Energy-efficient virtual-machine mapping algorithm (EViMA) for workflow tasks with deadlines in a cloud environment
Processing large scientific applications generates a huge amount of data, which makes running experiments in the cloud computing environment very expensive and energy-consuming. To find an optimal solution to the workflow scheduling problem, several approaches have been presented for scheduling work...
Ausführliche Beschreibung
Autor*in: |
Konjaang, J. Kok [verfasserIn] Murphy, John [verfasserIn] Murphy, Liam [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of network and computer applications - London : Academic Press, 1996, 203 |
---|---|
Übergeordnetes Werk: |
volume:203 |
DOI / URN: |
10.1016/j.jnca.2022.103400 |
---|
Katalog-ID: |
ELV007913052 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV007913052 | ||
003 | DE-627 | ||
005 | 20231205154219.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230507s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jnca.2022.103400 |2 doi | |
035 | |a (DE-627)ELV007913052 | ||
035 | |a (ELSEVIER)S1084-8045(22)00059-5 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q DE-600 |
084 | |a 54.26 |2 bkl | ||
084 | |a 54.32 |2 bkl | ||
100 | 1 | |a Konjaang, J. Kok |e verfasserin |4 aut | |
245 | 1 | 0 | |a Energy-efficient virtual-machine mapping algorithm (EViMA) for workflow tasks with deadlines in a cloud environment |
264 | 1 | |c 2022 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Processing large scientific applications generates a huge amount of data, which makes running experiments in the cloud computing environment very expensive and energy-consuming. To find an optimal solution to the workflow scheduling problem, several approaches have been presented for scheduling workflow on cloud resources. However, more efficient approaches are needed to improve cloud service delivery. In this paper, an energy-efficient virtual machine mapping algorithm (EViMA) is proposed to improve resource management in the cloud computing environment to achieve effective scheduling that reduces cloud data center energy consumption, execution makespan, and execution cost. This ensures that the requirements of cloud users are met, and improves the quality of services offered by cloud providers. Our proposed mechanism considers the heterogeneity of scheduling from both cloud users’ and workflow applications’ perspectives. Through simulation experiments on real workflow datasets, the proposed EViMA can provide better solutions for both cloud users and cloud providers by reducing energy consumption, execution makespan, and execution cost better than the state-of-the-art. | ||
650 | 4 | |a Energy consumption | |
650 | 4 | |a Execution Cost | |
650 | 4 | |a Execution makespan | |
650 | 4 | |a Workflow scheduling | |
700 | 1 | |a Murphy, John |e verfasserin |4 aut | |
700 | 1 | |a Murphy, Liam |e verfasserin |0 (orcid)0000-0001-9777-005X |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of network and computer applications |d London : Academic Press, 1996 |g 203 |h Online-Ressource |w (DE-627)267328176 |w (DE-600)1469776-2 |w (DE-576)259483702 |x 1084-8045 |7 nnns |
773 | 1 | 8 | |g volume:203 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 54.26 |j Mikrocomputer |
936 | b | k | |a 54.32 |j Rechnerkommunikation |
951 | |a AR | ||
952 | |d 203 |
author_variant |
j k k jk jkk j m jm l m lm |
---|---|
matchkey_str |
article:10848045:2022----::nryfiinvrulahnmpigloiheiaowrfotssihe |
hierarchy_sort_str |
2022 |
bklnumber |
54.26 54.32 |
publishDate |
2022 |
allfields |
10.1016/j.jnca.2022.103400 doi (DE-627)ELV007913052 (ELSEVIER)S1084-8045(22)00059-5 DE-627 ger DE-627 rda eng 004 DE-600 54.26 bkl 54.32 bkl Konjaang, J. Kok verfasserin aut Energy-efficient virtual-machine mapping algorithm (EViMA) for workflow tasks with deadlines in a cloud environment 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Processing large scientific applications generates a huge amount of data, which makes running experiments in the cloud computing environment very expensive and energy-consuming. To find an optimal solution to the workflow scheduling problem, several approaches have been presented for scheduling workflow on cloud resources. However, more efficient approaches are needed to improve cloud service delivery. In this paper, an energy-efficient virtual machine mapping algorithm (EViMA) is proposed to improve resource management in the cloud computing environment to achieve effective scheduling that reduces cloud data center energy consumption, execution makespan, and execution cost. This ensures that the requirements of cloud users are met, and improves the quality of services offered by cloud providers. Our proposed mechanism considers the heterogeneity of scheduling from both cloud users’ and workflow applications’ perspectives. Through simulation experiments on real workflow datasets, the proposed EViMA can provide better solutions for both cloud users and cloud providers by reducing energy consumption, execution makespan, and execution cost better than the state-of-the-art. Energy consumption Execution Cost Execution makespan Workflow scheduling Murphy, John verfasserin aut Murphy, Liam verfasserin (orcid)0000-0001-9777-005X aut Enthalten in Journal of network and computer applications London : Academic Press, 1996 203 Online-Ressource (DE-627)267328176 (DE-600)1469776-2 (DE-576)259483702 1084-8045 nnns volume:203 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.26 Mikrocomputer 54.32 Rechnerkommunikation AR 203 |
