Understanding indium nitride thin film growth under ALD conditions by atomic scale modelling: From the bulk to the In-rich layer
In recent decades, indium nitride (InN) has been attracting a great deal of attention for its potential applicability in the field of light-emitting diodes (LEDs) and high-frequency electronics. However, the contribution from adsorption- and reaction- related processes at the atomic scale level to t...
Ausführliche Beschreibung
Autor*in: |
Damas, Giane B. [verfasserIn] Rönnby, Karl [verfasserIn] Pedersen, Henrik [verfasserIn] Ojamäe, Lars [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Applied surface science - Amsterdam : Elsevier, 1985, 592 |
---|---|
Übergeordnetes Werk: |
volume:592 |
DOI / URN: |
10.1016/j.apsusc.2022.153290 |
---|
Katalog-ID: |
ELV007833873 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV007833873 | ||
003 | DE-627 | ||
005 | 20230524132802.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230507s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.apsusc.2022.153290 |2 doi | |
035 | |a (DE-627)ELV007833873 | ||
035 | |a (ELSEVIER)S0169-4332(22)00846-7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |a 530 |a 660 |q DE-600 |
084 | |a 33.68 |2 bkl | ||
084 | |a 35.18 |2 bkl | ||
084 | |a 52.78 |2 bkl | ||
100 | 1 | |a Damas, Giane B. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Understanding indium nitride thin film growth under ALD conditions by atomic scale modelling: From the bulk to the In-rich layer |
264 | 1 | |c 2022 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a In recent decades, indium nitride (InN) has been attracting a great deal of attention for its potential applicability in the field of light-emitting diodes (LEDs) and high-frequency electronics. However, the contribution from adsorption- and reaction- related processes at the atomic scale level to the InN growth has not yet been unveiled, limiting the process optimization that is essential to achieve highly crystalline and pure thin films. In this report, we investigate the reaction pathways that are involved in the crystal growth of InN thin film in atomic layer deposition (ALD) techniques from trimethylindium (TMI) and ammonia (NH3) precursors. To accomplish this task, we use a solid-state approach to perform the ab-initio calculations within the Perdew–Burke–Ernzerhof functional (PBE) level of theory. The results clarify the activation role from the N-rich layer to decrease the barrier for the first TMI precursor dissociation from Δ‡H= +227 kJ/mol, in gas phase, to solely +16 kJ/mol, in the surface environment. In either case, the subsequent CH3 release is found to be thermo- and kinetically favored with methylindium (MI) formed at the hcp site and ethane (C2H6) as the byproduct. In the following step, the TMI physisorption at a nearby occupied hcp site promotes the sequential hydrogen removal from the N-rich layer at the minimum energy cost of Δ‡H < +105 kJ/mol with methane (CH4) release. An alternative mechanism involving the production of CH4 is also feasible upon dissociation in gas phase. Furthermore, the high concentration of CH3 radicals, from precursor dissociation, might be the origin of the carbon impurities in this material under the experimental conditions of interest. Finally, the passivation methodology is not found to affect the evaluation of the surface-related processes, whereas the inclusion of spin-polarization is demonstrated to be essential to the proper understanding of the reaction mechanism. | ||
700 | 1 | |a Rönnby, Karl |e verfasserin |4 aut | |
700 | 1 | |a Pedersen, Henrik |e verfasserin |4 aut | |
700 | 1 | |a Ojamäe, Lars |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Applied surface science |d Amsterdam : Elsevier, 1985 |g 592 |h Online-Ressource |w (DE-627)312151128 |w (DE-600)2002520-8 |w (DE-576)094476985 |7 nnns |
773 | 1 | 8 | |g volume:592 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 33.68 |j Oberflächen |j Dünne Schichten |j Grenzflächen |x Physik |
936 | b | k | |a 35.18 |j Kolloidchemie |j Grenzflächenchemie |
936 | b | k | |a 52.78 |j Oberflächentechnik |j Wärmebehandlung |
951 | |a AR | ||
952 | |d 592 |
author_variant |
g b d gb gbd k r kr h p hp l o lo |
---|---|
matchkey_str |
damasgianebrnnbykarlpedersenhenrikojamel:2022----:nesadniduntiehnimrwhneadodtosytmcclmdli |
hierarchy_sort_str |
2022 |
bklnumber |
33.68 35.18 52.78 |
publishDate |
2022 |
allfields |
