Design and complexity evaluation of a self-cleaning heat exchanger
Self-engineering (SE) systems have valuable abilities to register and respond to lost function and return it. A self-cleaning (SC) system was designed for effective automated cleaning of a heat exchanger (HX) fouled by brewing wort. The system uses temperature outputs in a Digital Twin (DT) simulati...
Ausführliche Beschreibung
Autor*in: |
Brooks, Sam [verfasserIn] Roy, Rajkumar [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: International journal of heat and mass transfer - Amsterdam [u.a.] : Elsevier, 1960, 191 |
---|---|
Übergeordnetes Werk: |
volume:191 |
DOI / URN: |
10.1016/j.ijheatmasstransfer.2022.122725 |
---|
Katalog-ID: |
ELV007750323 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV007750323 | ||
003 | DE-627 | ||
005 | 20230524143022.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230507s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ijheatmasstransfer.2022.122725 |2 doi | |
035 | |a (DE-627)ELV007750323 | ||
035 | |a (ELSEVIER)S0017-9310(22)00207-1 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q DE-600 |
084 | |a 50.38 |2 bkl | ||
100 | 1 | |a Brooks, Sam |e verfasserin |0 (orcid)0000-0002-5712-7358 |4 aut | |
245 | 1 | 0 | |a Design and complexity evaluation of a self-cleaning heat exchanger |
264 | 1 | |c 2022 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Self-engineering (SE) systems have valuable abilities to register and respond to lost function and return it. A self-cleaning (SC) system was designed for effective automated cleaning of a heat exchanger (HX) fouled by brewing wort. The system uses temperature outputs in a Digital Twin (DT) simulation and a controller to identify when fouling occurs and trigger a cleaning response. This paper utilises the SE complexity framework and investigates the effectiveness of different complexity designs. Three levels are created for each factor of the framework (repeatability, redundancy and self-control). For repeatability, the number of cleaning cycles was changed, while for redundancy, the flow rate was changed. For self-control, the cleaning mechanism was changed; pulses and foam balls were both used as the cleaning mechanisms. Balls were used to block pipes and redirect flow. An orthogonal matrix is used to reduce the number of experiments. SC effectiveness was measured for each cleaning cycle, and the results were evaluated. Cleaning with the max flow rate (0.21 kg s−1) and using balls and pulses together provided the most effective cleaning, while the worst was with a low flow rate (0.09 kg s−1) and just pulses. Further experiments verified these results and showed that better cleaning settings could lower water use in cleaning. A longer simulation demonstrated when the SC system would be stopped. | ||
650 | 4 | |a Self-engineering | |
650 | 4 | |a Self-cleaning | |
650 | 4 | |a Heat exchanger | |
650 | 4 | |a Clean in place | |
650 | 4 | |a Brewing | |
700 | 1 | |a Roy, Rajkumar |e verfasserin |0 (orcid)0000-0001-5491-7437 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t International journal of heat and mass transfer |d Amsterdam [u.a.] : Elsevier, 1960 |g 191 |h Online-Ressource |w (DE-627)320505081 |w (DE-600)2012726-1 |w (DE-576)096806575 |x 1879-2189 |7 nnns |
773 | 1 | 8 | |g volume:191 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 50.38 |j Technische Thermodynamik |
951 | |a AR | ||
952 | |d 191 |
author_variant |
s b sb r r rr |
---|---|
matchkey_str |
article:18792189:2022----::einncmlxteautooaeflai |
hierarchy_sort_str |
2022 |
bklnumber |
50.38 |
publishDate |
2022 |
allfields |
10.1016/j.ijheatmasstransfer.2022.122725 doi (DE-627)ELV007750323 (ELSEVIER)S0017-9310(22)00207-1 DE-627 ger DE-627 rda eng 620 DE-600 50.38 bkl Brooks, Sam verfasserin (orcid)0000-0002-5712-7358 aut Design and complexity evaluation of a self-cleaning heat exchanger 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Self-engineering (SE) systems have valuable abilities to register and respond to lost function and return it. A self-cleaning (SC) system was designed for effective automated cleaning of a heat exchanger (HX) fouled by brewing wort. The system uses temperature outputs in a Digital Twin (DT) simulation and a controller to identify when fouling occurs and trigger a cleaning response. This paper utilises the SE complexity framework and investigates the effectiveness of different complexity designs. Three levels are created for each factor of the framework (repeatability, redundancy and self-control). For repeatability, the number of cleaning cycles was changed, while for redundancy, the flow rate was changed. For self-control, the cleaning mechanism was changed; pulses and foam balls were both used