Invariant graphs of rational maps
We prove that every postcritically finite rational map f : C ˆ →...
Ausführliche Beschreibung
Autor*in: |
Cui, Guizhen [verfasserIn] Gao, Yan [verfasserIn] Zeng, Jinsong [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Advances in mathematics - Amsterdam [u.a.] : Elsevier, 1961, 404 |
---|---|
Übergeordnetes Werk: |
volume:404 |
DOI / URN: |
10.1016/j.aim.2022.108454 |
---|
Katalog-ID: |
ELV007949952 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV007949952 | ||
003 | DE-627 | ||
005 | 20230524160429.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230507s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.aim.2022.108454 |2 doi | |
035 | |a (DE-627)ELV007949952 | ||
035 | |a (ELSEVIER)S0001-8708(22)00271-7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q DE-600 |
084 | |a 31.00 |2 bkl | ||
100 | 1 | |a Cui, Guizhen |e verfasserin |4 aut | |
245 | 1 | 0 | |a Invariant graphs of rational maps |
264 | 1 | |c 2022 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a We prove that every postcritically finite rational map f : C ˆ → C ˆ admits an f n -invariant finite and connected graph containing the postcritical set of f as n is large enough. | ||
650 | 4 | |a Rational maps | |
650 | 4 | |a Postcritically finite | |
650 | 4 | |a Julia sets | |
650 | 4 | |a Invariant graphs | |
700 | 1 | |a Gao, Yan |e verfasserin |4 aut | |
700 | 1 | |a Zeng, Jinsong |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Advances in mathematics |d Amsterdam [u.a.] : Elsevier, 1961 |g 404 |h Online-Ressource |w (DE-627)268759200 |w (DE-600)1472893-X |w (DE-576)103373292 |x 1090-2082 |7 nnns |
773 | 1 | 8 | |g volume:404 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 31.00 |j Mathematik: Allgemeines |
951 | |a AR | ||
952 | |d 404 |
author_variant |
g c gc y g yg j z jz |
---|---|
matchkey_str |
article:10902082:2022----::naingahort |
hierarchy_sort_str |
2022 |
bklnumber |
31.00 |
publishDate |
2022 |
allfields |
10.1016/j.aim.2022.108454 doi (DE-627)ELV007949952 (ELSEVIER)S0001-8708(22)00271-7 DE-627 ger DE-627 rda eng 510 DE-600 31.00 bkl Cui, Guizhen verfasserin aut Invariant graphs of rational maps 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We prove that every postcritically finite rational map f : C ˆ → C ˆ admits an f n -invariant finite and connected graph containing the postcritical set of f as n is large enough. Rational maps Postcritically finite Julia sets Invariant graphs Gao, Yan verfasserin aut Zeng, Jinsong verfasserin aut Enthalten in Advances in mathematics Amsterdam [u.a.] : Elsevier, 1961 404 Online-Ressource (DE-627)268759200 (DE-600)1472893-X (DE-576)103373292 1090-2082 nnns volume:404 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2143 GBV_ILN_2153 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.00 Mathematik: Allgemeines AR 404 |
spelling |
10.1016/j.aim.2022.108454 doi (DE-627)ELV007949952 (ELSEVIER)S0001-8708(22)00271-7 DE-627 ger DE-627 rda eng 510 DE-600 31.00 bkl Cui, Guizhen verfasserin aut Invariant graphs of rational maps 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We prove that every postcritically finite rational map f : C ˆ → C ˆ admits an f n -invariant finite and connected graph containing the postcritical set of f as n is large enough. Rational maps Postcritically finite Julia sets Invariant graphs Gao, Yan verfasserin aut Zeng, Jinsong verfasserin aut Enthalten in Advances in mathematics Amsterdam [u.a.] : Elsevier, 1961 404 Online-Ressource (DE-627)268759200 (DE-600)1472893-X (DE-576)103373292 1090-2082 nnns volume:404 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2143 GBV_ILN_2153 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.00 Mathematik: Allgemeines AR 404 |
allfields_unstemmed |
10.1016/j.aim.2022.108454 doi (DE-627)ELV007949952 (ELSEVIER)S0001-8708(22)00271-7 DE-627 ger DE-627 rda eng 510 DE-600 31.00 bkl Cui, Guizhen verfasserin aut Invariant graphs of rational maps 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We prove that every postcritically finite rational map f : C ˆ → C ˆ admits an f n -invariant finite and connected graph containing the postcritical set of f as n is large enough. Rational maps Postcritically finite Julia sets Invariant graphs Gao, Yan verfasserin aut Zeng, Jinsong verfasserin aut Enthalten in Advances in mathematics Amsterdam [u.a.] : Elsevier, 1961 404 Online-Ressource (DE-627)268759200 (DE-600)1472893-X (DE-576)103373292 1090-2082 nnns volume:404 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2143 GBV_ILN_2153 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.00 Mathematik: Allgemeines AR 404 |
