Numerical simulation of single bubble growth in vertical rectangular narrow flow channels
The narrow rectangular channels of compact type reactors rely on boiling to generate bubbles to transfer a large amount of heat. On the one hand, the growth behavior of bubbles is closely related to the heat-mass conversion efficiency. On the other hand, the resulting flow instability and critical h...
Ausführliche Beschreibung
Autor*in: |
Cheng, Ning [verfasserIn] Yu, Shuwen [verfasserIn] Xiao, Jun [verfasserIn] Peng, Changhong [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Nuclear engineering and design - Amsterdam [u.a.] : Elsevier Science, 1966, 391 |
---|---|
Übergeordnetes Werk: |
volume:391 |
DOI / URN: |
10.1016/j.nucengdes.2022.111749 |
---|
Katalog-ID: |
ELV007742363 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV007742363 | ||
003 | DE-627 | ||
005 | 20230524162429.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230507s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.nucengdes.2022.111749 |2 doi | |
035 | |a (DE-627)ELV007742363 | ||
035 | |a (ELSEVIER)S0029-5493(22)00103-0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q DE-600 |
084 | |a 52.55 |2 bkl | ||
100 | 1 | |a Cheng, Ning |e verfasserin |4 aut | |
245 | 1 | 0 | |a Numerical simulation of single bubble growth in vertical rectangular narrow flow channels |
264 | 1 | |c 2022 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The narrow rectangular channels of compact type reactors rely on boiling to generate bubbles to transfer a large amount of heat. On the one hand, the growth behavior of bubbles is closely related to the heat-mass conversion efficiency. On the other hand, the resulting flow instability and critical heat flow also affect operation safety. We set up a test bench with a visible flow channel to investigate the bubble growth in vertical rectangular narrow channels. The bubbles at the ONB (Onset of Nucleate Boiling) site were observed at 1 atm in subcooled flow boiling water. Two typical bubble growth processes were picked out to simulate numerically. A high-speed camera and thermocouples were used to record bubble contours and wall temperatures in the experiment. The heat flow was obtained based on assumptions and theoretical analysis. A numerical simulation of the whole process was conducted, where the bubble contours and temperature fields can be obtained. According to the simulation results of two examples, the microlayer evaporation at the bubble bottom accounts for about 30% of the total evaporation amount. | ||
650 | 4 | |a Numerical simulation | |
650 | 4 | |a Visual experiment | |
650 | 4 | |a Bubble growth | |
650 | 4 | |a Rectangular channel | |
650 | 4 | |a Flow boiling | |
700 | 1 | |a Yu, Shuwen |e verfasserin |4 aut | |
700 | 1 | |a Xiao, Jun |e verfasserin |4 aut | |
700 | 1 | |a Peng, Changhong |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Nuclear engineering and design |d Amsterdam [u.a.] : Elsevier Science, 1966 |g 391 |h Online-Ressource |w (DE-627)320411087 |w (DE-600)2001319-X |w (DE-576)251938182 |x 0029-5493 |7 nnns |
773 | 1 | 8 | |g volume:391 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 52.55 |j Kerntechnik |j Reaktortechnik |
951 | |a AR | ||
952 | |d 391 |
author_variant |
n c nc s y sy j x jx c p cp |
---|---|
matchkey_str |
article:00295493:2022----::ueiasmltoosnlbblgotivriarcag |
hierarchy_sort_str |
2022 |
bklnumber |
52.55 |
publishDate |
2022 |
allfields |
10.1016/j.nucengdes.2022.111749 doi (DE-627)ELV007742363 (ELSEVIER)S0029-5493(22)00103-0 DE-627 ger DE-627 rda eng 620 DE-600 52.55 bkl Cheng, Ning verfasserin aut Numerical simulation of single bubble growth in vertical rectangular narrow flow channels 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The narrow rectangular channels of compact type reactors rely on boiling to generate bubbles to transfer a large amount of heat. On the one hand, the growth behavior of bubbles is closely related to the heat-mass conversion efficiency. On the other hand, the resulting flow instability and critical heat flow also affect operation safety. We set up a test bench with a visible flow channel to investigate the bubble growth in vertical rectangular narrow channels. The bubbles at the ONB (Onset of Nucleate Boiling) site were observed at 1 atm in subcooled flow boiling water. Two typical bubble growth processes were picked out to simulate numerically. A high-speed camera and thermocouples were used to record bubble contours and wall temperatures in the experiment. The heat flow was obtained based on assumptions and theoretical analysis. A numerical simulation of the whole process was conducted, where the bubble contours and temperature fields can be obtained. According to the simulation results of two examples, the microlayer evaporation at the bubble bottom accounts for about 30% of the total evaporation amount. Numerical simulation Visual experiment Bubble growth Rectangular channel Flow boiling Yu, Shuwen verfasserin aut Xiao, Jun verfasserin aut Peng, Changhong verfasserin aut Enthalten in Nuclear engineering and design Amsterdam [u.a.] : Elsevier Science, 1966 391 Online-Ressource (DE-627)320411087 (DE-600)2001319-X (DE-576)251938182 0029-5493 nnns volume:391 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.55 Kerntechnik Reaktortechnik AR 391 |