10.1016/j.apsusc.2022.153290 doi (DE-627)ELV007833873 (ELSEVIER)S0169-4332(22)00846-7 DE-627 ger DE-627 rda eng 670 530 660 DE-600 33.68 bkl 35.18 bkl 52.78 bkl Damas, Giane B. verfasserin aut Understanding indium nitride thin film growth under ALD conditions by atomic scale modelling: From the bulk to the In-rich layer 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In recent decades, indium nitride (InN) has been attracting a great deal of attention for its potential applicability in the field of light-emitting diodes (LEDs) and high-frequency electronics. However, the contribution from adsorption- and reaction- related processes at the atomic scale level to the InN growth has not yet been unveiled, limiting the process optimization that is essential to achieve highly crystalline and pure thin films. In this report, we investigate the reaction pathways that are involved in the crystal growth of InN thin film in atomic layer deposition (ALD) techniques from trimethylindium (TMI) and ammonia (NH3) precursors. To accomplish this task, we use a solid-state approach to perform the ab-initio calculations within the Perdew–Burke–Ernzerhof functional (PBE) level of theory. The results clarify the activation role from the N-rich layer to decrease the barrier for the first TMI precursor dissociation from Δ‡H= +227 kJ/mol, in gas phase, to solely +16 kJ/mol, in the surface environment. In either case, the subsequent CH3 release is found to be thermo- and kinetically favored with methylindium (MI) formed at the hcp site and ethane (C2H6) as the byproduct. In the following step, the TMI physisorption at a nearby occupied hcp site promotes the sequential hydrogen removal from the N-rich layer at the minimum energy cost of Δ‡H < +105 kJ/mol with methane (CH4) release. An alternative mechanism involving the production of CH4 is also feasible upon dissociation in gas phase. Furthermore, the high concentration of CH3 radicals, from precursor dissociation, might be the origin of the carbon impurities in this material under the experimental conditions of interest. Finally, the passivation methodology is not found to affect the evaluation of the surface-related processes, whereas the inclusion of spin-polarization is demonstrated to be essential to the proper understanding of the reaction mechanism. Rönnby, Karl verfasserin aut Pedersen, Henrik verfasserin aut Ojamäe, Lars verfasserin aut Enthalten in Applied surface science Amsterdam : Elsevier, 1985 592 Online-Ressource (DE-627)312151128 (DE-600)2002520-8 (DE-576)094476985 nnns volume:592 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 33.68 Oberflächen Dünne Schichten Grenzflächen Physik 35.18 Kolloidchemie Grenzflächenchemie 52.78 Oberflächentechnik Wärmebehandlung AR 592 |
spelling |
10.1016/j.apsusc.2022.153290 doi (DE-627)ELV007833873 (ELSEVIER)S0169-4332(22)00846-7 DE-627 ger DE-627 rda eng 670 530 660 DE-600 33.68 bkl 35.18 bkl 52.78 bkl Damas, Giane B. verfasserin aut Understanding indium nitride thin film growth under ALD conditions by atomic scale modelling: From the bulk to the In-rich layer 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In recent decades, indium nitride (InN) has been attracting a great deal of attention for its potential applicability in the field of light-emitting diodes (LEDs) and high-frequency electronics. However, the contribution from adsorption- and reaction- related processes at the atomic scale level to the InN growth has not yet been unveiled, limiting the process optimization that is essential to achieve highly crystalline and pure thin films. In this report, we investigate the reaction pathways that are involved in the crystal growth of InN thin film in atomic layer deposition (ALD) techniques from trimethylindium (TMI) and ammonia (NH3) precursors. To accomplish this task, we use a solid-state approach to perform the ab-initio calculations within the Perdew–Burke–Ernzerhof functional (PBE) level of theory. The results clarify the activation role from the N-rich layer to decrease the barrier for the first TMI precursor dissociation from Δ‡H= +227 kJ/mol, in gas phase, to solely +16 kJ/mol, in the surface environment. In either case, the subsequent CH3 release is found to be thermo- and kinetically favored with methylindium (MI) formed at the hcp site and ethane (C2H6) as the byproduct. In the following step, the TMI physisorption at a nearby occupied hcp site promotes the sequential hydrogen removal from the N-rich layer at the minimum energy cost of Δ‡H < +105 kJ/mol with