Zeolite-X synthesized from halloysite nanotubes and its application in CO
Background: : Zeolite-X has good selective adsorption, ion exchange and hydrophilic properties, and has been widely studied and applied in the chemical industry. Halloysite nanotubes (HNTs), with a unique tubular microstructure, natural availability, and low cost. The use of HNTs to synthesize X zeo...
Ausführliche Beschreibung
Autor*in: |
Lu, Xinmei [verfasserIn] Liu, Liying [verfasserIn] Liu, Haoran [verfasserIn] Tian, Guo [verfasserIn] Peng, Gao [verfasserIn] Zhuo, Li [verfasserIn] Wang, Zhe [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of the Taiwan Institute of Chemical Engineers - Taiwan-Huaxue-Gongcheng-Xuehui ; ID: gnd/10370556-9, Amsterdam [u.a.] : Elsevier, 2009, 133 |
---|---|
Übergeordnetes Werk: |
volume:133 |
DOI / URN: |
10.1016/j.jtice.2022.104281 |
---|
Katalog-ID: |
ELV007717792 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV007717792 | ||
003 | DE-627 | ||
005 | 20230524153604.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230507s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jtice.2022.104281 |2 doi | |
035 | |a (DE-627)ELV007717792 | ||
035 | |a (ELSEVIER)S1876-1070(22)00080-3 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 540 |q DE-600 |
100 | 1 | |a Lu, Xinmei |e verfasserin |4 aut | |
245 | 1 | 0 | |a Zeolite-X synthesized from halloysite nanotubes and its application in CO |
264 | 1 | |c 2022 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Background: : Zeolite-X has good selective adsorption, ion exchange and hydrophilic properties, and has been widely studied and applied in the chemical industry. Halloysite nanotubes (HNTs), with a unique tubular microstructure, natural availability, and low cost. The use of HNTs to synthesize X zeolites reduces production costs, leading to large-scale industrial production applications.Methods: : In this study, zeolite-X, with high crystallinity and a large specific surface area, was synthesized, for the first time, by purifying HNTs, calcining HNTs and hydrothermal synthesis. The influence of calcination time, crystallization temperature, crystallization time and NaOH concentration on the crystal phase and the static saturated water absorption of zeolite-X were investigated. The structure, shape and thermal stability of the synthesized zeolite-X were characterized by XRD, TEM, and FT-IR techniques and analysis methods.Significant findings: : Zeolite-X synthesized by this method has good crystallinity, uniform particle size and similar thermal stability to industrial zeolite. This study reports a new synthesis method to obtain zeolite 13X, with potential application in CO2 capture from flue gases. | ||
650 | 4 | |a Zeolite-X | |
650 | 4 | |a Halloysite nanotubes | |
650 | 4 | |a Flue gases | |
700 | 1 | |a Liu, Liying |e verfasserin |4 aut | |
700 | 1 | |a Liu, Haoran |e verfasserin |4 aut | |
700 | 1 | |a Tian, Guo |e verfasserin |4 aut | |
700 | 1 | |a Peng, Gao |e verfasserin |4 aut | |
700 | 1 | |a Zhuo, Li |e verfasserin |4 aut | |
700 | 1 | |a Wang, Zhe |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |a Taiwan-Huaxue-Gongcheng-Xuehui ; ID: gnd/10370556-9 |t Journal of the Taiwan Institute of Chemical Engineers |d Amsterdam [u.a.] : Elsevier, 2009 |g 133 |h Online-Ressource |w (DE-627)590281240 |w (DE-600)2475165-0 |w (DE-576)302970975 |x 1876-1070 |7 nnns |
773 | 1 | 8 | |g volume:133 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
951 | |a AR | ||
952 | |d 133 |
author_variant |
x l xl l l ll h l hl g t gt g p gp l z lz z w zw |
---|---|
matchkey_str |
article:18761070:2022----::eltxyteiefohlostnntbsn |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1016/j.jtice.2022.104281 doi (DE-627)ELV007717792 (ELSEVIER)S1876-1070(22)00080-3 DE-627 ger DE-627 rda eng 540 DE-600 Lu, Xinmei verfasserin aut Zeolite-X synthesized from halloysite nanotubes and its application in CO 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background: : Zeolite-X has good selective adsorption, ion exchange and hydrophilic properties, and has been widely studied and applied in the chemical industry. Halloysite nanotubes (HNTs), with a unique tubular microstructure, natural availability, and low cost. The use of HNTs to synthesize X zeolites reduces production costs, leading to large-scale industrial production applications.Methods: : In this study, zeolite-X, with high crystallinity and a large specific surface area, was synthesized, for the first time, by purifying HNTs, calcining HNTs and hydrothermal synthesis. The influence of calcination time, crystallization temperature, crystallization time and NaOH concentration on the crystal phase and the static saturated water absorption of zeolite-X were investigated. The structure, shape and thermal stability of the synthesized zeolite-X were characterized by XRD, TEM, and FT-IR techniques and analysis methods.Significant findings: : Zeolite-X synthesized by this method has good crystallinity, uniform particle size and similar thermal stability to industrial zeolite. This study reports a new synthesis method to obtain zeolite 13X, with potential application in CO2 capture from flue gases. Zeolite-X Halloysite nanotubes Flue gases Liu, Liying verfasserin aut Liu, Haoran verfasserin aut Tian, Guo verfasserin aut Peng, Gao verfasserin aut Zhuo, Li verfasserin aut Wang, Zhe verfasserin aut Enthalten in Taiwan-Huaxue-Gongcheng-Xuehui ; ID: gnd/10370556-9 Journal of the Taiwan Institute of Chemical Engineers Amsterdam [u.a.] : Elsevier, 2009 133 Online-Ressource (DE-627)590281240 (DE-600)2475165-0 (DE-576)302970975 1876-1070 nnns volume:133 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 AR 133 |
spelling |
10.1016/j.jtice.2022.104281 doi (DE-627)ELV007717792 (ELSEVIER)S1876-1070(22)00080-3 DE-627 ger DE-627 rda eng 540 DE-600 Lu, Xinmei verfasserin aut Zeolite-X synthesized from halloysite nanotubes and its application in CO 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background: : Zeolite-X has good selective adsorption, ion exchange and hydrophilic properties, and has been widely studied and applied in the chemical industry. Halloysite nanotubes (HNTs), with a unique tubular microstructure, natural availability, and low cost. The use of HNTs to synthesize X zeolites reduces production costs, leading to large-scale industrial production applications.Methods: : In this study, zeolite-X, with high crystallinity and a large specific surface area, was synthesized, for the first time, by purifying HNTs, calcining HNTs and hydrothermal synthesis. The influence of calcination time, crystallization temperature, crystallization time and NaOH concentration on the crystal phase and the static saturated water absorption of zeolite-X were investigated. The structure, shape and thermal stability of the synthesized zeolite-X were characterized by XRD, TEM, and FT-IR techniques and analysis methods.Significant findings: : Zeolite-X synthesized by this method has good crystallinity, uniform particle size and similar thermal stability to industrial zeolite. This study reports a new synthesis method to obtain zeolite 13X, with potential application in CO2 capture from flue gases. Zeolite-X Halloysite nanotubes Flue gases Liu, Liying verfasserin aut Liu, Haoran verfasserin aut Tian, Guo verfasserin aut Peng, Gao verfasserin aut Zhuo, Li verfasserin aut Wang, Zhe verfasserin aut Enthalten in Taiwan-Huaxue-Gongcheng-Xuehui ; ID: gnd/10370556-9 Journal of the Taiwan Institute of Chemical Engineers Amsterdam [u.a.] : Elsevier, 2009 133 Online-Ressource (DE-627)590281240 (DE-600)2475165-0 (DE-576)302970975 1876-1070 nnns volume:133 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 AR 133 |
allfields_unstemmed |
10.1016/j.jtice.2022.104281 doi (DE-627)ELV007717792 (ELSEVIER)S1876-1070(22)00080-3 DE-627 ger DE-627 rda eng 540 DE-600 Lu, Xinmei verfasserin aut Zeolite-X synthesized from halloysite nanotubes and its application in CO 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background: : Zeolite-X has good selective adsorption, ion exchange and hydrophilic properties, and has been widely studied and applied in the chemical industry. Halloysite nanotubes (HNTs), with a unique tubular microstructure, natural availability, and low cost. The use of HNTs to synthesize X zeolites reduces production costs, leading to large-scale industrial production applications.Methods: : In this study, zeolite-X, with high crystallinity and a large specific surface area, was synthesized, for the first time, by purifying HNTs, calcining HNTs and hydrothermal synthesis. The influence of calcination time, crystallization temperature, crystallization time and NaOH concentration on the crystal phase and the static saturated water absorption of zeolite-X were investigated. The structure, shape and thermal stability of the synthesized zeolite-X were characterized by XRD, TEM, and FT-IR techniques and analysis