spelling |
10.1016/j.nucengdes.2022.111749 doi (DE-627)ELV007742363 (ELSEVIER)S0029-5493(22)00103-0 DE-627 ger DE-627 rda eng 620 DE-600 52.55 bkl Cheng, Ning verfasserin aut Numerical simulation of single bubble growth in vertical rectangular narrow flow channels 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The narrow rectangular channels of compact type reactors rely on boiling to generate bubbles to transfer a large amount of heat. On the one hand, the growth behavior of bubbles is closely related to the heat-mass conversion efficiency. On the other hand, the resulting flow instability and critical heat flow also affect operation safety. We set up a test bench with a visible flow channel to investigate the bubble growth in vertical rectangular narrow channels. The bubbles at the ONB (Onset of Nucleate Boiling) site were observed at 1 atm in subcooled flow boiling water. Two typical bubble growth processes were picked out to simulate numerically. A high-speed camera and thermocouples were used to record bubble contours and wall temperatures in the experiment. The heat flow was obtained based on assumptions and theoretical analysis. A numerical simulation of the whole process was conducted, where the bubble contours and temperature fields can be obtained. According to the simulation results of two examples, the microlayer evaporation at the bubble bottom accounts for about 30% of the total evaporation amount. Numerical simulation Visual experiment Bubble growth Rectangular channel Flow boiling Yu, Shuwen verfasserin aut Xiao, Jun verfasserin aut Peng, Changhong verfasserin aut Enthalten in Nuclear engineering and design Amsterdam [u.a.] : Elsevier Science, 1966 391 Online-Ressource (DE-627)320411087 (DE-600)2001319-X (DE-576)251938182 0029-5493 nnns volume:391 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.55 Kerntechnik Reaktortechnik AR 391 |
allfields_unstemmed |
10.1016/j.nucengdes.2022.111749 doi (DE-627)ELV007742363 (ELSEVIER)S0029-5493(22)00103-0 DE-627 ger DE-627 rda eng 620 DE-600 52.55 bkl Cheng, Ning verfasserin aut Numerical simulation of single bubble growth in vertical rectangular narrow flow channels 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The narrow rectangular channels of compact type reactors rely on boiling to generate bubbles to transfer a large amount of heat. On the one hand, the growth behavior of bubbles is closely related to the heat-mass conversion efficiency. On the other hand, the resulting flow instability and critical heat flow also affect operation safety. We set up a test bench with a visible flow channel to investigate the bubble growth in vertical rectangular narrow channels. The bubbles at the ONB (Onset of Nucleate Boiling) site were observed at 1 atm in subcooled flow boiling water. Two typical bubble growth processes were picked out to simulate numerically. A high-speed camera and thermocouples were used to record bubble contours and wall temperatures in the experiment. The heat flow was obtained based on assumptions and theoretical analysis. A numerical simulation of the whole process was conducted, where the bubble contours and temperature fields can be obtained. According to the simulation results of two examples, the microlayer evaporation at the bubble bottom accounts for about 30% of the total evaporation amount. Numerical simulation Visual experiment Bubble growth Rectangular channel Flow boiling Yu, Shuwen verfasserin aut Xiao, Jun verfasserin aut Peng, Changhong verfasserin aut Enthalten in Nuclear engineering and design Amsterdam [u.a.] : Elsevier Science, 1966 391 Online-Ressource (DE-627)320411087 (DE-600)2001319-X (DE-576)251938182 0029-5493 nnns volume:391 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.55 Kerntechnik Reaktortechnik AR 391 |
allfieldsGer |
10.1016/j.nucengdes.2022.111749 doi (DE-627)ELV007742363 (ELSEVIER)S0029-5493(22)00103-0 DE-627 ger DE-627 rda eng 620 DE-600 52.55 bkl Cheng, Ning verfasserin aut Numerical simulation of single bubble growth in vertical rectangular narrow flow channels 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The narrow rectangular channels of compact type reactors rely on boiling to generate bubbles to transfer a large amount of heat. On the one hand, the growth behavior of bubbles is closely related to the heat-mass conversion efficiency. On the other hand, the resulting flow instability and critical heat flow also affect operation safety. We set up a test bench with a visible flow channel to investigate the bubble growth in vertical rectangular narrow channels. The bubbles at the ONB (Onset of Nucleate Boiling) site were observed at 1 atm in subcooled flow boiling water. Two typical bubble growth processes were picked out to simulate numerically. A high-speed camera and thermocouples were used to record bubble contours and wall temperatures in the experiment. The heat flow was obtained based on assumptions and theoretical analysis. A numerical simulation of the whole process was conducted, where the bubble contours and temperature fields can be obtained. According to the simulation results of two examples, the microlayer evaporation at the bubble bottom accounts for about 30% of the total evaporation amount. Numerical simulation Visual experiment Bubble growth Rectangular channel Flow boiling Yu, Shuwen verfasserin aut Xiao, Jun verfasserin aut Peng, Changhong verfasserin aut Enthalten in Nuclear engineering and design Amsterdam [u.a.] : Elsevier Science, 1966 391 Online-Ressource (DE-627)320411087 (DE-600)2001319-X (DE-576)251938182 0029-5493 nnns volume:391 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.55 Kerntechnik Reaktortechnik AR 391 |