methane (CH4) release. An alternative mechanism involving the production of CH4 is also feasible upon dissociation in gas phase. Furthermore, the high concentration of CH3 radicals, from precursor dissociation, might be the origin of the carbon impurities in this material under the experimental conditions of interest. Finally, the passivation methodology is not found to affect the evaluation of the surface-related processes, whereas the inclusion of spin-polarization is demonstrated to be essential to the proper understanding of the reaction mechanism. Rönnby, Karl verfasserin aut Pedersen, Henrik verfasserin aut Ojamäe, Lars verfasserin aut Enthalten in Applied surface science Amsterdam : Elsevier, 1985 592 Online-Ressource (DE-627)312151128 (DE-600)2002520-8 (DE-576)094476985 nnns volume:592 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 33.68 Oberflächen Dünne Schichten Grenzflächen Physik 35.18 Kolloidchemie Grenzflächenchemie 52.78 Oberflächentechnik Wärmebehandlung AR 592 |
allfields_unstemmed |
10.1016/j.apsusc.2022.153290 doi (DE-627)ELV007833873 (ELSEVIER)S0169-4332(22)00846-7 DE-627 ger DE-627 rda eng 670 530 660 DE-600 33.68 bkl 35.18 bkl 52.78 bkl Damas, Giane B. verfasserin aut Understanding indium nitride thin film growth under ALD conditions by atomic scale modelling: From the bulk to the In-rich layer 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In recent decades, indium nitride (InN) has been attracting a great deal of attention for its potential applicability in the field of light-emitting diodes (LEDs) and high-frequency electronics. However, the contribution from adsorption- and reaction- related processes at the atomic scale level to the InN growth has not yet been unveiled, limiting the process optimization that is essential to achieve highly crystalline and pure thin films. In this report, we investigate the reaction pathways that are involved in the crystal growth of InN thin film in atomic layer deposition (ALD) techniques from trimethylindium (TMI) and ammonia (NH3) precursors. To accomplish this task, we use a solid-state approach to perform the ab-initio calculations within the Perdew–Burke–Ernzerhof functional (PBE) level of theory. The results clarify the activation role from the N-rich layer to decrease the barrier for the first TMI precursor dissociation from Δ‡H= +227 kJ/mol, in gas phase, to solely +16 kJ/mol, in the surface environment. In either case, the subsequent CH3 release is found to be thermo- and kinetically favored with methylindium (MI) formed at the hcp site and ethane (C2H6) as the byproduct. In the following step, the TMI physisorption at a nearby occupied hcp site promotes the sequential hydrogen removal from the N-rich layer at the minimum energy cost of Δ‡H < +105 kJ/mol with methane (CH4) release. An alternative mechanism involving the production of CH4 is also feasible upon dissociation in gas phase. Furthermore, the high concentration of CH3 radicals, from precursor dissociation, might be the origin of the carbon impurities in this material under the experimental conditions of interest. Finally, the passivation methodology is not found to affect the evaluation of the surface-related processes, whereas the inclusion of spin-polarization is demonstrated to be essential to the proper understanding of the reaction mechanism. Rönnby, Karl verfasserin aut Pedersen, Henrik verfasserin aut Ojamäe, Lars verfasserin aut Enthalten in Applied surface science Amsterdam : Elsevier, 1985 592 Online-Ressource (DE-627)312151128 (DE-600)2002520-8 (DE-576)094476985 nnns volume:592 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 33.68 Oberflächen Dünne Schichten Grenzflächen Physik 35.18 Kolloidchemie Grenzflächenchemie 52.78 Oberflächentechnik Wärmebehandlung AR 592 |
allfieldsGer |
10.1016/j.apsusc.2022.153290 doi (DE-627)ELV007833873 (ELSEVIER)S0169-4332(22)00846-7 DE-627 ger DE-627 rda eng 670 530 660 DE-600 33.68 bkl 35.18 bkl 52.78 bkl Damas, Giane B. verfasserin aut Understanding indium nitride thin film growth under ALD conditions by atomic scale modelling: From the bulk to the In-rich layer 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In recent decades, indium nitride (InN) has been attracting a great deal of attention for its potential applicability in the field of light-emitting diodes (LEDs) and high-frequency electronics. However, the contribution from adsorption- and reaction- related processes at the atomic scale level to the InN growth has not