Impingement cooling of an isoflux flat plate by blockage jet
Impingement cooling of an isoflux flat plate by a round jet, generated through a perforated blockage plate, is experimentally investigated at a fixed jet Reynolds number of Rej = 20,000. With the perforation diameter (Dj) fixed, varying the thickness (t) of blockage plate forms three distinct turbul...
Ausführliche Beschreibung
Autor*in: |
Liu, Y.Y. [verfasserIn] Bhaiyat, T.I. [verfasserIn] Schekman, S.W. [verfasserIn] Lu, T.J. [verfasserIn] Kim, T. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Applied thermal engineering - Amsterdam [u.a.] : Elsevier Science, 1996, 209 |
---|---|
Übergeordnetes Werk: |
volume:209 |
DOI / URN: |
10.1016/j.applthermaleng.2022.118239 |
---|
Katalog-ID: |
ELV007699123 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV007699123 | ||
003 | DE-627 | ||
005 | 20230524135300.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230507s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.applthermaleng.2022.118239 |2 doi | |
035 | |a (DE-627)ELV007699123 | ||
035 | |a (ELSEVIER)S1359-4311(22)00200-9 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 690 |q DE-600 |
084 | |a 52.43 |2 bkl | ||
084 | |a 52.52 |2 bkl | ||
084 | |a 52.42 |2 bkl | ||
084 | |a 50.38 |2 bkl | ||
100 | 1 | |a Liu, Y.Y. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Impingement cooling of an isoflux flat plate by blockage jet |
264 | 1 | |c 2022 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Impingement cooling of an isoflux flat plate by a round jet, generated through a perforated blockage plate, is experimentally investigated at a fixed jet Reynolds number of Rej = 20,000. With the perforation diameter (Dj) fixed, varying the thickness (t) of blockage plate forms three distinct turbulent jets: (1)orifice jet (e.g., t/Dj ≤ 0.5), (2) blockage jet (e.g., 0.5 < t/Dj < 8.0), and (3) tube (or nozzle) jet (e.g., t/Dj ≥ 8.0). Thermofluidic characteristics of these jets in both free exit and impingement were measured and directly compared under consistent conditions. Particular focus was placed upon how these characteristics vary in the intermediate range of jet relative thickness t/Dj, with reference to the two limiting cases, namely, the orifice jet and the tube jet. It was demonstrated that the blockage jet behaves neither as an orifice jet, nor as a tube jet, and its properties cannot be considered interchangeable. Measurements of jet flow properties - exit velocity profile, potential core length and centerline turbulence - highlight the distinguishing features among the three jet types. While the blockage jet exhibits an intermediate thermal performance, the tube jet provides the poorest performance, and the orifice jet performs the best. Since it is not always possible to use an orifice jet in practice (e.g., due to structural constraints), this study provides evidence for the existence of optimal H/Dj for a given jet type (i.e., fixed t/Dj): correspondingly, both primary and secondary thermal peaks shift when t/Dj and H/Dj are varied. | ||
650 | 4 | |a Blockage jet | |
650 | 4 | |a Jet impingement | |
650 | 4 | |a Orifice jet | |
650 | 4 | |a Perforated blockage thickness | |
650 | 4 | |a Potential core length | |
650 | 4 | |a Tube jet | |
700 | 1 | |a Bhaiyat, T.I. |e verfasserin |4 aut | |
700 | 1 | |a Schekman, S.W. |e verfasserin |4 aut | |
700 | 1 | |a Lu, T.J. |e verfasserin |4 aut | |
700 | 1 | |a Kim, T. |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Applied thermal engineering |d Amsterdam [u.a.] : Elsevier Science, 1996 |g 209 |h Online-Ressource |w (DE-627)320594122 |w (DE-600)2019322-1 |w (DE-576)256146322 |x 1359-4311 |7 nnns |
773 | 1 | 8 | |g volume:209 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 52.43 |j Kältetechnik |
936 | b | k | |a 52.52 |j Thermische Energieerzeugung |j Wärmetechnik |
936 | b | k | |a 52.42 |j Heizungstechnik |j Lüftungstechnik |j Klimatechnik |
936 | b | k | |a 50.38 |j Technische Thermodynamik |
951 | |a AR | ||
952 | |d 209 |
author_variant |
y l yl t b tb s s ss t l tl t k tk |
---|---|
matchkey_str |
article:13594311:2022----::migmncoigfnsfufapa |
hierarchy_sort_str |
2022 |
bklnumber |
52.43 52.52 52.42 50.38 |
publishDate |
2022 |
allfields |
