A computationally efficient scroll compressor model for both single-phase and two-phase compression considering scroll wrap temperature distribution
A general scroll compressor model with high accuracy, fast simulation speed and good numerical robustness is proposed in this study. The governing ordinary differential equations derived from mass and energy conservation use pressure and specific enthalpy as state variables, which can be applied to...
Ausführliche Beschreibung
Autor*in: |
Yang, Minghong [verfasserIn] Wang, Baolong [verfasserIn] Li, Xianting [verfasserIn] Shi, Wenxing [verfasserIn] Shao, Shuangquan [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: International journal of refrigeration - Amsterdam [u.a.] : Elsevier Science, 1978, 138, Seite 159-168 |
---|---|
Übergeordnetes Werk: |
volume:138 ; pages:159-168 |
DOI / URN: |
10.1016/j.ijrefrig.2022.03.008 |
---|
Katalog-ID: |
ELV008129541 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV008129541 | ||
003 | DE-627 | ||
005 | 20230524153630.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230508s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ijrefrig.2022.03.008 |2 doi | |
035 | |a (DE-627)ELV008129541 | ||
035 | |a (ELSEVIER)S0140-7007(22)00061-5 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q DE-600 |
084 | |a 52.43 |2 bkl | ||
100 | 1 | |a Yang, Minghong |e verfasserin |4 aut | |
245 | 1 | 0 | |a A computationally efficient scroll compressor model for both single-phase and two-phase compression considering scroll wrap temperature distribution |
264 | 1 | |c 2022 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a A general scroll compressor model with high accuracy, fast simulation speed and good numerical robustness is proposed in this study. The governing ordinary differential equations derived from mass and energy conservation use pressure and specific enthalpy as state variables, which can be applied to both single-phase compression and two-phase compression. Both the governing equations for inner compression and the nonlinear equations for internal leakages are explicit in pressure and specific enthalpy to avoid severe numerical stiff problems. In addition, the detailed scroll wrap temperature distribution is calculated based on the proposed second order differential equation considering heat conduction and periodic heat convection. Validation against experimental data shows that cooling capacity errors are less than 3.5% and power consumption errors are less than 2.8% in non-injection and liquid injection conditions. Evaluation of model speed and robustness shows that the model has a convergence rate of 100% and an average calculation speed of 12.4 s per case in various conditions. | ||
650 | 4 | |a Scroll compressor | |
650 | 4 | |a Wrap temperature distribution | |
650 | 4 | |a Wet compression | |
650 | 4 | |a Liquid injection | |
650 | 4 | |a Vapor injection | |
650 | 4 | |a Refrigeration | |
700 | 1 | |a Wang, Baolong |e verfasserin |4 aut | |
700 | 1 | |a Li, Xianting |e verfasserin |4 aut | |
700 | 1 | |a Shi, Wenxing |e verfasserin |4 aut | |
700 | 1 | |a Shao, Shuangquan |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t International journal of refrigeration |d Amsterdam [u.a.] : Elsevier Science, 1978 |g 138, Seite 159-168 |h Online-Ressource |w (DE-627)32041180X |w (DE-600)2001414-4 |w (DE-576)259271098 |x 0140-7007 |7 nnns |
773 | 1 | 8 | |g volume:138 |g pages:159-168 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2116 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 52.43 |j Kältetechnik |
951 | |a AR | ||
952 | |d 138 |h 159-168 |
author_variant |
m y my b w bw x l xl w s ws s s ss |
---|---|
matchkey_str |
article:01407007:2022----::cmuainlyfiinsrlcmrsomdlobtsnlpaentohscmrsinosdrn |
hierarchy_sort_str |
2022 |
bklnumber |
52.43 |
publishDate |
2022 |
allfields |
10.1016/j.ijrefrig.2022.03.008 doi (DE-627)ELV008129541 (ELSEVIER)S0140-7007(22)00061-5 DE-627 ger DE-627 rda eng 620 DE-600 52.43 bkl Yang, Minghong verfasserin aut A computationally efficient scroll compressor model for both single-phase and two-phase compression considering scroll wrap temperature distribution 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A general scroll compressor model with high accuracy, fast simulation speed and good numerical robustness is proposed in this study. The governing ordinary differential equations derived from mass and energy conservation use pressure and specific enthalpy as state variables, which can be applied to both single-phase compression and two-phase compression. Both the governing equations for inner compression and the nonlinear equations for internal leakages are explicit in pressure and specific enthalpy to avoid severe numerical stiff problems. In addition, the detailed scroll wrap temperature distribution is calculated based on the proposed second order differential equation considering heat conduction and periodic heat convection. Validation against experimental data shows that cooling capacity errors are less than 3.5% and power consumption errors are less than 2.8% in non-injection and liquid injection conditions. Evaluation of model speed and robustness shows that the model has a convergence rate of 100% and an average calculation speed of 12.4 s per case in various conditions. Scroll compressor Wrap temperature distribution Wet compression Liquid injection Vapor injection Refrigeration Wang, Baolong verfasserin aut Li, Xianting verfasserin aut Shi, Wenxing verfasserin aut Shao, Shuangquan verfasserin aut Enthalten in International journal of refrigeration Amsterdam [u.a.] : Elsevier Science, 1978 138, Seite 159-168 Online-Ressource (DE-627)32041180X (DE-600)2001414-4 (DE-576)259271098 0140-7007 nnns volume:138 pages:159-168 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.43 Kältetechnik AR 138 159-168 |
spelling |
10.1016/j.ijrefrig.2022.03.008 doi (DE-627)ELV008129541 (ELSEVIER)S0140-7007(22)00061-5 DE-627 ger DE-627 rda eng 620 DE-600 52.43 bkl Yang, Minghong verfasserin aut A computationally efficient scroll compressor model for both single-phase and two-phase compression considering scroll wrap temperature distribution 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A general scroll compressor model with high accuracy, fast simulation speed and good numerical robustness is proposed in this study. The governing ordinary differential equations derived from mass and energy conservation use pressure and specific enthalpy as state variables, which can be applied to both single-phase compression and two-phase compression. Both the governing equations for inner compression and the nonlinear equations for internal leakages are explicit in pressure and specific enthalpy to avoid severe numerical stiff problems. In addition, the detailed scroll wrap temperature distribution is calculated based on the proposed second order differential equation considering heat conduction and periodic heat convection. Validation against experimental data shows that cooling capacity errors are less than 3.5% and power consumption errors are less than 2.8% in non-injection and liquid injection conditions. