancement of thermal conductivity may be attributed to the fact that the L-J potential energy of the Cu-O pair (−1.21 Kcal . mol−1) is stronger than that of the O-O pair (−0.15 Kcal . mol−1), thereby bringing water molecules into closer contact with the Cu NPs. As the volume fraction and temperature increase, the heat exchange between water molecules inside and outside the interfacial layer also increases, which accelerates the attainment of thermal equilibrium in the nanofluidic system. Thermal conductivity Molecular dynamics Radial distribution function Number density Trajectory Zhai, Yuling verfasserin aut Xuan, Zihao verfasserin aut Guo, Wenjie verfasserin aut Wang, Hua verfasserin aut Enthalten in Journal of molecular liquids New York, NY [u.a.] : Elsevier, 1983 354 Online-Ressource (DE-627)302469664 (DE-600)1491496-7 (DE-576)259483915 1873-3166 nnns volume:354 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_374 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2807 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 35.21 Lösungen Flüssigkeiten Physikalische Chemie AR 354 |
allfieldsSound |
10.1016/j.molliq.2022.118877 doi (DE-627)ELV007695772 (ELSEVIER)S0167-7322(22)00415-9 DE-627 ger DE-627 rda eng 540 DE-600 35.21 bkl Li, Yanhua verfasserin aut Establishment of thermal conductivity model and analysis of enhancement mechanism in nanofluids: A molecular dynamics study 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The requirements for high efficient heat exchange technology in many fields are gradually increasing. Nanofluids have attracted extensive attention due to their enhanced thermal conductivity. Revealing the mechanism of thermal conductivity enhancement is key to the preparation of high-efficiency nanofluids. In molecular dynamics (MD), the accuracy of simulation models is crucial to predict the thermal conductivity of nanofluids. Here, systems with various volume fractions were established by utilizing three different approaches. These approaches, denoted as Model 1, Model 2, and Model 3, involved changing the number of nanoparticles (NPs), the size of NPs, and the size of the simulation box as well as number of water molecules, respectively. The thermal conductivity values obtained from the simulations were validated using experimental data. The mechanism of thermal conductivity enhancement was explained by microscopic parameters. The results show that Model 1 was best able to capture the trends in thermal conductivity seen in the experimental data. Further, the thickness of the interfacial layer, estimated from the RDF and number density, was not affected by volume fraction and temperature, which instead determine the interactive forces between the NPs and the base fluid. The mechanism of enhancement of thermal conductivity may be attributed to the fact that the L-J potential energy of the Cu-O pair (−1.21 Kcal . mol−1) is stronger than that of the O-O pair (−0.15 Kcal . mol−1), thereby bringing water molecules into closer contact with the Cu NPs. As the volume fraction and temperature increase, the heat exchange between water molecules inside and outside the interfacial layer also increases, which accelerates the attainment of thermal equilibrium in the nanofluidic system. Thermal conductivity Molecular dynamics Radial distribution function Number density Trajectory Zhai, Yuling verfasserin aut Xuan, Zihao verfasserin aut Guo, Wenjie verfasserin aut Wang, Hua verfasserin aut Enthalten in Journal of molecular liquids New York, NY [u.a.] : Elsevier, 1983 354 Online-Ressource (DE-627)302469664 (DE-600)1491496-7 (DE-576)259483915 1873-3166 nnns volume:354 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_374 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2807 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 35.21 Lösungen Flüssigkeiten Physikalische Chemie AR 354 |
language |
English |
source |
Enthalten in Journal of molecular liquids 354 volume:354 |
sourceStr |
Enthalten in Journal of molecular liquids 354 volume:354 |
format_phy_str_mv |
Article |
bklname |
Lösungen Flüssigkeiten |
institution |
findex.gbv.de |
topic_facet |
Thermal conductivity Molecular dynamics Radial distribution function Number density Trajectory |
dewey-raw |
540 |
isfreeaccess_bool |
false |
container_title |
Journal of molecular liquids |
authorswithroles_txt_mv |
Li, Yanhua @@aut@@ Zhai, Yuling @@aut@@ Xuan, Zihao @@aut@@ Guo, Wenjie @@aut@@ Wang, Hua @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
302469664 |
dewey-sort |
3540 |
id |