as the cleaning mechanisms. Balls were used to block pipes and redirect flow. An orthogonal matrix is used to reduce the number of experiments. SC effectiveness was measured for each cleaning cycle, and the results were evaluated. Cleaning with the max flow rate (0.21 kg s−1) and using balls and pulses together provided the most effective cleaning, while the worst was with a low flow rate (0.09 kg s−1) and just pulses. Further experiments verified these results and showed that better cleaning settings could lower water use in cleaning. A longer simulation demonstrated when the SC system would be stopped. Self-engineering Self-cleaning Heat exchanger Clean in place Brewing Roy, Rajkumar verfasserin (orcid)0000-0001-5491-7437 aut Enthalten in International journal of heat and mass transfer Amsterdam [u.a.] : Elsevier, 1960 191 Online-Ressource (DE-627)320505081 (DE-600)2012726-1 (DE-576)096806575 1879-2189 nnns volume:191 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.38 Technische Thermodynamik AR 191 |
spelling |
10.1016/j.ijheatmasstransfer.2022.122725 doi (DE-627)ELV007750323 (ELSEVIER)S0017-9310(22)00207-1 DE-627 ger DE-627 rda eng 620 DE-600 50.38 bkl Brooks, Sam verfasserin (orcid)0000-0002-5712-7358 aut Design and complexity evaluation of a self-cleaning heat exchanger 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Self-engineering (SE) systems have valuable abilities to register and respond to lost function and return it. A self-cleaning (SC) system was designed for effective automated cleaning of a heat exchanger (HX) fouled by brewing wort. The system uses temperature outputs in a Digital Twin (DT) simulation and a controller to identify when fouling occurs and trigger a cleaning response. This paper utilises the SE complexity framework and investigates the effectiveness of different complexity designs. Three levels are created for each factor of the framework (repeatability, redundancy and self-control). For repeatability, the number of cleaning cycles was changed, while for redundancy, the flow rate was changed. For self-control, the cleaning mechanism was changed; pulses and foam balls were both used as the cleaning mechanisms. Balls were used to block pipes and redirect flow. An orthogonal matrix is used to reduce the number of experiments. SC effectiveness was measured for each cleaning cycle, and the results were evaluated. Cleaning with the max flow rate (0.21 kg s−1) and using balls and pulses together provided the most effective cleaning, while the worst was with a low flow rate (0.09 kg s−1) and just pulses. Further experiments verified these results and showed that better cleaning settings could lower water use in cleaning. A longer simulation demonstrated when the SC system would be stopped. Self-engineering Self-cleaning Heat exchanger Clean in place Brewing Roy, Rajkumar verfasserin (orcid)0000-0001-5491-7437 aut Enthalten in International journal of heat and mass transfer Amsterdam [u.a.] : Elsevier, 1960 191 Online-Ressource (DE-627)320505081 (DE-600)2012726-1 (DE-576)096806575 1879-2189 nnns volume:191 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.38 Technische Thermodynamik AR 191 |
allfields_unstemmed |
10.1016/j.ijheatmasstransfer.2022.122725 doi (DE-627)ELV007750323 (ELSEVIER)S0017-9310(22)00207-1 DE-627 ger DE-627 rda eng 620 DE-600 50.38 bkl Brooks, Sam verfasserin (orcid)0000-0002-5712-7358 aut Design and complexity evaluation of a self-cleaning heat exchanger 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Self-engineering (SE) systems have valuable abilities to register and respond to lost function and return it. A self-cleaning (SC) system was designed for effective automated cleaning of a heat exchanger (HX) fouled by brewing wort. The system uses temperature outputs in a Digital Twin (DT) simulation and a controller to identify when fouling occurs and trigger a cleaning response. This paper utilises the SE complexity framework and investigates the effectiveness of different complexity designs. Three levels are created for each factor of the framework (repeatability, redundancy and self-control). For repeatability, the number of cleaning cycles was changed, while for redundancy, the flow rate was changed. For self-control, the cleaning mechanism was changed; pulses and foam balls were both used as the cleaning mechanisms. Balls were used to block pipes and redirect flow. An orthogonal matrix is used to reduce the number of experiments. SC effectiveness was measured for each cleaning cycle, and the results were evaluated. Cleaning with the max flow rate (0.21 kg s−1) and using balls and pulses together provided the most effective cleaning, while the worst was with a low flow rate (0.09 kg s−1) and just pulses. Further experiments verified these results and showed that better cleaning settings could lower water use in cleaning. A longer simulation demonstrated when the SC system would be stopped. Self-engineering Self-cleaning Heat exchanger Clean in place Brewing Roy, Rajkumar verfasserin (orcid)0000-0001-5491-7437 aut Enthalten in International journal of heat and mass transfer Amsterdam [u.a.] : Elsevier, 1960 191 Online-Ressource (DE-627)320505081 (DE-600)2012726-1 (DE-576)096806575 1879-2189 nnns volume:191 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.38 Technische Thermodynamik AR 191 |