methods.Significant findings: : Zeolite-X synthesized by this method has good crystallinity, uniform particle size and similar thermal stability to industrial zeolite. This study reports a new synthesis method to obtain zeolite 13X, with potential application in CO2 capture from flue gases. Zeolite-X Halloysite nanotubes Flue gases Liu, Liying verfasserin aut Liu, Haoran verfasserin aut Tian, Guo verfasserin aut Peng, Gao verfasserin aut Zhuo, Li verfasserin aut Wang, Zhe verfasserin aut Enthalten in Taiwan-Huaxue-Gongcheng-Xuehui ; ID: gnd/10370556-9 Journal of the Taiwan Institute of Chemical Engineers Amsterdam [u.a.] : Elsevier, 2009 133 Online-Ressource (DE-627)590281240 (DE-600)2475165-0 (DE-576)302970975 1876-1070 nnns volume:133 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 AR 133 |
allfieldsGer |
10.1016/j.jtice.2022.104281 doi (DE-627)ELV007717792 (ELSEVIER)S1876-1070(22)00080-3 DE-627 ger DE-627 rda eng 540 DE-600 Lu, Xinmei verfasserin aut Zeolite-X synthesized from halloysite nanotubes and its application in CO 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background: : Zeolite-X has good selective adsorption, ion exchange and hydrophilic properties, and has been widely studied and applied in the chemical industry. Halloysite nanotubes (HNTs), with a unique tubular microstructure, natural availability, and low cost. The use of HNTs to synthesize X zeolites reduces production costs, leading to large-scale industrial production applications.Methods: : In this study, zeolite-X, with high crystallinity and a large specific surface area, was synthesized, for the first time, by purifying HNTs, calcining HNTs and hydrothermal synthesis. The influence of calcination time, crystallization temperature, crystallization time and NaOH concentration on the crystal phase and the static saturated water absorption of zeolite-X were investigated. The structure, shape and thermal stability of the synthesized zeolite-X were characterized by XRD, TEM, and FT-IR techniques and analysis methods.Significant findings: : Zeolite-X synthesized by this method has good crystallinity, uniform particle size and similar thermal stability to industrial zeolite. This study reports a new synthesis method to obtain zeolite 13X, with potential application in CO2 capture from flue gases. Zeolite-X Halloysite nanotubes Flue gases Liu, Liying verfasserin aut Liu, Haoran verfasserin aut Tian, Guo verfasserin aut Peng, Gao verfasserin aut Zhuo, Li verfasserin aut Wang, Zhe verfasserin aut Enthalten in Taiwan-Huaxue-Gongcheng-Xuehui ; ID: gnd/10370556-9 Journal of the Taiwan Institute of Chemical Engineers Amsterdam [u.a.] : Elsevier, 2009 133 Online-Ressource (DE-627)590281240 (DE-600)2475165-0 (DE-576)302970975 1876-1070 nnns volume:133 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 AR 133 |
allfieldsSound |
10.1016/j.jtice.2022.104281 doi (DE-627)ELV007717792 (ELSEVIER)S1876-1070(22)00080-3 DE-627 ger DE-627 rda eng 540 DE-600 Lu, Xinmei verfasserin aut Zeolite-X synthesized from halloysite nanotubes and its application in CO 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Background: : Zeolite-X has good selective adsorption, ion exchange and hydrophilic properties, and has been widely studied and applied in the chemical industry. Halloysite nanotubes (HNTs), with a unique tubular microstructure, natural availability, and low cost. The use of HNTs to synthesize X zeolites reduces production costs, leading to large-scale industrial production applications.Methods: : In this study, zeolite-X, with high crystallinity and a large specific surface area, was synthesized, for the first time, by purifying HNTs, calcining HNTs and hydrothermal synthesis. The influence of calcination time, crystallization temperature, crystallization time and NaOH concentration on the crystal phase and the static saturated water absorption of zeolite-X were investigated. The structure, shape and thermal stability of the synthesized zeolite-X were characterized by XRD, TEM, and FT-IR techniques and analysis methods.Significant findings: : Zeolite-X synthesized by this method has good crystallinity, uniform particle size and similar thermal stability to industrial zeolite. This study reports a new synthesis method to obtain zeolite 13X, with potential application in CO2 capture from flue gases. Zeolite-X Halloysite nanotubes Flue gases Liu, Liying verfasserin aut Liu, Haoran verfasserin aut Tian, Guo verfasserin aut Peng, Gao verfasserin aut Zhuo, Li verfasserin aut Wang, Zhe verfasserin aut Enthalten in Taiwan-Huaxue-Gongcheng-Xuehui ; ID: gnd/10370556-9 Journal of the Taiwan Institute of Chemical Engineers Amsterdam [u.a.] : Elsevier, 2009 133 Online-Ressource (DE-627)590281240 (DE-600)2475165-0 (DE-576)302970975 1876-1070 nnns volume:133 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 AR 133 |