10.1016/j.applthermaleng.2022.118239 doi (DE-627)ELV007699123 (ELSEVIER)S1359-4311(22)00200-9 DE-627 ger DE-627 rda eng 690 DE-600 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl Liu, Y.Y. verfasserin aut Impingement cooling of an isoflux flat plate by blockage jet 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Impingement cooling of an isoflux flat plate by a round jet, generated through a perforated blockage plate, is experimentally investigated at a fixed jet Reynolds number of Rej = 20,000. With the perforation diameter (Dj) fixed, varying the thickness (t) of blockage plate forms three distinct turbulent jets: (1)orifice jet (e.g., t/Dj ≤ 0.5), (2) blockage jet (e.g., 0.5 < t/Dj < 8.0), and (3) tube (or nozzle) jet (e.g., t/Dj ≥ 8.0). Thermofluidic characteristics of these jets in both free exit and impingement were measured and directly compared under consistent conditions. Particular focus was placed upon how these characteristics vary in the intermediate range of jet relative thickness t/Dj, with reference to the two limiting cases, namely, the orifice jet and the tube jet. It was demonstrated that the blockage jet behaves neither as an orifice jet, nor as a tube jet, and its properties cannot be considered interchangeable. Measurements of jet flow properties - exit velocity profile, potential core length and centerline turbulence - highlight the distinguishing features among the three jet types. While the blockage jet exhibits an intermediate thermal performance, the tube jet provides the poorest performance, and the orifice jet performs the best. Since it is not always possible to use an orifice jet in practice (e.g., due to structural constraints), this study provides evidence for the existence of optimal H/Dj for a given jet type (i.e., fixed t/Dj): correspondingly, both primary and secondary thermal peaks shift when t/Dj and H/Dj are varied. Blockage jet Jet impingement Orifice jet Perforated blockage thickness Potential core length Tube jet Bhaiyat, T.I. verfasserin aut Schekman, S.W. verfasserin aut Lu, T.J. verfasserin aut Kim, T. verfasserin aut Enthalten in Applied thermal engineering Amsterdam [u.a.] : Elsevier Science, 1996 209 Online-Ressource (DE-627)320594122 (DE-600)2019322-1 (DE-576)256146322 1359-4311 nnns volume:209 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.43 Kältetechnik 52.52 Thermische Energieerzeugung Wärmetechnik 52.42 Heizungstechnik Lüftungstechnik Klimatechnik 50.38 Technische Thermodynamik AR 209 |
spelling |
10.1016/j.applthermaleng.2022.118239 doi (DE-627)ELV007699123 (ELSEVIER)S1359-4311(22)00200-9 DE-627 ger DE-627 rda eng 690 DE-600 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl Liu, Y.Y. verfasserin aut Impingement cooling of an isoflux flat plate by blockage jet 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Impingement cooling of an isoflux flat plate by a round jet, generated through a perforated blockage plate, is experimentally investigated at a fixed jet Reynolds number of Rej = 20,000. With the perforation diameter (Dj) fixed, varying the thickness (t) of blockage plate forms three distinct turbulent jets: (1)orifice jet (e.g., t/Dj ≤ 0.5), (2) blockage jet (e.g., 0.5 < t/Dj < 8.0), and (3) tube (or nozzle) jet (e.g., t/Dj ≥ 8.0). Thermofluidic characteristics of these jets in both free exit and impingement were measured and directly compared under consistent conditions. Particular focus was placed upon how these characteristics vary in the intermediate range of jet relative thickness t/Dj, with reference to the two limiting cases, namely, the orifice jet and the tube jet. It was demonstrated that the blockage jet behaves neither as an orifice jet, nor as a tube jet, and its properties cannot be considered interchangeable. Measurements of jet flow properties - exit velocity profile, potential core length and centerline turbulence - highlight the distinguishing features among the three jet types. While the blockage jet exhibits an intermediate thermal performance, the tube jet provides the poorest performance, and the orifice jet performs the best. Since it is not always possible to use an orifice jet in practice (e.g., due to structural constraints), this study provides evidence for the existence of optimal H/Dj for a given jet type (i.e., fixed t/Dj): correspondingly, both primary and secondary thermal peaks shift when t/Dj and H/Dj are varied. Blockage jet Jet impingement Orifice jet Perforated blockage thickness Potential core length Tube jet Bhaiyat, T.I. verfasserin aut Schekman, S.W. verfasserin aut Lu, T.J. verfasserin aut Kim, T. verfasserin aut Enthalten in Applied thermal engineering Amsterdam [u.a.] : Elsevier Science, 1996 209 Online-Ressource (DE-627)320594122 (DE-600)2019322-1 (DE-576)256146322 1359-4311 nnns volume:209 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.43 Kältetechnik 52.52 Thermische Energieerzeugung Wärmetechnik 52.42 Heizungstechnik Lüftungstechnik Klimatechnik 50.38 Technische Thermodynamik AR 209 |
allfields_unstemmed |