spelling |
10.1016/j.jnca.2022.103400 doi (DE-627)ELV007913052 (ELSEVIER)S1084-8045(22)00059-5 DE-627 ger DE-627 rda eng 004 DE-600 54.26 bkl 54.32 bkl Konjaang, J. Kok verfasserin aut Energy-efficient virtual-machine mapping algorithm (EViMA) for workflow tasks with deadlines in a cloud environment 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Processing large scientific applications generates a huge amount of data, which makes running experiments in the cloud computing environment very expensive and energy-consuming. To find an optimal solution to the workflow scheduling problem, several approaches have been presented for scheduling workflow on cloud resources. However, more efficient approaches are needed to improve cloud service delivery. In this paper, an energy-efficient virtual machine mapping algorithm (EViMA) is proposed to improve resource management in the cloud computing environment to achieve effective scheduling that reduces cloud data center energy consumption, execution makespan, and execution cost. This ensures that the requirements of cloud users are met, and improves the quality of services offered by cloud providers. Our proposed mechanism considers the heterogeneity of scheduling from both cloud users’ and workflow applications’ perspectives. Through simulation experiments on real workflow datasets, the proposed EViMA can provide better solutions for both cloud users and cloud providers by reducing energy consumption, execution makespan, and execution cost better than the state-of-the-art. Energy consumption Execution Cost Execution makespan Workflow scheduling Murphy, John verfasserin aut Murphy, Liam verfasserin (orcid)0000-0001-9777-005X aut Enthalten in Journal of network and computer applications London : Academic Press, 1996 203 Online-Ressource (DE-627)267328176 (DE-600)1469776-2 (DE-576)259483702 1084-8045 nnns volume:203 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.26 Mikrocomputer 54.32 Rechnerkommunikation AR 203 |
allfields_unstemmed |
10.1016/j.jnca.2022.103400 doi (DE-627)ELV007913052 (ELSEVIER)S1084-8045(22)00059-5 DE-627 ger DE-627 rda eng 004 DE-600 54.26 bkl 54.32 bkl Konjaang, J. Kok verfasserin aut Energy-efficient virtual-machine mapping algorithm (EViMA) for workflow tasks with deadlines in a cloud environment 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Processing large scientific applications generates a huge amount of data, which makes running experiments in the cloud computing environment very expensive and energy-consuming. To find an optimal solution to the workflow scheduling problem, several approaches have been presented for scheduling workflow on cloud resources. However, more efficient approaches are needed to improve cloud service delivery. In this paper, an energy-efficient virtual machine mapping algorithm (EViMA) is proposed to improve resource management in the cloud computing environment to achieve effective scheduling that reduces cloud data center energy consumption, execution makespan, and execution cost. This ensures that the requirements of cloud users are met, and improves the quality of services offered by cloud providers. Our proposed mechanism considers the heterogeneity of scheduling from both cloud users’ and workflow applications’ perspectives. Through simulation experiments on real workflow datasets, the proposed EViMA can provide better solutions for both cloud users and cloud providers by reducing energy consumption, execution makespan, and execution cost better than the state-of-the-art. Energy consumption Execution Cost Execution makespan Workflow scheduling Murphy, John verfasserin aut Murphy, Liam verfasserin (orcid)0000-0001-9777-005X aut Enthalten in Journal of network and computer applications London : Academic Press, 1996 203 Online-Ressource (DE-627)267328176 (DE-600)1469776-2 (DE-576)259483702 1084-8045 nnns volume:203 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.26 Mikrocomputer 54.32 Rechnerkommunikation AR 203 |
allfieldsGer |
10.1016/j.jnca.2022.103400 doi (DE-627)ELV007913052 (ELSEVIER)S1084-8045(22)00059-5 DE-627 ger DE-627 rda eng 004 DE-600 54.26 bkl 54.32 bkl Konjaang, J. Kok verfasserin aut Energy-efficient virtual-machine mapping algorithm (EViMA) for workflow tasks with deadlines in a cloud environment 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Processing large scientific applications generates a huge amount of data, which makes running experiments in the cloud computing environment very expensive and energy-consuming. To find an optimal solution to the workflow scheduling problem, several approaches have been presented for scheduling workflow on cloud resources. However, more efficient approaches are needed to improve cloud service delivery. In this paper, an energy-efficient virtual machine mapping algorithm (EViMA) is proposed to improve resource management in the cloud computing environment to achieve effective scheduling that reduces cloud data center energy consumption, execution makespan, and execution cost. This ensures that the requirements of cloud users are met, and improves the quality of services offered by cloud providers. Our proposed mechanism considers the heterogeneity of scheduling from both cloud users’ and workflow applications’ perspectives. Through simulation experiments on real workflow datasets, the proposed EViMA can provide better solutions for both cloud users and cloud providers by reducing energy consumption, execution makespan, and execution cost better than the state-of-the-art. Energy consumption Execution Cost Execution makespan Workflow scheduling Murphy, John verfasserin aut Murphy, Liam verfasserin (orcid)0000-0001-9777-005X aut Enthalten in Journal of network and computer applications London : Academic Press, 1996 203 Online-Ressource (DE-627)267328176 (DE-600)1469776-2 (DE-576)259483702 1084-8045 nnns volume:203 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.26 Mikrocomputer 54.32 Rechnerkommunikation AR 203 |