allfieldsSound |
10.1016/j.nucengdes.2022.111749 doi (DE-627)ELV007742363 (ELSEVIER)S0029-5493(22)00103-0 DE-627 ger DE-627 rda eng 620 DE-600 52.55 bkl Cheng, Ning verfasserin aut Numerical simulation of single bubble growth in vertical rectangular narrow flow channels 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The narrow rectangular channels of compact type reactors rely on boiling to generate bubbles to transfer a large amount of heat. On the one hand, the growth behavior of bubbles is closely related to the heat-mass conversion efficiency. On the other hand, the resulting flow instability and critical heat flow also affect operation safety. We set up a test bench with a visible flow channel to investigate the bubble growth in vertical rectangular narrow channels. The bubbles at the ONB (Onset of Nucleate Boiling) site were observed at 1 atm in subcooled flow boiling water. Two typical bubble growth processes were picked out to simulate numerically. A high-speed camera and thermocouples were used to record bubble contours and wall temperatures in the experiment. The heat flow was obtained based on assumptions and theoretical analysis. A numerical simulation of the whole process was conducted, where the bubble contours and temperature fields can be obtained. According to the simulation results of two examples, the microlayer evaporation at the bubble bottom accounts for about 30% of the total evaporation amount. Numerical simulation Visual experiment Bubble growth Rectangular channel Flow boiling Yu, Shuwen verfasserin aut Xiao, Jun verfasserin aut Peng, Changhong verfasserin aut Enthalten in Nuclear engineering and design Amsterdam [u.a.] : Elsevier Science, 1966 391 Online-Ressource (DE-627)320411087 (DE-600)2001319-X (DE-576)251938182 0029-5493 nnns volume:391 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.55 Kerntechnik Reaktortechnik AR 391 |
language |
English |
source |
Enthalten in Nuclear engineering and design 391 volume:391 |
sourceStr |
Enthalten in Nuclear engineering and design 391 volume:391 |
format_phy_str_mv |
Article |
bklname |
Kerntechnik Reaktortechnik |
institution |
findex.gbv.de |
topic_facet |
Numerical simulation Visual experiment Bubble growth Rectangular channel Flow boiling |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
Nuclear engineering and design |
authorswithroles_txt_mv |
Cheng, Ning @@aut@@ Yu, Shuwen @@aut@@ Xiao, Jun @@aut@@ Peng, Changhong @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
320411087 |
dewey-sort |
3620 |
id |
ELV007742363 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV007742363</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524162429.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230507s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.nucengdes.2022.111749</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV007742363</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0029-5493(22)00103-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.55</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cheng, Ning</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerical simulation of single bubble growth in vertical rectangular narrow flow channels</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The narrow rectangular channels of compact type reactors rely on boiling to generate bubbles to transfer a large amount of heat. On the one hand, the growth behavior of bubbles is closely related to the heat-mass conversion efficiency. On the other hand, the resulting flow instability and critical heat flow also affect operation safety. We set up a test bench with a visible flow channel to investigate the bubble growth in vertical rectangular narrow channels. The bubbles at the ONB (Onset of Nucleate Boiling) site were observed at 1 atm in subcooled flow boiling water. Two typical bubble growth processes were picked out to simulate numerically. A high-speed camera and thermocouples were used to record bubble contours and wall temperatures in the experiment. The heat flow was obtained based on assumptions and theoretical analysis. A numerical simulation of the whole process was conducted, where the bubble contours and temperature fields can be obtained. According to the simulation results of two examples, the microlayer evaporation at the bubble bottom accounts for about 30% of the total evaporation amount.