10.1016/j.applthermaleng.2022.118239 doi (DE-627)ELV007699123 (ELSEVIER)S1359-4311(22)00200-9 DE-627 ger DE-627 rda eng 690 DE-600 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl Liu, Y.Y. verfasserin aut Impingement cooling of an isoflux flat plate by blockage jet 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Impingement cooling of an isoflux flat plate by a round jet, generated through a perforated blockage plate, is experimentally investigated at a fixed jet Reynolds number of Rej = 20,000. With the perforation diameter (Dj) fixed, varying the thickness (t) of blockage plate forms three distinct turbulent jets: (1)orifice jet (e.g., t/Dj ≤ 0.5), (2) blockage jet (e.g., 0.5 < t/Dj < 8.0), and (3) tube (or nozzle) jet (e.g., t/Dj ≥ 8.0). Thermofluidic characteristics of these jets in both free exit and impingement were measured and directly compared under consistent conditions. Particular focus was placed upon how these characteristics vary in the intermediate range of jet relative thickness t/Dj, with reference to the two limiting cases, namely, the orifice jet and the tube jet. It was demonstrated that the blockage jet behaves neither as an orifice jet, nor as a tube jet, and its properties cannot be considered interchangeable. Measurements of jet flow properties - exit velocity profile, potential core length and centerline turbulence - highlight the distinguishing features among the three jet types. While the blockage jet exhibits an intermediate thermal performance, the tube jet provides the poorest performance, and the orifice jet performs the best. Since it is not always possible to use an orifice jet in practice (e.g., due to structural constraints), this study provides evidence for the existence of optimal H/Dj for a given jet type (i.e., fixed t/Dj): correspondingly, both primary and secondary thermal peaks shift when t/Dj and H/Dj are varied. Blockage jet Jet impingement Orifice jet Perforated blockage thickness Potential core length Tube jet Bhaiyat, T.I. verfasserin aut Schekman, S.W. verfasserin aut Lu, T.J. verfasserin aut Kim, T. verfasserin aut Enthalten in Applied thermal engineering Amsterdam [u.a.] : Elsevier Science, 1996 209 Online-Ressource (DE-627)320594122 (DE-600)2019322-1 (DE-576)256146322 1359-4311 nnns volume:209 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.43 Kältetechnik 52.52 Thermische Energieerzeugung Wärmetechnik 52.42 Heizungstechnik Lüftungstechnik Klimatechnik 50.38 Technische Thermodynamik AR 209 |
allfieldsGer |
10.1016/j.applthermaleng.2022.118239 doi (DE-627)ELV007699123 (ELSEVIER)S1359-4311(22)00200-9 DE-627 ger DE-627 rda eng 690 DE-600 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl Liu, Y.Y. verfasserin aut Impingement cooling of an isoflux flat plate by blockage jet 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Impingement cooling of an isoflux flat plate by a round jet, generated through a perforated blockage plate, is experimentally investigated at a fixed jet Reynolds number of Rej = 20,000. With the perforation diameter (Dj) fixed, varying the thickness (t) of blockage plate forms three distinct turbulent jets: (1)orifice jet (e.g., t/Dj ≤ 0.5), (2) blockage jet (e.g., 0.5 < t/Dj < 8.0), and (3) tube (or nozzle) jet (e.g., t/Dj ≥ 8.0). Thermofluidic characteristics of these jets in both free exit and impingement were measured and directly compared under consistent conditions. Particular focus was placed upon how these characteristics vary in the intermediate range of jet relative thickness t/Dj, with reference to the two limiting cases, namely, the orifice jet and the tube jet. It was demonstrated that the blockage jet behaves neither as an orifice jet, nor as a tube jet, and its properties cannot be considered interchangeable. Measurements of jet flow properties - exit velocity profile, potential core length and centerline turbulence - highlight the distinguishing features among the three jet types. While the blockage jet exhibits an intermediate thermal performance, the tube jet provides the poorest performance, and the orifice jet performs the best. Since it is not always possible to use an orifice jet in practice (e.g., due to structural constraints), this study provides evidence for the existence of optimal H/Dj for a given jet type (i.e., fixed t/Dj): correspondingly, both primary and secondary thermal peaks shift when t/Dj and H/Dj are varied. Blockage jet Jet impingement Orifice jet Perforated blockage thickness Potential core length Tube jet Bhaiyat, T.I. verfasserin aut Schekman, S.W. verfasserin aut Lu, T.J. verfasserin aut Kim, T. verfasserin aut Enthalten in Applied thermal engineering Amsterdam [u.a.] : Elsevier Science, 1996 209 Online-Ressource (DE-627)320594122 (DE-600)2019322-1 (DE-576)256146322 1359-4311 nnns volume:209 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.43 Kältetechnik 52.52 Thermische Energieerzeugung Wärmetechnik 52.42 Heizungstechnik Lüftungstechnik Klimatechnik 50.38 Technische Thermodynamik AR 209 |
allfieldsSound |