allfieldsSound |
10.1016/j.jnca.2022.103400 doi (DE-627)ELV007913052 (ELSEVIER)S1084-8045(22)00059-5 DE-627 ger DE-627 rda eng 004 DE-600 54.26 bkl 54.32 bkl Konjaang, J. Kok verfasserin aut Energy-efficient virtual-machine mapping algorithm (EViMA) for workflow tasks with deadlines in a cloud environment 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Processing large scientific applications generates a huge amount of data, which makes running experiments in the cloud computing environment very expensive and energy-consuming. To find an optimal solution to the workflow scheduling problem, several approaches have been presented for scheduling workflow on cloud resources. However, more efficient approaches are needed to improve cloud service delivery. In this paper, an energy-efficient virtual machine mapping algorithm (EViMA) is proposed to improve resource management in the cloud computing environment to achieve effective scheduling that reduces cloud data center energy consumption, execution makespan, and execution cost. This ensures that the requirements of cloud users are met, and improves the quality of services offered by cloud providers. Our proposed mechanism considers the heterogeneity of scheduling from both cloud users’ and workflow applications’ perspectives. Through simulation experiments on real workflow datasets, the proposed EViMA can provide better solutions for both cloud users and cloud providers by reducing energy consumption, execution makespan, and execution cost better than the state-of-the-art. Energy consumption Execution Cost Execution makespan Workflow scheduling Murphy, John verfasserin aut Murphy, Liam verfasserin (orcid)0000-0001-9777-005X aut Enthalten in Journal of network and computer applications London : Academic Press, 1996 203 Online-Ressource (DE-627)267328176 (DE-600)1469776-2 (DE-576)259483702 1084-8045 nnns volume:203 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.26 Mikrocomputer 54.32 Rechnerkommunikation AR 203 |
language |
English |
source |
Enthalten in Journal of network and computer applications 203 volume:203 |
sourceStr |
Enthalten in Journal of network and computer applications 203 volume:203 |
format_phy_str_mv |
Article |
bklname |
Mikrocomputer Rechnerkommunikation |
institution |
findex.gbv.de |
topic_facet |
Energy consumption Execution Cost Execution makespan Workflow scheduling |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Journal of network and computer applications |
authorswithroles_txt_mv |
Konjaang, J. Kok @@aut@@ Murphy, John @@aut@@ Murphy, Liam @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
267328176 |
dewey-sort |
14 |
id |
ELV007913052 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV007913052</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231205154219.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230507s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jnca.2022.103400</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV007913052</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1084-8045(22)00059-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.26</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.32</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Konjaang, J. Kok</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Energy-efficient virtual-machine mapping algorithm (EViMA) for workflow tasks with deadlines in a cloud environment</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Processing large scientific applications generates a huge amount of data, which makes running experiments in the cloud computing environment very expensive and energy-consuming. To find an optimal solution to the workflow scheduling problem, several approaches have been presented for scheduling workflow on cloud resources. However, more efficient approaches are needed to improve cloud service delivery. In this paper, an energy-efficient virtual machine mapping algorithm (EViMA) is proposed to improve resource management in the cloud computing environment to achieve effective scheduling that reduces cloud data center energy consumption, execution makespan, and execution cost. This ensures that the requirements of cloud users are met, and improves the quality of services offered by cloud providers. Our proposed mechanism considers the heterogeneity of scheduling from both cloud users’ and workflow applications’ perspectives. Through simulation experiments on real workflow datasets, the proposed EViMA can provide better solutions for both cloud users and cloud providers by reducing energy consumption, execution makespan, and execution cost better than the state-of-the-art.