allfieldsGer |
10.1016/j.ijheatmasstransfer.2022.122725 doi (DE-627)ELV007750323 (ELSEVIER)S0017-9310(22)00207-1 DE-627 ger DE-627 rda eng 620 DE-600 50.38 bkl Brooks, Sam verfasserin (orcid)0000-0002-5712-7358 aut Design and complexity evaluation of a self-cleaning heat exchanger 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Self-engineering (SE) systems have valuable abilities to register and respond to lost function and return it. A self-cleaning (SC) system was designed for effective automated cleaning of a heat exchanger (HX) fouled by brewing wort. The system uses temperature outputs in a Digital Twin (DT) simulation and a controller to identify when fouling occurs and trigger a cleaning response. This paper utilises the SE complexity framework and investigates the effectiveness of different complexity designs. Three levels are created for each factor of the framework (repeatability, redundancy and self-control). For repeatability, the number of cleaning cycles was changed, while for redundancy, the flow rate was changed. For self-control, the cleaning mechanism was changed; pulses and foam balls were both used as the cleaning mechanisms. Balls were used to block pipes and redirect flow. An orthogonal matrix is used to reduce the number of experiments. SC effectiveness was measured for each cleaning cycle, and the results were evaluated. Cleaning with the max flow rate (0.21 kg s−1) and using balls and pulses together provided the most effective cleaning, while the worst was with a low flow rate (0.09 kg s−1) and just pulses. Further experiments verified these results and showed that better cleaning settings could lower water use in cleaning. A longer simulation demonstrated when the SC system would be stopped. Self-engineering Self-cleaning Heat exchanger Clean in place Brewing Roy, Rajkumar verfasserin (orcid)0000-0001-5491-7437 aut Enthalten in International journal of heat and mass transfer Amsterdam [u.a.] : Elsevier, 1960 191 Online-Ressource (DE-627)320505081 (DE-600)2012726-1 (DE-576)096806575 1879-2189 nnns volume:191 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.38 Technische Thermodynamik AR 191 |
allfieldsSound |
10.1016/j.ijheatmasstransfer.2022.122725 doi (DE-627)ELV007750323 (ELSEVIER)S0017-9310(22)00207-1 DE-627 ger DE-627 rda eng 620 DE-600 50.38 bkl Brooks, Sam verfasserin (orcid)0000-0002-5712-7358 aut Design and complexity evaluation of a self-cleaning heat exchanger 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Self-engineering (SE) systems have valuable abilities to register and respond to lost function and return it. A self-cleaning (SC) system was designed for effective automated cleaning of a heat exchanger (HX) fouled by brewing wort. The system uses temperature outputs in a Digital Twin (DT) simulation and a controller to identify when fouling occurs and trigger a cleaning response. This paper utilises the SE complexity framework and investigates the effectiveness of different complexity designs. Three levels are created for each factor of the framework (repeatability, redundancy and self-control). For repeatability, the number of cleaning cycles was changed, while for redundancy, the flow rate was changed. For self-control, the cleaning mechanism was changed; pulses and foam balls were both used as the cleaning mechanisms. Balls were used to block pipes and redirect flow. An orthogonal matrix is used to reduce the number of experiments. SC effectiveness was measured for each cleaning cycle, and the results were evaluated. Cleaning with the max flow rate (0.21 kg s−1) and using balls and pulses together provided the most effective cleaning, while the worst was with a low flow rate (0.09 kg s−1) and just pulses. Further experiments verified these results and showed that better cleaning settings could lower water use in cleaning. A longer simulation demonstrated when the SC system would be stopped. Self-engineering Self-cleaning Heat exchanger Clean in place Brewing Roy, Rajkumar verfasserin (orcid)0000-0001-5491-7437 aut Enthalten in International journal of heat and mass transfer Amsterdam [u.a.] : Elsevier, 1960 191 Online-Ressource (DE-627)320505081 (DE-600)2012726-1 (DE-576)096806575 1879-2189 nnns volume:191 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.38 Technische Thermodynamik AR 191 |
language |
English |
source |
Enthalten in International journal of heat and mass transfer 191 volume:191 |
sourceStr |
Enthalten in International journal of heat and mass transfer 191 volume:191 |
format_phy_str_mv |
Article |
bklname |
Technische Thermodynamik |
institution |
findex.gbv.de |
topic_facet |
Self-engineering Self-cleaning Heat exchanger Clean in place Brewing |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
International journal of heat and mass transfer |
authorswithroles_txt_mv |
Brooks, Sam @@aut@@ Roy, Rajkumar @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
320505081 |
dewey-sort |
3620 |
id |
ELV007750323 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV007750323</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524143022.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230507s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijheatmasstransfer.2022.122725</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV007750323</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0017-9310(22)00207-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Brooks, Sam</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-5712-7358</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Design and complexity evaluation of a self-cleaning heat exchanger</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Self-engineering (SE) systems have valuable abilities to register and respond to lost function and return it. A self-cleaning (SC) system was designed for effective automated cleaning of a heat exchanger (HX) fouled by brewing wort. The system uses temperature outputs in a Digital Twin (DT) simulation and a controller to identify when fouling occurs and trigger a cleaning response. This paper utilises the SE complexity framework and investigates the effectiveness of different complexity designs. Three levels are created for each factor of the framework (repeatability, redundancy and self-control). For repeatability, the number of cleaning cycles was changed, while for redundancy, the flow rate was changed. For self-control, the cleaning mechanism was changed; pulses and foam balls were both used as the cleaning mechanisms. Balls were used to block pipes and redirect flow. An orthogonal matrix is used to reduce the number of experiments. SC effectiveness was measured for each cleaning cycle, and the results were evaluated. Cleaning with the max flow rate (0.21 kg s−1) and using balls and pulses together provided the most effective cleaning, while the worst was with a low flow rate (0.09 kg s−1) and just pulses. Further experiments verified these results and showed that better cleaning settings could lower water use in cleaning. A longer simulation demonstrated when the SC system would be stopped.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Self-engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Self-cleaning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heat exchanger</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Clean in place</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Brewing</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Roy, Rajkumar</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-5491-7437</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of heat and mass transfer</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1960</subfield><subfield code="g">191</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320505081</subfield><subfield code="w">(DE-600)2012726-1</subfield><subfield code="w">(DE-576)096806575</subfield><subfield code="x">1879-2189</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:191</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.38</subfield><subfield code="j">Technische Thermodynamik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">191</subfield></datafield></record></collection>
|
author |
Brooks, Sam |
spellingShingle |
Brooks, Sam ddc 620 bkl 50.38 misc Self-engineering misc Self-cleaning misc Heat exchanger misc Clean in place misc Brewing Design and complexity evaluation of a self-cleaning heat exchanger |
authorStr |
Brooks, Sam |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320505081 |
format |
electronic Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1879-2189 |
topic_title |
620 DE-600 50.38 bkl Design and complexity evaluation of a self-cleaning heat exchanger Self-engineering Self-cleaning Heat exchanger Clean in place Brewing |
topic |
ddc 620 bkl 50.38 misc Self-engineering misc Self-cleaning misc Heat exchanger misc Clean in place misc Brewing |
topic_unstemmed |