allfieldsGer |
10.1016/j.aim.2022.108454 doi (DE-627)ELV007949952 (ELSEVIER)S0001-8708(22)00271-7 DE-627 ger DE-627 rda eng 510 DE-600 31.00 bkl Cui, Guizhen verfasserin aut Invariant graphs of rational maps 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We prove that every postcritically finite rational map f : C ˆ → C ˆ admits an f n -invariant finite and connected graph containing the postcritical set of f as n is large enough. Rational maps Postcritically finite Julia sets Invariant graphs Gao, Yan verfasserin aut Zeng, Jinsong verfasserin aut Enthalten in Advances in mathematics Amsterdam [u.a.] : Elsevier, 1961 404 Online-Ressource (DE-627)268759200 (DE-600)1472893-X (DE-576)103373292 1090-2082 nnns volume:404 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2143 GBV_ILN_2153 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.00 Mathematik: Allgemeines AR 404 |
allfieldsSound |
10.1016/j.aim.2022.108454 doi (DE-627)ELV007949952 (ELSEVIER)S0001-8708(22)00271-7 DE-627 ger DE-627 rda eng 510 DE-600 31.00 bkl Cui, Guizhen verfasserin aut Invariant graphs of rational maps 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier We prove that every postcritically finite rational map f : C ˆ → C ˆ admits an f n -invariant finite and connected graph containing the postcritical set of f as n is large enough. Rational maps Postcritically finite Julia sets Invariant graphs Gao, Yan verfasserin aut Zeng, Jinsong verfasserin aut Enthalten in Advances in mathematics Amsterdam [u.a.] : Elsevier, 1961 404 Online-Ressource (DE-627)268759200 (DE-600)1472893-X (DE-576)103373292 1090-2082 nnns volume:404 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2143 GBV_ILN_2153 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 31.00 Mathematik: Allgemeines AR 404 |
language |
English |
source |
Enthalten in Advances in mathematics 404 volume:404 |
sourceStr |
Enthalten in Advances in mathematics 404 volume:404 |
format_phy_str_mv |
Article |
bklname |
Mathematik: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Rational maps Postcritically finite Julia sets Invariant graphs |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Advances in mathematics |
authorswithroles_txt_mv |
Cui, Guizhen @@aut@@ Gao, Yan @@aut@@ Zeng, Jinsong @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
268759200 |
dewey-sort |
3510 |
id |
ELV007949952 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV007949952</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524160429.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230507s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.aim.2022.108454</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV007949952</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0001-8708(22)00271-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cui, Guizhen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Invariant graphs of rational maps</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We prove that every postcritically finite rational map f : C ˆ → C ˆ admits an f n -invariant finite and connected graph containing the postcritical set of f as n is large enough.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rational maps</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Postcritically finite</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Julia sets</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Invariant graphs</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gao, Yan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zeng, Jinsong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Advances in mathematics</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1961</subfield><subfield code="g">404</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)268759200</subfield><subfield code="w">(DE-600)1472893-X</subfield><subfield code="w">(DE-576)103373292</subfield><subfield code="x">1090-2082</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:404</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="j">Mathematik: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">404</subfield></datafield></record></collection>
|
author |
Cui, Guizhen |
spellingShingle |
Cui, Guizhen ddc 510 bkl 31.00 misc Rational maps misc Postcritically finite misc Julia sets misc Invariant graphs Invariant graphs of rational maps |
authorStr |
Cui, Guizhen |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)268759200 |