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Visual experiment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bubble growth</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rectangular channel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flow boiling</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Shuwen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xiao, Jun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Peng, Changhong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Nuclear engineering and design</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1966</subfield><subfield code="g">391</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320411087</subfield><subfield code="w">(DE-600)2001319-X</subfield><subfield code="w">(DE-576)251938182</subfield><subfield code="x">0029-5493</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:391</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.55</subfield><subfield code="j">Kerntechnik</subfield><subfield code="j">Reaktortechnik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">391</subfield></datafield></record></collection>
|
author |
Cheng, Ning |
spellingShingle |
Cheng, Ning ddc 620 bkl 52.55 misc Numerical simulation misc Visual experiment misc Bubble growth misc Rectangular channel misc Flow boiling Numerical simulation of single bubble growth in vertical rectangular narrow flow channels |
authorStr |
Cheng, Ning |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320411087 |
format |
electronic Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0029-5493 |
topic_title |
620 DE-600 52.55 bkl Numerical simulation of single bubble growth in vertical rectangular narrow flow channels Numerical simulation Visual experiment Bubble growth Rectangular channel Flow boiling |
topic |
ddc 620 bkl 52.55 misc Numerical simulation misc Visual experiment misc Bubble growth misc Rectangular channel misc Flow boiling |
topic_unstemmed |
ddc 620 bkl 52.55 misc Numerical simulation misc Visual experiment misc Bubble growth misc Rectangular channel misc Flow boiling |
topic_browse |
ddc 620 bkl 52.55 misc Numerical simulation misc Visual experiment misc Bubble growth misc Rectangular channel misc Flow boiling |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Nuclear engineering and design |
hierarchy_parent_id |
320411087 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
Nuclear engineering and design |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320411087 (DE-600)2001319-X (DE-576)251938182 |
title |
Numerical simulation of single bubble growth in vertical rectangular narrow flow channels |
ctrlnum |
(DE-627)ELV007742363 (ELSEVIER)S0029-5493(22)00103-0 |
title_full |
Numerical simulation of single bubble growth in vertical rectangular narrow flow channels |
author_sort |
Cheng, Ning |
journal |
Nuclear engineering and design |
journalStr |
Nuclear engineering and design |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
author_browse |
Cheng, Ning Yu, Shuwen Xiao, Jun Peng, Changhong |
container_volume |
391 |
class |
620 DE-600 52.55 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Cheng, Ning |
doi_str_mv |
10.1016/j.nucengdes.2022.111749 |
dewey-full |
620 |
author2-role |
verfasserin |
title_sort |
numerical simulation of single bubble growth in vertical rectangular narrow flow channels |
title_auth |
Numerical simulation of single bubble growth in vertical rectangular narrow flow channels |
abstract |
The narrow rectangular channels of compact type reactors rely on boiling to generate bubbles to transfer a large amount of heat. On the one hand, the growth behavior of bubbles is closely related to the heat-mass conversion efficiency. On the other hand, the resulting flow instability and critical heat flow also affect operation safety. We set up a test bench with a visible flow channel to investigate the bubble growth in vertical rectangular narrow channels. The bubbles at the ONB (Onset of Nucleate Boiling) site were observed at 1 atm in subcooled flow boiling water. Two typical bubble growth processes were picked out to simulate numerically. A high-speed camera and thermocouples were used to record bubble contours and wall temperatures in the experiment. The heat flow was obtained based on assumptions and theoretical analysis. A numerical simulation of the whole process was conducted, where the bubble contours and temperature fields can be obtained. According to the simulation results of two examples, the microlayer evaporation at the bubble bottom accounts for about 30% of the total evaporation amount. |
abstractGer |