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Energy consumption</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Execution Cost</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Execution makespan</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Workflow scheduling</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Murphy, John</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Murphy, Liam</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-9777-005X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of network and computer applications</subfield><subfield code="d">London : Academic Press, 1996</subfield><subfield code="g">203</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)267328176</subfield><subfield code="w">(DE-600)1469776-2</subfield><subfield code="w">(DE-576)259483702</subfield><subfield code="x">1084-8045</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:203</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.26</subfield><subfield code="j">Mikrocomputer</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.32</subfield><subfield code="j">Rechnerkommunikation</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">203</subfield></datafield></record></collection>
|
author |
Konjaang, J. Kok |
spellingShingle |
Konjaang, J. Kok ddc 004 bkl 54.26 bkl 54.32 misc Energy consumption misc Execution Cost misc Execution makespan misc Workflow scheduling Energy-efficient virtual-machine mapping algorithm (EViMA) for workflow tasks with deadlines in a cloud environment |
authorStr |
Konjaang, J. Kok |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)267328176 |
format |
electronic Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1084-8045 |
topic_title |
004 DE-600 54.26 bkl 54.32 bkl Energy-efficient virtual-machine mapping algorithm (EViMA) for workflow tasks with deadlines in a cloud environment Energy consumption Execution Cost Execution makespan Workflow scheduling |
topic |
ddc 004 bkl 54.26 bkl 54.32 misc Energy consumption misc Execution Cost misc Execution makespan misc Workflow scheduling |
topic_unstemmed |
ddc 004 bkl 54.26 bkl 54.32 misc Energy consumption misc Execution Cost misc Execution makespan misc Workflow scheduling |
topic_browse |
ddc 004 bkl 54.26 bkl 54.32 misc Energy consumption misc Execution Cost misc Execution makespan misc Workflow scheduling |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of network and computer applications |
hierarchy_parent_id |
267328176 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Journal of network and computer applications |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)267328176 (DE-600)1469776-2 (DE-576)259483702 |
title |
Energy-efficient virtual-machine mapping algorithm (EViMA) for workflow tasks with deadlines in a cloud environment |
ctrlnum |
(DE-627)ELV007913052 (ELSEVIER)S1084-8045(22)00059-5 |
title_full |
Energy-efficient virtual-machine mapping algorithm (EViMA) for workflow tasks with deadlines in a cloud environment |
author_sort |
Konjaang, J. Kok |
journal |
Journal of network and computer applications |
journalStr |
Journal of network and computer applications |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
author_browse |
Konjaang, J. Kok Murphy, John Murphy, Liam |
container_volume |
203 |
class |
004 DE-600 54.26 bkl 54.32 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Konjaang, J. Kok |
doi_str_mv |
10.1016/j.jnca.2022.103400 |
normlink |
(ORCID)0000-0001-9777-005X |
normlink_prefix_str_mv |
(orcid)0000-0001-9777-005X |
dewey-full |
004 |
author2-role |
verfasserin |
title_sort |
energy-efficient virtual-machine mapping algorithm (evima) for workflow tasks with deadlines in a cloud environment |
title_auth |
Energy-efficient virtual-machine mapping algorithm (EViMA) for workflow tasks with deadlines in a cloud environment |
abstract |
Processing large scientific applications generates a huge amount of data, which makes running experiments in the cloud computing environment very expensive and energy-consuming. To find an optimal solution to the workflow scheduling problem, several approaches have been presented for scheduling workflow on cloud resources. However, more efficient approaches are needed to improve cloud service delivery. In this paper, an energy-efficient virtual machine mapping algorithm (EViMA) is proposed to improve resource management in the cloud computing environment to achieve effective scheduling that reduces cloud data center energy consumption, execution makespan, and execution cost. This ensures that the requirements of cloud users are met, and improves the quality of services offered by cloud providers. Our proposed mechanism considers the heterogeneity of scheduling from both cloud users’ and workflow applications’ perspectives. Through simulation experiments on real workflow datasets, the proposed EViMA can provide better solutions for both cloud users and cloud providers by reducing energy consumption, execution makespan, and execution cost better than the state-of-the-art. |
abstractGer |
Processing large scientific applications generates a huge amount of data, which makes running experiments in the cloud computing environment very expensive and energy-consuming. To find an optimal solution to the workflow scheduling problem, several approaches have been presented for scheduling workflow on cloud resources. However, more efficient approaches are needed to improve cloud service delivery. In this paper, an energy-efficient virtual machine mapping algorithm (EViMA) is proposed to improve resource management in the cloud computing environment to achieve effective scheduling that reduces cloud data center energy consumption, execution makespan, and execution cost. This ensures that the requirements of cloud users are met, and improves the quality of services offered by cloud providers. Our proposed mechanism considers the heterogeneity of scheduling from both cloud users’ and workflow applications’ perspectives. Through simulation experiments on real workflow datasets, the proposed EViMA can provide better solutions for both cloud users and cloud providers by reducing energy consumption, execution makespan, and execution cost better than the state-of-the-art. |