10.1016/j.applthermaleng.2022.118239 doi (DE-627)ELV007699123 (ELSEVIER)S1359-4311(22)00200-9 DE-627 ger DE-627 rda eng 690 DE-600 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl Liu, Y.Y. verfasserin aut Impingement cooling of an isoflux flat plate by blockage jet 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Impingement cooling of an isoflux flat plate by a round jet, generated through a perforated blockage plate, is experimentally investigated at a fixed jet Reynolds number of Rej = 20,000. With the perforation diameter (Dj) fixed, varying the thickness (t) of blockage plate forms three distinct turbulent jets: (1)orifice jet (e.g., t/Dj ≤ 0.5), (2) blockage jet (e.g., 0.5 < t/Dj < 8.0), and (3) tube (or nozzle) jet (e.g., t/Dj ≥ 8.0). Thermofluidic characteristics of these jets in both free exit and impingement were measured and directly compared under consistent conditions. Particular focus was placed upon how these characteristics vary in the intermediate range of jet relative thickness t/Dj, with reference to the two limiting cases, namely, the orifice jet and the tube jet. It was demonstrated that the blockage jet behaves neither as an orifice jet, nor as a tube jet, and its properties cannot be considered interchangeable. Measurements of jet flow properties - exit velocity profile, potential core length and centerline turbulence - highlight the distinguishing features among the three jet types. While the blockage jet exhibits an intermediate thermal performance, the tube jet provides the poorest performance, and the orifice jet performs the best. Since it is not always possible to use an orifice jet in practice (e.g., due to structural constraints), this study provides evidence for the existence of optimal H/Dj for a given jet type (i.e., fixed t/Dj): correspondingly, both primary and secondary thermal peaks shift when t/Dj and H/Dj are varied. Blockage jet Jet impingement Orifice jet Perforated blockage thickness Potential core length Tube jet Bhaiyat, T.I. verfasserin aut Schekman, S.W. verfasserin aut Lu, T.J. verfasserin aut Kim, T. verfasserin aut Enthalten in Applied thermal engineering Amsterdam [u.a.] : Elsevier Science, 1996 209 Online-Ressource (DE-627)320594122 (DE-600)2019322-1 (DE-576)256146322 1359-4311 nnns volume:209 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.43 Kältetechnik 52.52 Thermische Energieerzeugung Wärmetechnik 52.42 Heizungstechnik Lüftungstechnik Klimatechnik 50.38 Technische Thermodynamik AR 209 |
language |
English |
source |
Enthalten in Applied thermal engineering 209 volume:209 |
sourceStr |
Enthalten in Applied thermal engineering 209 volume:209 |
format_phy_str_mv |
Article |
bklname |
Kältetechnik Thermische Energieerzeugung Wärmetechnik Heizungstechnik Lüftungstechnik Klimatechnik Technische Thermodynamik |
institution |
findex.gbv.de |
topic_facet |
Blockage jet Jet impingement Orifice jet Perforated blockage thickness Potential core length Tube jet |
dewey-raw |
690 |
isfreeaccess_bool |
false |
container_title |
Applied thermal engineering |
authorswithroles_txt_mv |
Liu, Y.Y. @@aut@@ Bhaiyat, T.I. @@aut@@ Schekman, S.W. @@aut@@ Lu, T.J. @@aut@@ Kim, T. @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
320594122 |
dewey-sort |
3690 |
id |
ELV007699123 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV007699123</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524135300.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230507s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.applthermaleng.2022.118239</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV007699123</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1359-4311(22)00200-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.43</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.52</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.42</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Y.Y.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Impingement cooling of an isoflux flat plate by blockage jet</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Impingement cooling of an isoflux flat plate by a round jet, generated through a perforated blockage plate, is experimentally investigated at a fixed jet Reynolds number of Rej = 20,000. With the perforation diameter (Dj) fixed, varying the thickness (t) of blockage plate forms three distinct turbulent jets: (1)orifice jet (e.g., t/Dj ≤ 0.5), (2) blockage jet (e.g., 0.5 < t/Dj < 8.0), and (3) tube (or nozzle) jet (e.g., t/Dj ≥ 8.0). Thermofluidic characteristics of these jets in both free exit and impingement were measured and directly compared under consistent conditions. Particular focus was placed upon how these characteristics vary in the intermediate range of jet relative thickness t/Dj, with reference to the two limiting cases, namely, the orifice jet