language |
English |
source |
Enthalten in Journal of the Taiwan Institute of Chemical Engineers 133 volume:133 |
sourceStr |
Enthalten in Journal of the Taiwan Institute of Chemical Engineers 133 volume:133 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Zeolite-X Halloysite nanotubes Flue gases |
dewey-raw |
540 |
isfreeaccess_bool |
false |
container_title |
Journal of the Taiwan Institute of Chemical Engineers |
authorswithroles_txt_mv |
Lu, Xinmei @@aut@@ Liu, Liying @@aut@@ Liu, Haoran @@aut@@ Tian, Guo @@aut@@ Peng, Gao @@aut@@ Zhuo, Li @@aut@@ Wang, Zhe @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
590281240 |
dewey-sort |
3540 |
id |
ELV007717792 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV007717792</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524153604.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230507s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jtice.2022.104281</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV007717792</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1876-1070(22)00080-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lu, Xinmei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Zeolite-X synthesized from halloysite nanotubes and its application in CO</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background: : Zeolite-X has good selective adsorption, ion exchange and hydrophilic properties, and has been widely studied and applied in the chemical industry. Halloysite nanotubes (HNTs), with a unique tubular microstructure, natural availability, and low cost. The use of HNTs to synthesize X zeolites reduces production costs, leading to large-scale industrial production applications.Methods: : In this study, zeolite-X, with high crystallinity and a large specific surface area, was synthesized, for the first time, by purifying HNTs, calcining HNTs and hydrothermal synthesis. The influence of calcination time, crystallization temperature, crystallization time and NaOH concentration on the crystal phase and the static saturated water absorption of zeolite-X were investigated. The structure, shape and thermal stability of the synthesized zeolite-X were characterized by XRD, TEM, and FT-IR techniques and analysis methods.Significant findings: : Zeolite-X synthesized by this method has good crystallinity, uniform particle size and similar thermal stability to industrial zeolite. This study reports a new synthesis method to obtain zeolite 13X, with potential application in CO2 capture from flue gases.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Zeolite-X</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Halloysite nanotubes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flue gases</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Liying</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Haoran</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tian, Guo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Peng, Gao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhuo, Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Zhe</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="a">Taiwan-Huaxue-Gongcheng-Xuehui ; ID: gnd/10370556-9</subfield><subfield code="t">Journal of the Taiwan Institute of Chemical Engineers</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 2009</subfield><subfield code="g">133</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)590281240</subfield><subfield code="w">(DE-600)2475165-0</subfield><subfield code="w">(DE-576)302970975</subfield><subfield code="x">1876-1070</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:133</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">133</subfield></datafield></record></collection>
|
author |
Lu, Xinmei |
spellingShingle |
Lu, Xinmei ddc 540 misc Zeolite-X misc Halloysite nanotubes misc Flue gases Zeolite-X synthesized from halloysite nanotubes and its application in CO |
authorStr |
Lu, Xinmei |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)590281240 |
format |
electronic Article |
dewey-ones |