ddc 620 bkl 50.38 misc Self-engineering misc Self-cleaning misc Heat exchanger misc Clean in place misc Brewing |
topic_browse |
ddc 620 bkl 50.38 misc Self-engineering misc Self-cleaning misc Heat exchanger misc Clean in place misc Brewing |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International journal of heat and mass transfer |
hierarchy_parent_id |
320505081 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
International journal of heat and mass transfer |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320505081 (DE-600)2012726-1 (DE-576)096806575 |
title |
Design and complexity evaluation of a self-cleaning heat exchanger |
ctrlnum |
(DE-627)ELV007750323 (ELSEVIER)S0017-9310(22)00207-1 |
title_full |
Design and complexity evaluation of a self-cleaning heat exchanger |
author_sort |
Brooks, Sam |
journal |
International journal of heat and mass transfer |
journalStr |
International journal of heat and mass transfer |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
author_browse |
Brooks, Sam Roy, Rajkumar |
container_volume |
191 |
class |
620 DE-600 50.38 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Brooks, Sam |
doi_str_mv |
10.1016/j.ijheatmasstransfer.2022.122725 |
normlink |
(ORCID)0000-0002-5712-7358 (ORCID)0000-0001-5491-7437 |
normlink_prefix_str_mv |
(orcid)0000-0002-5712-7358 (orcid)0000-0001-5491-7437 |
dewey-full |
620 |
author2-role |
verfasserin |
title_sort |
design and complexity evaluation of a self-cleaning heat exchanger |
title_auth |
Design and complexity evaluation of a self-cleaning heat exchanger |
abstract |
Self-engineering (SE) systems have valuable abilities to register and respond to lost function and return it. A self-cleaning (SC) system was designed for effective automated cleaning of a heat exchanger (HX) fouled by brewing wort. The system uses temperature outputs in a Digital Twin (DT) simulation and a controller to identify when fouling occurs and trigger a cleaning response. This paper utilises the SE complexity framework and investigates the effectiveness of different complexity designs. Three levels are created for each factor of the framework (repeatability, redundancy and self-control). For repeatability, the number of cleaning cycles was changed, while for redundancy, the flow rate was changed. For self-control, the cleaning mechanism was changed; pulses and foam balls were both used as the cleaning mechanisms. Balls were used to block pipes and redirect flow. An orthogonal matrix is used to reduce the number of experiments. SC effectiveness was measured for each cleaning cycle, and the results were evaluated. Cleaning with the max flow rate (0.21 kg s−1) and using balls and pulses together provided the most effective cleaning, while the worst was with a low flow rate (0.09 kg s−1) and just pulses. Further experiments verified these results and showed that better cleaning settings could lower water use in cleaning. A longer simulation demonstrated when the SC system would be stopped. |
abstractGer |
Self-engineering (SE) systems have valuable abilities to register and respond to lost function and return it. A self-cleaning (SC) system was designed for effective automated cleaning of a heat exchanger (HX) fouled by brewing wort. The system uses temperature outputs in a Digital Twin (DT) simulation and a controller to identify when fouling occurs and trigger a cleaning response. This paper utilises the SE complexity framework and investigates the effectiveness of different complexity designs. Three levels are created for each factor of the framework (repeatability, redundancy and self-control). For repeatability, the number of cleaning cycles was changed, while for redundancy, the flow rate was changed. For self-control, the cleaning mechanism was changed; pulses and foam balls were both used as the cleaning mechanisms. Balls were used to block pipes and redirect flow. An orthogonal matrix is used to reduce the number of experiments. SC effectiveness was measured for each cleaning cycle, and the results were evaluated. Cleaning with the max flow rate (0.21 kg s−1) and using balls and pulses together provided the most effective cleaning, while the worst was with a low flow rate (0.09 kg s−1) and just pulses. Further experiments verified these results and showed that better cleaning settings could lower water use in cleaning. A longer simulation demonstrated when the SC system would be stopped. |
abstract_unstemmed |