and the tube jet. It was demonstrated that the blockage jet behaves neither as an orifice jet, nor as a tube jet, and its properties cannot be considered interchangeable. Measurements of jet flow properties - exit velocity profile, potential core length and centerline turbulence - highlight the distinguishing features among the three jet types. While the blockage jet exhibits an intermediate thermal performance, the tube jet provides the poorest performance, and the orifice jet performs the best. Since it is not always possible to use an orifice jet in practice (e.g., due to structural constraints), this study provides evidence for the existence of optimal H/Dj for a given jet type (i.e., fixed t/Dj): correspondingly, both primary and secondary thermal peaks shift when t/Dj and H/Dj are varied.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Blockage jet</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Jet impingement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Orifice jet</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Perforated blockage thickness</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Potential core length</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tube jet</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bhaiyat, T.I.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schekman, S.W.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lu, T.J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, T.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied thermal engineering</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1996</subfield><subfield code="g">209</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320594122</subfield><subfield code="w">(DE-600)2019322-1</subfield><subfield code="w">(DE-576)256146322</subfield><subfield code="x">1359-4311</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:209</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.43</subfield><subfield code="j">Kältetechnik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.52</subfield><subfield code="j">Thermische Energieerzeugung</subfield><subfield code="j">Wärmetechnik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.42</subfield><subfield code="j">Heizungstechnik</subfield><subfield code="j">Lüftungstechnik</subfield><subfield code="j">Klimatechnik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.38</subfield><subfield code="j">Technische Thermodynamik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">209</subfield></datafield></record></collection>
|
author |
Liu, Y.Y. |
spellingShingle |
Liu, Y.Y. ddc 690 bkl 52.43 bkl 52.52 bkl 52.42 bkl 50.38 misc Blockage jet misc Jet impingement misc Orifice jet misc Perforated blockage thickness misc Potential core length misc Tube jet Impingement cooling of an isoflux flat plate by blockage jet |
authorStr |
Liu, Y.Y. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320594122 |
format |
electronic Article |
dewey-ones |
690 - Buildings |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1359-4311 |
topic_title |
690 DE-600 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl Impingement cooling of an isoflux flat plate by blockage jet Blockage jet Jet impingement Orifice jet Perforated blockage thickness Potential core length Tube jet |
topic |
ddc 690 bkl 52.43 bkl 52.52 bkl 52.42 bkl 50.38 misc Blockage jet misc Jet impingement misc Orifice jet misc Perforated blockage thickness misc Potential core length misc Tube jet |
topic_unstemmed |
ddc 690 bkl 52.43 bkl 52.52 bkl 52.42 bkl 50.38 misc Blockage jet misc Jet impingement misc Orifice jet misc Perforated blockage thickness misc Potential core length misc Tube jet |
topic_browse |
ddc 690 bkl 52.43 bkl 52.52 bkl 52.42 bkl 50.38 misc Blockage jet misc Jet impingement misc Orifice jet misc Perforated blockage thickness misc Potential core length misc Tube jet |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Applied thermal engineering |
hierarchy_parent_id |
320594122 |
dewey-tens |
690 - Building & construction |
hierarchy_top_title |
Applied thermal engineering |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320594122 (DE-600)2019322-1 (DE-576)256146322 |
title |
Impingement cooling of an isoflux flat plate by blockage jet |
ctrlnum |
(DE-627)ELV007699123 (ELSEVIER)S1359-4311(22)00200-9 |
title_full |
Impingement cooling of an isoflux flat plate by blockage jet |
author_sort |
Liu, Y.Y. |
journal |
Applied thermal engineering |
journalStr |
Applied thermal engineering |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
author_browse |
Liu, Y.Y. Bhaiyat, T.I. Schekman, S.W. Lu, T.J. Kim, T. |
container_volume |
209 |
class |
690 DE-600 52.43 bkl 52.52 bkl 52.42 bkl 50.38 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Liu, Y.Y. |