yet been unveiled, limiting the process optimization that is essential to achieve highly crystalline and pure thin films. In this report, we investigate the reaction pathways that are involved in the crystal growth of InN thin film in atomic layer deposition (ALD) techniques from trimethylindium (TMI) and ammonia (NH3) precursors. To accomplish this task, we use a solid-state approach to perform the ab-initio calculations within the Perdew–Burke–Ernzerhof functional (PBE) level of theory. The results clarify the activation role from the N-rich layer to decrease the barrier for the first TMI precursor dissociation from Δ‡H= +227 kJ/mol, in gas phase, to solely +16 kJ/mol, in the surface environment. In either case, the subsequent CH3 release is found to be thermo- and kinetically favored with methylindium (MI) formed at the hcp site and ethane (C2H6) as the byproduct. In the following step, the TMI physisorption at a nearby occupied hcp site promotes the sequential hydrogen removal from the N-rich layer at the minimum energy cost of Δ‡H < +105 kJ/mol with methane (CH4) release. An alternative mechanism involving the production of CH4 is also feasible upon dissociation in gas phase. Furthermore, the high concentration of CH3 radicals, from precursor dissociation, might be the origin of the carbon impurities in this material under the experimental conditions of interest. Finally, the passivation methodology is not found to affect the evaluation of the surface-related processes, whereas the inclusion of spin-polarization is demonstrated to be essential to the proper understanding of the reaction mechanism. Rönnby, Karl verfasserin aut Pedersen, Henrik verfasserin aut Ojamäe, Lars verfasserin aut Enthalten in Applied surface science Amsterdam : Elsevier, 1985 592 Online-Ressource (DE-627)312151128 (DE-600)2002520-8 (DE-576)094476985 nnns volume:592 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 33.68 Oberflächen Dünne Schichten Grenzflächen Physik 35.18 Kolloidchemie Grenzflächenchemie 52.78 Oberflächentechnik Wärmebehandlung AR 592 |
allfieldsSound |
10.1016/j.apsusc.2022.153290 doi (DE-627)ELV007833873 (ELSEVIER)S0169-4332(22)00846-7 DE-627 ger DE-627 rda eng 670 530 660 DE-600 33.68 bkl 35.18 bkl 52.78 bkl Damas, Giane B. verfasserin aut Understanding indium nitride thin film growth under ALD conditions by atomic scale modelling: From the bulk to the In-rich layer 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier In recent decades, indium nitride (InN) has been attracting a great deal of attention for its potential applicability in the field of light-emitting diodes (LEDs) and high-frequency electronics. However, the contribution from adsorption- and reaction- related processes at the atomic scale level to the InN growth has not yet been unveiled, limiting the process optimization that is essential to achieve highly crystalline and pure thin films. In this report, we investigate the reaction pathways that are involved in the crystal growth of InN thin film in atomic layer deposition (ALD) techniques from trimethylindium (TMI) and ammonia (NH3) precursors. To accomplish this task, we use a solid-state approach to perform the ab-initio calculations within the Perdew–Burke–Ernzerhof functional (PBE) level of theory. The results clarify the activation role from the N-rich layer to decrease the barrier for the first TMI precursor dissociation from Δ‡H= +227 kJ/mol, in gas phase, to solely +16 kJ/mol, in the surface environment. In either case, the subsequent CH3 release is found to be thermo- and kinetically favored with methylindium (MI) formed at the hcp site and ethane (C2H6) as the byproduct. In the following step, the TMI physisorption at a nearby occupied hcp site promotes the sequential hydrogen removal from the N-rich layer at the minimum energy cost of Δ‡H < +105 kJ/mol with methane (CH4) release. An alternative mechanism involving the production of CH4 is also feasible upon dissociation in gas phase. Furthermore, the high concentration of CH3 radicals, from precursor dissociation, might be the origin of the carbon impurities in this material under the experimental conditions of interest. Finally, the passivation methodology is not found to affect the evaluation of the surface-related processes, whereas the inclusion of spin-polarization is demonstrated to be essential to the proper understanding of the reaction mechanism. Rönnby, Karl verfasserin aut Pedersen, Henrik verfasserin aut Ojamäe, Lars verfasserin aut Enthalten in Applied surface science Amsterdam : Elsevier, 1985 592 Online-Ressource (DE-627)312151128 (DE-600)2002520-8 (DE-576)094476985 nnns volume:592 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 33.68 Oberflächen Dünne Schichten Grenzflächen Physik 35.18 Kolloidchemie Grenzflächenchemie 52.78 Oberflächentechnik Wärmebehandlung AR 592 |