Self-engineering (SE) systems have valuable abilities to register and respond to lost function and return it. A self-cleaning (SC) system was designed for effective automated cleaning of a heat exchanger (HX) fouled by brewing wort. The system uses temperature outputs in a Digital Twin (DT) simulation and a controller to identify when fouling occurs and trigger a cleaning response. This paper utilises the SE complexity framework and investigates the effectiveness of different complexity designs. Three levels are created for each factor of the framework (repeatability, redundancy and self-control). For repeatability, the number of cleaning cycles was changed, while for redundancy, the flow rate was changed. For self-control, the cleaning mechanism was changed; pulses and foam balls were both used as the cleaning mechanisms. Balls were used to block pipes and redirect flow. An orthogonal matrix is used to reduce the number of experiments. SC effectiveness was measured for each cleaning cycle, and the results were evaluated. Cleaning with the max flow rate (0.21 kg s−1) and using balls and pulses together provided the most effective cleaning, while the worst was with a low flow rate (0.09 kg s−1) and just pulses. Further experiments verified these results and showed that better cleaning settings could lower water use in cleaning. A longer simulation demonstrated when the SC system would be stopped. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Design and complexity evaluation of a self-cleaning heat exchanger |
remote_bool |
true |
author2 |
Roy, Rajkumar |
author2Str |
Roy, Rajkumar |
ppnlink |
320505081 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.ijheatmasstransfer.2022.122725 |
up_date |
2024-07-06T17:19:54.613Z |
_version_ |
1803851026521915392 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV007750323</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524143022.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230507s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijheatmasstransfer.2022.122725</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV007750323</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0017-9310(22)00207-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Brooks, Sam</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-5712-7358</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Design and complexity evaluation of a self-cleaning heat exchanger</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Self-engineering (SE) systems have valuable abilities to register and respond to lost function and return it. A self-cleaning (SC) system was designed for effective automated cleaning of a heat exchanger (HX) fouled by brewing wort. The system uses temperature outputs in a Digital Twin (DT) simulation and a controller to identify when fouling occurs and trigger a cleaning response. This paper utilises the SE complexity framework and investigates the effectiveness of different complexity designs. Three levels are created for each factor of the framework (repeatability, redundancy and self-control). For repeatability, the number of cleaning cycles was changed, while for redundancy, the flow rate was changed. For self-control, the cleaning mechanism was changed; pulses and foam balls were both used as the cleaning mechanisms. Balls were used to block pipes and redirect flow. An orthogonal matrix is used to reduce the number of experiments. SC effectiveness was measured for each cleaning cycle, and the results were evaluated. Cleaning with the max flow rate (0.21 kg s−1) and using balls and pulses together provided the most effective cleaning, while the worst was with a low flow rate (0.09 kg s−1) and just pulses. Further experiments verified these results and showed that better cleaning settings could lower water use in cleaning. A longer simulation demonstrated when the SC system would be stopped.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Self-engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Self-cleaning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heat exchanger</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Clean in place</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Brewing</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Roy, Rajkumar</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-5491-7437</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of heat and mass transfer</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1960</subfield><subfield code="g">191</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320505081</subfield><subfield code="w">(DE-600)2012726-1</subfield><subfield code="w">(DE-576)096806575</subfield><subfield code="x">1879-2189</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:191</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.38</subfield><subfield code="j">Technische Thermodynamik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">191</subfield></datafield></record></collection>
|
score |
7.3993187 |