doi_str_mv |
10.1016/j.applthermaleng.2022.118239 |
dewey-full |
690 |
author2-role |
verfasserin |
title_sort |
impingement cooling of an isoflux flat plate by blockage jet |
title_auth |
Impingement cooling of an isoflux flat plate by blockage jet |
abstract |
Impingement cooling of an isoflux flat plate by a round jet, generated through a perforated blockage plate, is experimentally investigated at a fixed jet Reynolds number of Rej = 20,000. With the perforation diameter (Dj) fixed, varying the thickness (t) of blockage plate forms three distinct turbulent jets: (1)orifice jet (e.g., t/Dj ≤ 0.5), (2) blockage jet (e.g., 0.5 < t/Dj < 8.0), and (3) tube (or nozzle) jet (e.g., t/Dj ≥ 8.0). Thermofluidic characteristics of these jets in both free exit and impingement were measured and directly compared under consistent conditions. Particular focus was placed upon how these characteristics vary in the intermediate range of jet relative thickness t/Dj, with reference to the two limiting cases, namely, the orifice jet and the tube jet. It was demonstrated that the blockage jet behaves neither as an orifice jet, nor as a tube jet, and its properties cannot be considered interchangeable. Measurements of jet flow properties - exit velocity profile, potential core length and centerline turbulence - highlight the distinguishing features among the three jet types. While the blockage jet exhibits an intermediate thermal performance, the tube jet provides the poorest performance, and the orifice jet performs the best. Since it is not always possible to use an orifice jet in practice (e.g., due to structural constraints), this study provides evidence for the existence of optimal H/Dj for a given jet type (i.e., fixed t/Dj): correspondingly, both primary and secondary thermal peaks shift when t/Dj and H/Dj are varied. |
abstractGer |
Impingement cooling of an isoflux flat plate by a round jet, generated through a perforated blockage plate, is experimentally investigated at a fixed jet Reynolds number of Rej = 20,000. With the perforation diameter (Dj) fixed, varying the thickness (t) of blockage plate forms three distinct turbulent jets: (1)orifice jet (e.g., t/Dj ≤ 0.5), (2) blockage jet (e.g., 0.5 < t/Dj < 8.0), and (3) tube (or nozzle) jet (e.g., t/Dj ≥ 8.0). Thermofluidic characteristics of these jets in both free exit and impingement were measured and directly compared under consistent conditions. Particular focus was placed upon how these characteristics vary in the intermediate range of jet relative thickness t/Dj, with reference to the two limiting cases, namely, the orifice jet and the tube jet. It was demonstrated that the blockage jet behaves neither as an orifice jet, nor as a tube jet, and its properties cannot be considered interchangeable. Measurements of jet flow properties - exit velocity profile, potential core length and centerline turbulence - highlight the distinguishing features among the three jet types. While the blockage jet exhibits an intermediate thermal performance, the tube jet provides the poorest performance, and the orifice jet performs the best. Since it is not always possible to use an orifice jet in practice (e.g., due to structural constraints), this study provides evidence for the existence of optimal H/Dj for a given jet type (i.e., fixed t/Dj): correspondingly, both primary and secondary thermal peaks shift when t/Dj and H/Dj are varied. |
abstract_unstemmed |
Impingement cooling of an isoflux flat plate by a round jet, generated through a perforated blockage plate, is experimentally investigated at a fixed jet Reynolds number of Rej = 20,000. With the perforation diameter (Dj) fixed, varying the thickness (t) of blockage plate forms three distinct turbulent jets: (1)orifice jet (e.g., t/Dj ≤ 0.5), (2) blockage jet (e.g., 0.5 < t/Dj < 8.0), and (3) tube (or nozzle) jet (e.g., t/Dj ≥ 8.0). Thermofluidic characteristics of these jets in both free exit and impingement were measured and directly compared under consistent conditions. Particular focus was placed upon how these characteristics vary in the intermediate range of jet relative thickness t/Dj, with reference to the two limiting cases, namely, the orifice jet and the tube jet. It was demonstrated that the blockage jet behaves neither as an orifice jet, nor as a tube jet, and its properties cannot be considered interchangeable. Measurements of jet flow properties - exit velocity profile, potential core length and centerline turbulence - highlight the distinguishing features among the three jet types. While the blockage jet exhibits an intermediate thermal performance, the tube jet provides the poorest performance, and the orifice jet performs the best. Since it is not always possible to use an orifice jet in practice (e.g., due to structural constraints), this study provides evidence for the existence of optimal H/Dj for a given jet type (i.e., fixed t/Dj): correspondingly, both primary and secondary thermal peaks shift when t/Dj and H/Dj are varied. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Impingement cooling of an isoflux flat plate by blockage jet |