language |
English |
source |
Enthalten in Applied surface science 592 volume:592 |
sourceStr |
Enthalten in Applied surface science 592 volume:592 |
format_phy_str_mv |
Article |
bklname |
Oberflächen Dünne Schichten Grenzflächen Kolloidchemie Grenzflächenchemie Oberflächentechnik Wärmebehandlung |
institution |
findex.gbv.de |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
Applied surface science |
authorswithroles_txt_mv |
Damas, Giane B. @@aut@@ Rönnby, Karl @@aut@@ Pedersen, Henrik @@aut@@ Ojamäe, Lars @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
312151128 |
dewey-sort |
3670 |
id |
ELV007833873 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV007833873</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524132802.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230507s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.apsusc.2022.153290</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV007833873</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0169-4332(22)00846-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="a">530</subfield><subfield code="a">660</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.68</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.18</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.78</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Damas, Giane B.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Understanding indium nitride thin film growth under ALD conditions by atomic scale modelling: From the bulk to the In-rich layer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In recent decades, indium nitride (InN) has been attracting a great deal of attention for its potential applicability in the field of light-emitting diodes (LEDs) and high-frequency electronics. However, the contribution from adsorption- and reaction- related processes at the atomic scale level to the InN growth has not yet been unveiled, limiting the process optimization that is essential to achieve highly crystalline and pure thin films. In this report, we investigate the reaction pathways that are involved in the crystal growth of InN thin film in atomic layer deposition (ALD) techniques from trimethylindium (TMI) and ammonia (NH3) precursors. To accomplish this task, we use a solid-state approach to perform the ab-initio calculations within the Perdew–Burke–Ernzerhof functional (PBE) level of theory. The results clarify the activation role from the N-rich layer to decrease the barrier for the first TMI precursor dissociation from Δ‡H= +227 kJ/mol, in gas phase, to solely +16 kJ/mol, in the surface environment. In either case, the subsequent CH3 release is found to be thermo- and kinetically favored with methylindium (MI) formed at the hcp site and ethane (C2H6) as the byproduct. In the following step, the TMI physisorption at a nearby occupied hcp site promotes the sequential hydrogen removal from the N-rich layer at the minimum energy cost of Δ‡H < +105 kJ/mol with methane (CH4) release. An alternative mechanism involving the production of CH4 is also feasible upon dissociation in gas phase. Furthermore, the high concentration of CH3 radicals, from precursor dissociation, might be the origin of the carbon impurities in this material under the experimental conditions of interest. Finally, the passivation methodology is not found to affect the evaluation of the surface-related processes, whereas the inclusion of spin-polarization is demonstrated to be essential to the proper understanding of the reaction mechanism.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rönnby, Karl</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pedersen, Henrik</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ojamäe, Lars</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied surface science</subfield><subfield code="d">Amsterdam : Elsevier, 1985</subfield><subfield code="g">592</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)312151128</subfield><subfield code="w">(DE-600)2002520-8</subfield><subfield code="w">(DE-576)094476985</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:592</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.68</subfield><subfield code="j">Oberflächen</subfield><subfield code="j">Dünne Schichten</subfield><subfield code="j">Grenzflächen</subfield><subfield code="x">Physik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.18</subfield><subfield code="j">Kolloidchemie</subfield><subfield code="j">Grenzflächenchemie</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.78</subfield><subfield code="j">Oberflächentechnik</subfield><subfield code="j">Wärmebehandlung</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">592</subfield></datafield></record></collection>