The narrow rectangular channels of compact type reactors rely on boiling to generate bubbles to transfer a large amount of heat. On the one hand, the growth behavior of bubbles is closely related to the heat-mass conversion efficiency. On the other hand, the resulting flow instability and critical heat flow also affect operation safety. We set up a test bench with a visible flow channel to investigate the bubble growth in vertical rectangular narrow channels. The bubbles at the ONB (Onset of Nucleate Boiling) site were observed at 1 atm in subcooled flow boiling water. Two typical bubble growth processes were picked out to simulate numerically. A high-speed camera and thermocouples were used to record bubble contours and wall temperatures in the experiment. The heat flow was obtained based on assumptions and theoretical analysis. A numerical simulation of the whole process was conducted, where the bubble contours and temperature fields can be obtained. According to the simulation results of two examples, the microlayer evaporation at the bubble bottom accounts for about 30% of the total evaporation amount. |
abstract_unstemmed |
The narrow rectangular channels of compact type reactors rely on boiling to generate bubbles to transfer a large amount of heat. On the one hand, the growth behavior of bubbles is closely related to the heat-mass conversion efficiency. On the other hand, the resulting flow instability and critical heat flow also affect operation safety. We set up a test bench with a visible flow channel to investigate the bubble growth in vertical rectangular narrow channels. The bubbles at the ONB (Onset of Nucleate Boiling) site were observed at 1 atm in subcooled flow boiling water. Two typical bubble growth processes were picked out to simulate numerically. A high-speed camera and thermocouples were used to record bubble contours and wall temperatures in the experiment. The heat flow was obtained based on assumptions and theoretical analysis. A numerical simulation of the whole process was conducted, where the bubble contours and temperature fields can be obtained. According to the simulation results of two examples, the microlayer evaporation at the bubble bottom accounts for about 30% of the total evaporation amount. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Numerical simulation of single bubble growth in vertical rectangular narrow flow channels |
remote_bool |
true |
author2 |
Yu, Shuwen Xiao, Jun Peng, Changhong |
author2Str |
Yu, Shuwen Xiao, Jun Peng, Changhong |
ppnlink |
320411087 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.nucengdes.2022.111749 |
up_date |
2024-07-06T17:18:11.368Z |
_version_ |
1803850918260637696 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV007742363</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524162429.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230507s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.nucengdes.2022.111749</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV007742363</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0029-5493(22)00103-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.55</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cheng, Ning</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerical simulation of single bubble growth in vertical rectangular narrow flow channels</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The narrow rectangular channels of compact type reactors rely on boiling to generate bubbles to transfer a large amount of heat. On the one hand, the growth behavior of bubbles is closely related to the heat-mass conversion efficiency. On the other hand, the resulting flow instability and critical heat flow also affect operation safety. We set up a test bench with a visible flow channel to investigate the bubble growth in vertical rectangular narrow channels. The bubbles at the ONB (Onset of Nucleate Boiling) site were observed at 1 atm in subcooled flow boiling water. Two typical bubble growth processes were picked out to simulate numerically. A high-speed camera and thermocouples were used to record bubble contours and wall temperatures in the experiment. The heat flow was obtained based on assumptions and theoretical analysis. A numerical simulation of the whole process was conducted, where the bubble contours and temperature fields can be obtained. According to the simulation results of two examples, the microlayer evaporation at the bubble bottom accounts for about 30% of the total evaporation amount.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Visual experiment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bubble growth</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rectangular channel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flow boiling</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Shuwen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xiao, Jun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Peng, Changhong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Nuclear engineering and design</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1966</subfield><subfield code="g">391</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320411087</subfield><subfield code="w">(DE-600)2001319-X</subfield><subfield code="w">(DE-576)251938182</subfield><subfield code="x">0029-5493</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:391</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.55</subfield><subfield code="j">Kerntechnik</subfield><subfield code="j">Reaktortechnik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">391</subfield></datafield></record></collection>
|
score |
7.4017324 |