remote_bool |
true |
author2 |
Bhaiyat, T.I. Schekman, S.W. Lu, T.J. Kim, T. |
author2Str |
Bhaiyat, T.I. Schekman, S.W. Lu, T.J. Kim, T. |
ppnlink |
320594122 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.applthermaleng.2022.118239 |
up_date |
2024-07-06T17:09:14.813Z |
_version_ |
1803850355642990592 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV007699123</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524135300.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230507s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.applthermaleng.2022.118239</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV007699123</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1359-4311(22)00200-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.43</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.52</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.42</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Y.Y.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Impingement cooling of an isoflux flat plate by blockage jet</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Impingement cooling of an isoflux flat plate by a round jet, generated through a perforated blockage plate, is experimentally investigated at a fixed jet Reynolds number of Rej = 20,000. With the perforation diameter (Dj) fixed, varying the thickness (t) of blockage plate forms three distinct turbulent jets: (1)orifice jet (e.g., t/Dj ≤ 0.5), (2) blockage jet (e.g., 0.5 < t/Dj < 8.0), and (3) tube (or nozzle) jet (e.g., t/Dj ≥ 8.0). Thermofluidic characteristics of these jets in both free exit and impingement were measured and directly compared under consistent conditions. Particular focus was placed upon how these characteristics vary in the intermediate range of jet relative thickness t/Dj, with reference to the two limiting cases, namely, the orifice jet and the tube jet. It was demonstrated that the blockage jet behaves neither as an orifice jet, nor as a tube jet, and its properties cannot be considered interchangeable. Measurements of jet flow properties - exit velocity profile, potential core length and centerline turbulence - highlight the distinguishing features among the three jet types. While the blockage jet exhibits an intermediate thermal performance, the tube jet provides the poorest performance, and the orifice jet performs the best. Since it is not always possible to use an orifice jet in practice (e.g., due to structural constraints), this study provides evidence for the existence of optimal H/Dj for a given jet type (i.e., fixed t/Dj): correspondingly, both primary and secondary thermal peaks shift when t/Dj and H/Dj are varied.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Blockage jet</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Jet impingement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Orifice jet</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Perforated blockage thickness</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Potential core length</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tube jet</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bhaiyat, T.I.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schekman, S.W.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lu, T.J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, T.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied thermal engineering</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1996</subfield><subfield code="g">209</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320594122</subfield><subfield code="w">(DE-600)2019322-1</subfield><subfield code="w">(DE-576)256146322</subfield><subfield code="x">1359-4311</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:209</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.43</subfield><subfield code="j">Kältetechnik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.52</subfield><subfield code="j">Thermische Energieerzeugung</subfield><subfield code="j">Wärmetechnik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.42</subfield><subfield code="j">Heizungstechnik</subfield><subfield code="j">Lüftungstechnik</subfield><subfield code="j">Klimatechnik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.38</subfield><subfield code="j">Technische Thermodynamik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">209</subfield></datafield></record></collection>
|
score |
7.4026995 |