|
author |
Damas, Giane B. |
spellingShingle |
Damas, Giane B. ddc 670 bkl 33.68 bkl 35.18 bkl 52.78 Understanding indium nitride thin film growth under ALD conditions by atomic scale modelling: From the bulk to the In-rich layer |
authorStr |
Damas, Giane B. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)312151128 |
format |
electronic Article |
dewey-ones |
670 - Manufacturing 530 - Physics 660 - Chemical engineering |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
670 530 660 DE-600 33.68 bkl 35.18 bkl 52.78 bkl Understanding indium nitride thin film growth under ALD conditions by atomic scale modelling: From the bulk to the In-rich layer |
topic |
ddc 670 bkl 33.68 bkl 35.18 bkl 52.78 |
topic_unstemmed |
ddc 670 bkl 33.68 bkl 35.18 bkl 52.78 |
topic_browse |
ddc 670 bkl 33.68 bkl 35.18 bkl 52.78 |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Applied surface science |
hierarchy_parent_id |
312151128 |
dewey-tens |
670 - Manufacturing 530 - Physics 660 - Chemical engineering |
hierarchy_top_title |
Applied surface science |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)312151128 (DE-600)2002520-8 (DE-576)094476985 |
title |
Understanding indium nitride thin film growth under ALD conditions by atomic scale modelling: From the bulk to the In-rich layer |
ctrlnum |
(DE-627)ELV007833873 (ELSEVIER)S0169-4332(22)00846-7 |
title_full |
Understanding indium nitride thin film growth under ALD conditions by atomic scale modelling: From the bulk to the In-rich layer |
author_sort |
Damas, Giane B. |
journal |
Applied surface science |
journalStr |
Applied surface science |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 500 - Science |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
author_browse |
Damas, Giane B. Rönnby, Karl Pedersen, Henrik Ojamäe, Lars |
container_volume |
592 |
class |
670 530 660 DE-600 33.68 bkl 35.18 bkl 52.78 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Damas, Giane B. |
doi_str_mv |
10.1016/j.apsusc.2022.153290 |
dewey-full |
670 530 660 |
author2-role |
verfasserin |
title_sort |
understanding indium nitride thin film growth under ald conditions by atomic scale modelling: from the bulk to the in-rich layer |
title_auth |
Understanding indium nitride thin film growth under ALD conditions by atomic scale modelling: From the bulk to the In-rich layer |
abstract |
In recent decades, indium nitride (InN) has been attracting a great deal of attention for its potential applicability in the field of light-emitting diodes (LEDs) and high-frequency electronics. However, the contribution from adsorption- and reaction- related processes at the atomic scale level to the InN growth has not yet been unveiled, limiting the process optimization that is essential to achieve highly crystalline and pure thin films. In this report, we investigate the reaction pathways that are involved in the crystal growth of InN thin film in atomic layer deposition (ALD) techniques from trimethylindium (TMI) and ammonia (NH3) precursors. To accomplish this task, we use a solid-state approach to perform the ab-initio calculations within the Perdew–Burke–Ernzerhof functional (PBE) level of theory. The results clarify the activation role from the N-rich layer to decrease the barrier for the first TMI precursor dissociation from Δ‡H= +227 kJ/mol, in gas phase, to solely +16 kJ/mol, in the surface environment. In either case, the subsequent CH3 release is found to be thermo- and kinetically favored with methylindium (MI) formed at the hcp site and ethane (C2H6) as the byproduct. In the following step, the TMI physisorption at a nearby occupied hcp site promotes the sequential hydrogen removal from the N-rich layer at the minimum energy cost of Δ‡H < +105 kJ/mol with methane (CH4) release. An alternative mechanism involving the production of CH4 is also feasible upon dissociation in gas phase. Furthermore, the high concentration of CH3 radicals, from precursor dissociation, might be the origin of the carbon impurities in this material under the experimental conditions of interest. Finally, the passivation methodology is not found to affect the evaluation of the surface-related processes, whereas the inclusion of spin-polarization is demonstrated to be essential to the proper understanding of the reaction mechanism. |