ELV007695772 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV007695772</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524151307.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230507s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.molliq.2022.118877</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV007695772</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0167-7322(22)00415-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.21</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Yanhua</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Establishment of thermal conductivity model and analysis of enhancement mechanism in nanofluids: A molecular dynamics study</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The requirements for high efficient heat exchange technology in many fields are gradually increasing. Nanofluids have attracted extensive attention due to their enhanced thermal conductivity. Revealing the mechanism of thermal conductivity enhancement is key to the preparation of high-efficiency nanofluids. In molecular dynamics (MD), the accuracy of simulation models is crucial to predict the thermal conductivity of nanofluids. Here, systems with various volume fractions were established by utilizing three different approaches. These approaches, denoted as Model 1, Model 2, and Model 3, involved changing the number of nanoparticles (NPs), the size of NPs, and the size of the simulation box as well as number of water molecules, respectively. The thermal conductivity values obtained from the simulations were validated using experimental data. The mechanism of thermal conductivity enhancement was explained by microscopic parameters. The results show that Model 1 was best able to capture the trends in thermal conductivity seen in the experimental data. Further, the thickness of the interfacial layer, estimated from the RDF and number density, was not affected by volume fraction and temperature, which instead determine the interactive forces between the NPs and the base fluid. The mechanism of enhancement of thermal conductivity may be attributed to the fact that the L-J potential energy of the Cu-O pair (−1.21 Kcal . mol−1) is stronger than that of the O-O pair (−0.15 Kcal . mol−1), thereby bringing water molecules into closer contact with the Cu NPs. As the volume fraction and temperature increase, the heat exchange between water molecules inside and outside the interfacial layer also increases, which accelerates the attainment of thermal equilibrium in the nanofluidic system.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermal conductivity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Molecular dynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Radial distribution function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number density</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Trajectory</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhai, Yuling</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xuan, Zihao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guo, Wenjie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Hua</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of molecular liquids</subfield><subfield code="d">New York, NY [u.a.] : Elsevier, 1983</subfield><subfield code="g">354</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)302469664</subfield><subfield code="w">(DE-600)1491496-7</subfield><subfield code="w">(DE-576)259483915</subfield><subfield code="x">1873-3166</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:354</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_374</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2807</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.21</subfield><subfield code="j">Lösungen</subfield><subfield code="j">Flüssigkeiten</subfield><subfield code="x">Physikalische Chemie</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">354</subfield></datafield></record></collection>
|
author |
Li, Yanhua |
spellingShingle |
Li, Yanhua ddc 540 bkl 35.21 misc Thermal conductivity misc Molecular dynamics misc Radial distribution function misc Number density misc Trajectory Establishment of thermal conductivity model and analysis of enhancement mechanism in nanofluids: A molecular dynamics study |
authorStr |
Li, Yanhua |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)302469664 |
format |
electronic Article |
dewey-ones |
540 - Chemistry & allied sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1873-3166 |
topic_title |
540 DE-600 35.21 bkl Establishment of thermal conductivity model and analysis of enhancement mechanism in nanofluids: A molecular dynamics study Thermal conductivity Molecular dynamics Radial distribution function Number density Trajectory |
topic |
ddc 540 bkl 35.21 misc Thermal conductivity misc Molecular dynamics misc Radial distribution function misc Number density misc Trajectory |
topic_unstemmed |
ddc 540 bkl 35.21 misc Thermal conductivity misc Molecular dynamics misc Radial distribution function misc Number density misc Trajectory |
topic_browse |
ddc 540 bkl 35.21 misc Thermal conductivity misc Molecular dynamics misc Radial distribution function misc Number density misc Trajectory |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of molecular liquids |
hierarchy_parent_id |
302469664 |
dewey-tens |
540 - Chemistry |
hierarchy_top_title |
Journal of molecular liquids |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)302469664 (DE-600)1491496-7 (DE-576)259483915 |
title |
Establishment of thermal conductivity model and analysis of enhancement mechanism in nanofluids: A molecular dynamics study |
ctrlnum |
(DE-627)ELV007695772 (ELSEVIER)S0167-7322(22)00415-9 |
title_full |
Establishment of thermal conductivity model and analysis of enhancement mechanism in nanofluids: A molecular dynamics study |
author_sort |
Li, Yanhua |
journal |
Journal of molecular liquids |
journalStr |
Journal of molecular liquids |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
author_browse |