abstract_unstemmed |
Processing large scientific applications generates a huge amount of data, which makes running experiments in the cloud computing environment very expensive and energy-consuming. To find an optimal solution to the workflow scheduling problem, several approaches have been presented for scheduling workflow on cloud resources. However, more efficient approaches are needed to improve cloud service delivery. In this paper, an energy-efficient virtual machine mapping algorithm (EViMA) is proposed to improve resource management in the cloud computing environment to achieve effective scheduling that reduces cloud data center energy consumption, execution makespan, and execution cost. This ensures that the requirements of cloud users are met, and improves the quality of services offered by cloud providers. Our proposed mechanism considers the heterogeneity of scheduling from both cloud users’ and workflow applications’ perspectives. Through simulation experiments on real workflow datasets, the proposed EViMA can provide better solutions for both cloud users and cloud providers by reducing energy consumption, execution makespan, and execution cost better than the state-of-the-art. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Energy-efficient virtual-machine mapping algorithm (EViMA) for workflow tasks with deadlines in a cloud environment |
remote_bool |
true |
author2 |
Murphy, John Murphy, Liam |
author2Str |
Murphy, John Murphy, Liam |
ppnlink |
267328176 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.jnca.2022.103400 |
up_date |
2024-07-06T17:53:57.848Z |
_version_ |
1803853169009098752 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV007913052</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231205154219.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230507s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jnca.2022.103400</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV007913052</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1084-8045(22)00059-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.26</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.32</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Konjaang, J. Kok</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Energy-efficient virtual-machine mapping algorithm (EViMA) for workflow tasks with deadlines in a cloud environment</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Processing large scientific applications generates a huge amount of data, which makes running experiments in the cloud computing environment very expensive and energy-consuming. To find an optimal solution to the workflow scheduling problem, several approaches have been presented for scheduling workflow on cloud resources. However, more efficient approaches are needed to improve cloud service delivery. In this paper, an energy-efficient virtual machine mapping algorithm (EViMA) is proposed to improve resource management in the cloud computing environment to achieve effective scheduling that reduces cloud data center energy consumption, execution makespan, and execution cost. This ensures that the requirements of cloud users are met, and improves the quality of services offered by cloud providers. Our proposed mechanism considers the heterogeneity of scheduling from both cloud users’ and workflow applications’ perspectives. Through simulation experiments on real workflow datasets, the proposed EViMA can provide better solutions for both cloud users and cloud providers by reducing energy consumption, execution makespan, and execution cost better than the state-of-the-art.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Energy consumption</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Execution Cost</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Execution makespan</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Workflow scheduling</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Murphy, John</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Murphy, Liam</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-9777-005X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of network and computer applications</subfield><subfield code="d">London : Academic Press, 1996</subfield><subfield code="g">203</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)267328176</subfield><subfield code="w">(DE-600)1469776-2</subfield><subfield code="w">(DE-576)259483702</subfield><subfield code="x">1084-8045</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:203</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.26</subfield><subfield code="j">Mikrocomputer</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.32</subfield><subfield code="j">Rechnerkommunikation</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">203</subfield></datafield></record></collection>
|
score |
7.401534 |