abstractGer |
In recent decades, indium nitride (InN) has been attracting a great deal of attention for its potential applicability in the field of light-emitting diodes (LEDs) and high-frequency electronics. However, the contribution from adsorption- and reaction- related processes at the atomic scale level to the InN growth has not yet been unveiled, limiting the process optimization that is essential to achieve highly crystalline and pure thin films. In this report, we investigate the reaction pathways that are involved in the crystal growth of InN thin film in atomic layer deposition (ALD) techniques from trimethylindium (TMI) and ammonia (NH3) precursors. To accomplish this task, we use a solid-state approach to perform the ab-initio calculations within the Perdew–Burke–Ernzerhof functional (PBE) level of theory. The results clarify the activation role from the N-rich layer to decrease the barrier for the first TMI precursor dissociation from Δ‡H= +227 kJ/mol, in gas phase, to solely +16 kJ/mol, in the surface environment. In either case, the subsequent CH3 release is found to be thermo- and kinetically favored with methylindium (MI) formed at the hcp site and ethane (C2H6) as the byproduct. In the following step, the TMI physisorption at a nearby occupied hcp site promotes the sequential hydrogen removal from the N-rich layer at the minimum energy cost of Δ‡H < +105 kJ/mol with methane (CH4) release. An alternative mechanism involving the production of CH4 is also feasible upon dissociation in gas phase. Furthermore, the high concentration of CH3 radicals, from precursor dissociation, might be the origin of the carbon impurities in this material under the experimental conditions of interest. Finally, the passivation methodology is not found to affect the evaluation of the surface-related processes, whereas the inclusion of spin-polarization is demonstrated to be essential to the proper understanding of the reaction mechanism. |
abstract_unstemmed |
In recent decades, indium nitride (InN) has been attracting a great deal of attention for its potential applicability in the field of light-emitting diodes (LEDs) and high-frequency electronics. However, the contribution from adsorption- and reaction- related processes at the atomic scale level to the InN growth has not yet been unveiled, limiting the process optimization that is essential to achieve highly crystalline and pure thin films. In this report, we investigate the reaction pathways that are involved in the crystal growth of InN thin film in atomic layer deposition (ALD) techniques from trimethylindium (TMI) and ammonia (NH3) precursors. To accomplish this task, we use a solid-state approach to perform the ab-initio calculations within the Perdew–Burke–Ernzerhof functional (PBE) level of theory. The results clarify the activation role from the N-rich layer to decrease the barrier for the first TMI precursor dissociation from Δ‡H= +227 kJ/mol, in gas phase, to solely +16 kJ/mol, in the surface environment. In either case, the subsequent CH3 release is found to be thermo- and kinetically favored with methylindium (MI) formed at the hcp site and ethane (C2H6) as the byproduct. In the following step, the TMI physisorption at a nearby occupied hcp site promotes the sequential hydrogen removal from the N-rich layer at the minimum energy cost of Δ‡H < +105 kJ/mol with methane (CH4) release. An alternative mechanism involving the production of CH4 is also feasible upon dissociation in gas phase. Furthermore, the high concentration of CH3 radicals, from precursor dissociation, might be the origin of the carbon impurities in this material under the experimental conditions of interest. Finally, the passivation methodology is not found to affect the evaluation of the surface-related processes, whereas the inclusion of spin-polarization is demonstrated to be essential to the proper understanding of the reaction mechanism. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Understanding indium nitride thin film growth under ALD conditions by atomic scale modelling: From the bulk to the In-rich layer |