Li, Yanhua Zhai, Yuling Xuan, Zihao Guo, Wenjie Wang, Hua |
container_volume |
354 |
class |
540 DE-600 35.21 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Li, Yanhua |
doi_str_mv |
10.1016/j.molliq.2022.118877 |
dewey-full |
540 |
author2-role |
verfasserin |
title_sort |
establishment of thermal conductivity model and analysis of enhancement mechanism in nanofluids: a molecular dynamics study |
title_auth |
Establishment of thermal conductivity model and analysis of enhancement mechanism in nanofluids: A molecular dynamics study |
abstract |
The requirements for high efficient heat exchange technology in many fields are gradually increasing. Nanofluids have attracted extensive attention due to their enhanced thermal conductivity. Revealing the mechanism of thermal conductivity enhancement is key to the preparation of high-efficiency nanofluids. In molecular dynamics (MD), the accuracy of simulation models is crucial to predict the thermal conductivity of nanofluids. Here, systems with various volume fractions were established by utilizing three different approaches. These approaches, denoted as Model 1, Model 2, and Model 3, involved changing the number of nanoparticles (NPs), the size of NPs, and the size of the simulation box as well as number of water molecules, respectively. The thermal conductivity values obtained from the simulations were validated using experimental data. The mechanism of thermal conductivity enhancement was explained by microscopic parameters. The results show that Model 1 was best able to capture the trends in thermal conductivity seen in the experimental data. Further, the thickness of the interfacial layer, estimated from the RDF and number density, was not affected by volume fraction and temperature, which instead determine the interactive forces between the NPs and the base fluid. The mechanism of enhancement of thermal conductivity may be attributed to the fact that the L-J potential energy of the Cu-O pair (−1.21 Kcal . mol−1) is stronger than that of the O-O pair (−0.15 Kcal . mol−1), thereby bringing water molecules into closer contact with the Cu NPs. As the volume fraction and temperature increase, the heat exchange between water molecules inside and outside the interfacial layer also increases, which accelerates the attainment of thermal equilibrium in the nanofluidic system. |
abstractGer |
The requirements for high efficient heat exchange technology in many fields are gradually increasing. Nanofluids have attracted extensive attention due to their enhanced thermal conductivity. Revealing the mechanism of thermal conductivity enhancement is key to the preparation of high-efficiency nanofluids. In molecular dynamics (MD), the accuracy of simulation models is crucial to predict the thermal conductivity of nanofluids. Here, systems with various volume fractions were established by utilizing three different approaches. These approaches, denoted as Model 1, Model 2, and Model 3, involved changing the number of nanoparticles (NPs), the size of NPs, and the size of the simulation box as well as number of water molecules, respectively. The thermal conductivity values obtained from the simulations were validated using experimental data. The mechanism of thermal conductivity enhancement was explained by microscopic parameters. The results show that Model 1 was best able to capture the trends in thermal conductivity seen in the experimental data. Further, the thickness of the interfacial layer, estimated from the RDF and number density, was not affected by volume fraction and temperature, which instead determine the interactive forces between the NPs and the base fluid. The mechanism of enhancement of thermal conductivity may be attributed to the fact that the L-J potential energy of the Cu-O pair (−1.21 Kcal . mol−1) is stronger than that of the O-O pair (−0.15 Kcal . mol−1), thereby bringing water molecules into closer contact with the Cu NPs. As the volume fraction and temperature increase, the heat exchange between water molecules inside and outside the interfacial layer also increases, which accelerates the attainment of thermal equilibrium in the nanofluidic system. |
abstract_unstemmed |
The requirements for high efficient heat exchange technology in many fields are gradually increasing. Nanofluids have attracted extensive attention due to their enhanced thermal conductivity. Revealing the mechanism of thermal conductivity enhancement is key to the preparation of high-efficiency nanofluids. In molecular dynamics (MD), the accuracy of simulation models is crucial to predict the thermal conductivity of nanofluids. Here, systems with various volume fractions were established by utilizing three different approaches. These approaches, denoted as Model 1, Model 2, and Model 3, involved changing the number of nanoparticles (NPs), the size of NPs, and the size of the simulation box as well as number of water molecules, respectively. The thermal conductivity values obtained from the simulations were validated using experimental data. The mechanism of thermal conductivity enhancement was explained by microscopic parameters. The results show that Model 1 was best able to capture the trends in thermal conductivity seen in the experimental data. Further, the thickness of the interfacial layer, estimated from the RDF and number density, was not affected by volume fraction and temperature, which instead determine the interactive forces between the NPs and the base fluid. The mechanism of enhancement of thermal conductivity may be attributed to the fact that the L-J potential energy of the Cu-O pair (−1.21 Kcal . mol−1) is stronger than that of the O-O pair (−0.15 Kcal . mol−1), thereby bringing water molecules into closer contact with the Cu NPs. As the volume fraction and temperature increase, the heat exchange between water molecules inside and outside the interfacial layer also increases, which accelerates the attainment of thermal equilibrium in the nanofluidic system. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_374 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2807 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Establishment of thermal conductivity model and analysis of enhancement mechanism in nanofluids: A molecular dynamics study |
remote_bool |
true |
author2 |
Zhai, Yuling Xuan, Zihao Guo, Wenjie Wang, Hua |
author2Str |
Zhai, Yuling Xuan, Zihao Guo, Wenjie Wang, Hua |
ppnlink |
302469664 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.molliq.2022.118877 |
up_date |
2024-07-06T17:08:33.029Z |
_version_ |
1803850311829291008 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV007695772</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524151307.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230507s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.molliq.2022.118877</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV007695772</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0167-7322(22)00415-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.21</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Yanhua</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Establishment of thermal conductivity model and analysis of enhancement mechanism in nanofluids: A molecular dynamics study</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The requirements for high efficient heat exchange technology in many fields are gradually increasing. Nanofluids have attracted extensive attention due to their enhanced thermal conductivity. Revealing the mechanism of thermal conductivity enhancement is key to the preparation of high-efficiency nanofluids. In molecular dynamics (MD), the accuracy of simulation models is crucial to predict the thermal conductivity of nanofluids. Here, systems with various volume fractions were established by utilizing three different approaches. These approaches, denoted as Model 1, Model 2, and Model 3, involved changing the number of nanoparticles (NPs), the size of NPs, and the size of the simulation box as well as number of water molecules, respectively. The thermal conductivity values obtained from the simulations were validated using experimental data. The mechanism of thermal conductivity enhancement was explained by microscopic parameters. The results show that Model 1 was best able to capture the trends in thermal conductivity seen in the experimental data. Further, the thickness of the interfacial layer, estimated from the RDF and number density, was not affected by volume fraction and temperature, which instead determine the interactive forces between the NPs and the base fluid. The mechanism of enhancement of thermal conductivity may be attributed to the fact that the L-J potential energy of the Cu-O pair (−1.21 Kcal . mol−1) is stronger than that of the O-O pair (−0.15 Kcal . mol−1), thereby bringing water molecules into closer contact with the Cu NPs. As the volume fraction and temperature increase, the heat exchange between water molecules inside and outside the interfacial layer also increases, which accelerates the attainment of thermal equilibrium in the nanofluidic system.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermal conductivity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Molecular dynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Radial distribution function</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number density</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Trajectory</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhai, Yuling</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xuan, Zihao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guo, Wenjie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Hua</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of molecular liquids</subfield><subfield code="d">New York, NY [u.a.] : Elsevier, 1983</subfield><subfield code="g">354</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)302469664</subfield><subfield code="w">(DE-600)1491496-7</subfield><subfield code="w">(DE-576)259483915</subfield><subfield code="x">1873-3166</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:354</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_374</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2807</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.21</subfield><subfield code="j">Lösungen</subfield><subfield code="j">Flüssigkeiten</subfield><subfield code="x">Physikalische Chemie</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">354</subfield></datafield></record></collection>
|
score |
7.4032135 |