540 - Chemistry & allied sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1876-1070 |
topic_title |
540 DE-600 Zeolite-X synthesized from halloysite nanotubes and its application in CO Zeolite-X Halloysite nanotubes Flue gases |
topic |
ddc 540 misc Zeolite-X misc Halloysite nanotubes misc Flue gases |
topic_unstemmed |
ddc 540 misc Zeolite-X misc Halloysite nanotubes misc Flue gases |
topic_browse |
ddc 540 misc Zeolite-X misc Halloysite nanotubes misc Flue gases |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of the Taiwan Institute of Chemical Engineers |
hierarchy_parent_id |
590281240 |
dewey-tens |
540 - Chemistry |
hierarchy_top_title |
Journal of the Taiwan Institute of Chemical Engineers |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)590281240 (DE-600)2475165-0 (DE-576)302970975 |
title |
Zeolite-X synthesized from halloysite nanotubes and its application in CO |
ctrlnum |
(DE-627)ELV007717792 (ELSEVIER)S1876-1070(22)00080-3 |
title_full |
Zeolite-X synthesized from halloysite nanotubes and its application in CO |
author_sort |
Lu, Xinmei |
journal |
Journal of the Taiwan Institute of Chemical Engineers |
journalStr |
Journal of the Taiwan Institute of Chemical Engineers |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
author_browse |
Lu, Xinmei Liu, Liying Liu, Haoran Tian, Guo Peng, Gao Zhuo, Li Wang, Zhe |
container_volume |
133 |
class |
540 DE-600 |
format_se |
Elektronische Aufsätze |
author-letter |
Lu, Xinmei |
doi_str_mv |
10.1016/j.jtice.2022.104281 |
dewey-full |
540 |
author2-role |
verfasserin |
title_sort |
zeolite-x synthesized from halloysite nanotubes and its application in co |
title_auth |
Zeolite-X synthesized from halloysite nanotubes and its application in CO |
abstract |
Background: : Zeolite-X has good selective adsorption, ion exchange and hydrophilic properties, and has been widely studied and applied in the chemical industry. Halloysite nanotubes (HNTs), with a unique tubular microstructure, natural availability, and low cost. The use of HNTs to synthesize X zeolites reduces production costs, leading to large-scale industrial production applications.Methods: : In this study, zeolite-X, with high crystallinity and a large specific surface area, was synthesized, for the first time, by purifying HNTs, calcining HNTs and hydrothermal synthesis. The influence of calcination time, crystallization temperature, crystallization time and NaOH concentration on the crystal phase and the static saturated water absorption of zeolite-X were investigated. The structure, shape and thermal stability of the synthesized zeolite-X were characterized by XRD, TEM, and FT-IR techniques and analysis methods.Significant findings: : Zeolite-X synthesized by this method has good crystallinity, uniform particle size and similar thermal stability to industrial zeolite. This study reports a new synthesis method to obtain zeolite 13X, with potential application in CO2 capture from flue gases. |
abstractGer |
Background: : Zeolite-X has good selective adsorption, ion exchange and hydrophilic properties, and has been widely studied and applied in the chemical industry. Halloysite nanotubes (HNTs), with a unique tubular microstructure, natural availability, and low cost. The use of HNTs to synthesize X zeolites reduces production costs, leading to large-scale industrial production applications.Methods: : In this study, zeolite-X, with high crystallinity and a large specific surface area, was synthesized, for the first time, by purifying HNTs, calcining HNTs and hydrothermal synthesis. The influence of calcination time, crystallization temperature, crystallization time and NaOH concentration on the crystal phase and the static saturated water absorption of zeolite-X were investigated. The structure, shape and thermal stability of the synthesized zeolite-X were characterized by XRD, TEM, and FT-IR techniques and analysis methods.Significant findings: : Zeolite-X synthesized by this method has good crystallinity, uniform particle size and similar thermal stability to industrial zeolite. This study reports a new synthesis method to obtain zeolite 13X, with potential application in CO2 capture from flue gases. |
abstract_unstemmed |