format |
electronic Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1090-2082 |
topic_title |
510 DE-600 31.00 bkl Invariant graphs of rational maps Rational maps Postcritically finite Julia sets Invariant graphs |
topic |
ddc 510 bkl 31.00 misc Rational maps misc Postcritically finite misc Julia sets misc Invariant graphs |
topic_unstemmed |
ddc 510 bkl 31.00 misc Rational maps misc Postcritically finite misc Julia sets misc Invariant graphs |
topic_browse |
ddc 510 bkl 31.00 misc Rational maps misc Postcritically finite misc Julia sets misc Invariant graphs |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Advances in mathematics |
hierarchy_parent_id |
268759200 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Advances in mathematics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)268759200 (DE-600)1472893-X (DE-576)103373292 |
title |
Invariant graphs of rational maps |
ctrlnum |
(DE-627)ELV007949952 (ELSEVIER)S0001-8708(22)00271-7 |
title_full |
Invariant graphs of rational maps |
author_sort |
Cui, Guizhen |
journal |
Advances in mathematics |
journalStr |
Advances in mathematics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
author_browse |
Cui, Guizhen Gao, Yan Zeng, Jinsong |
container_volume |
404 |
class |
510 DE-600 31.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Cui, Guizhen |
doi_str_mv |
10.1016/j.aim.2022.108454 |
dewey-full |
510 |
author2-role |
verfasserin |
title_sort |
invariant graphs of rational maps |
title_auth |
Invariant graphs of rational maps |
abstract |
We prove that every postcritically finite rational map f : C ˆ → C ˆ admits an f n -invariant finite and connected graph containing the postcritical set of f as n is large enough. |
abstractGer |
We prove that every postcritically finite rational map f : C ˆ → C ˆ admits an f n -invariant finite and connected graph containing the postcritical set of f as n is large enough. |
abstract_unstemmed |
We prove that every postcritically finite rational map f : C ˆ → C ˆ admits an f n -invariant finite and connected graph containing the postcritical set of f as n is large enough. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-MAT GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2014 GBV_ILN_2025 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2143 GBV_ILN_2153 GBV_ILN_2336 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
title_short |
Invariant graphs of rational maps |
remote_bool |
true |
author2 |
Gao, Yan Zeng, Jinsong |
author2Str |
Gao, Yan Zeng, Jinsong |
ppnlink |
268759200 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.aim.2022.108454 |
up_date |
2024-07-06T18:01:39.165Z |
_version_ |
1803853652732936192 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV007949952</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524160429.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230507s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.aim.2022.108454</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV007949952</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0001-8708(22)00271-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cui, Guizhen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Invariant graphs of rational maps</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">We prove that every postcritically finite rational map f : C ˆ → C ˆ admits an f n -invariant finite and connected graph containing the postcritical set of f as n is large enough.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rational maps</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Postcritically finite</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Julia sets</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Invariant graphs</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gao, Yan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zeng, Jinsong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Advances in mathematics</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1961</subfield><subfield code="g">404</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)268759200</subfield><subfield code="w">(DE-600)1472893-X</subfield><subfield code="w">(DE-576)103373292</subfield><subfield code="x">1090-2082</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:404</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="j">Mathematik: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">404</subfield></datafield></record></collection>
|
score |
7.4008055 |