remote_bool |
true |
author2 |
Rönnby, Karl Pedersen, Henrik Ojamäe, Lars |
author2Str |
Rönnby, Karl Pedersen, Henrik Ojamäe, Lars |
ppnlink |
312151128 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.apsusc.2022.153290 |
up_date |
2024-07-06T17:37:29.577Z |
_version_ |
1803852132729749504 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV007833873</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524132802.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230507s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.apsusc.2022.153290</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV007833873</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0169-4332(22)00846-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="a">530</subfield><subfield code="a">660</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.68</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.18</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.78</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Damas, Giane B.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Understanding indium nitride thin film growth under ALD conditions by atomic scale modelling: From the bulk to the In-rich layer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In recent decades, indium nitride (InN) has been attracting a great deal of attention for its potential applicability in the field of light-emitting diodes (LEDs) and high-frequency electronics. However, the contribution from adsorption- and reaction- related processes at the atomic scale level to the InN growth has not yet been unveiled, limiting the process optimization that is essential to achieve highly crystalline and pure thin films. In this report, we investigate the reaction pathways that are involved in the crystal growth of InN thin film in atomic layer deposition (ALD) techniques from trimethylindium (TMI) and ammonia (NH3) precursors. To accomplish this task, we use a solid-state approach to perform the ab-initio calculations within the Perdew–Burke–Ernzerhof functional (PBE) level of theory. The results clarify the activation role from the N-rich layer to decrease the barrier for the first TMI precursor dissociation from Δ‡H= +227 kJ/mol, in gas phase, to solely +16 kJ/mol, in the surface environment. In either case, the subsequent CH3 release is found to be thermo- and kinetically favored with methylindium (MI) formed at the hcp site and ethane (C2H6) as the byproduct. In the following step, the TMI physisorption at a nearby occupied hcp site promotes the sequential hydrogen removal from the N-rich layer at the minimum energy cost of Δ‡H < +105 kJ/mol with methane (CH4) release. An alternative mechanism involving the production of CH4 is also feasible upon dissociation in gas phase. Furthermore, the high concentration of CH3 radicals, from precursor dissociation, might be the origin of the carbon impurities in this material under the experimental conditions of interest. Finally, the passivation methodology is not found to affect the evaluation of the surface-related processes, whereas the inclusion of spin-polarization is demonstrated to be essential to the proper understanding of the reaction mechanism.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rönnby, Karl</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pedersen, Henrik</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ojamäe, Lars</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied surface science</subfield><subfield code="d">Amsterdam : Elsevier, 1985</subfield><subfield code="g">592</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)312151128</subfield><subfield code="w">(DE-600)2002520-8</subfield><subfield code="w">(DE-576)094476985</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:592</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.68</subfield><subfield code="j">Oberflächen</subfield><subfield code="j">Dünne Schichten</subfield><subfield code="j">Grenzflächen</subfield><subfield code="x">Physik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.18</subfield><subfield code="j">Kolloidchemie</subfield><subfield code="j">Grenzflächenchemie</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.78</subfield><subfield code="j">Oberflächentechnik</subfield><subfield code="j">Wärmebehandlung</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">592</subfield></datafield></record></collection>
|
score |
7.401231 |