Background: : Zeolite-X has good selective adsorption, ion exchange and hydrophilic properties, and has been widely studied and applied in the chemical industry. Halloysite nanotubes (HNTs), with a unique tubular microstructure, natural availability, and low cost. The use of HNTs to synthesize X zeolites reduces production costs, leading to large-scale industrial production applications.Methods: : In this study, zeolite-X, with high crystallinity and a large specific surface area, was synthesized, for the first time, by purifying HNTs, calcining HNTs and hydrothermal synthesis. The influence of calcination time, crystallization temperature, crystallization time and NaOH concentration on the crystal phase and the static saturated water absorption of zeolite-X were investigated. The structure, shape and thermal stability of the synthesized zeolite-X were characterized by XRD, TEM, and FT-IR techniques and analysis methods.Significant findings: : Zeolite-X synthesized by this method has good crystallinity, uniform particle size and similar thermal stability to industrial zeolite. This study reports a new synthesis method to obtain zeolite 13X, with potential application in CO2 capture from flue gases. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Zeolite-X synthesized from halloysite nanotubes and its application in CO |
remote_bool |
true |
author2 |
Liu, Liying Liu, Haoran Tian, Guo Peng, Gao Zhuo, Li Wang, Zhe |
author2Str |
Liu, Liying Liu, Haoran Tian, Guo Peng, Gao Zhuo, Li Wang, Zhe |
ppnlink |
590281240 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.jtice.2022.104281 |
up_date |
2024-07-06T17:13:14.686Z |
_version_ |
1803850607168061440 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV007717792</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524153604.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230507s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jtice.2022.104281</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV007717792</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1876-1070(22)00080-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lu, Xinmei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Zeolite-X synthesized from halloysite nanotubes and its application in CO</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background: : Zeolite-X has good selective adsorption, ion exchange and hydrophilic properties, and has been widely studied and applied in the chemical industry. Halloysite nanotubes (HNTs), with a unique tubular microstructure, natural availability, and low cost. The use of HNTs to synthesize X zeolites reduces production costs, leading to large-scale industrial production applications.Methods: : In this study, zeolite-X, with high crystallinity and a large specific surface area, was synthesized, for the first time, by purifying HNTs, calcining HNTs and hydrothermal synthesis. The influence of calcination time, crystallization temperature, crystallization time and NaOH concentration on the crystal phase and the static saturated water absorption of zeolite-X were investigated. The structure, shape and thermal stability of the synthesized zeolite-X were characterized by XRD, TEM, and FT-IR techniques and analysis methods.Significant findings: : Zeolite-X synthesized by this method has good crystallinity, uniform particle size and similar thermal stability to industrial zeolite. This study reports a new synthesis method to obtain zeolite 13X, with potential application in CO2 capture from flue gases.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Zeolite-X</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Halloysite nanotubes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flue gases</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Liying</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Haoran</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tian, Guo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Peng, Gao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhuo, Li</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Zhe</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="a">Taiwan-Huaxue-Gongcheng-Xuehui ; ID: gnd/10370556-9</subfield><subfield code="t">Journal of the Taiwan Institute of Chemical Engineers</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 2009</subfield><subfield code="g">133</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)590281240</subfield><subfield code="w">(DE-600)2475165-0</subfield><subfield code="w">(DE-576)302970975</subfield><subfield code="x">1876-1070</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:133</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">133</subfield></datafield></record></collection>
|
score |
7.4007006 |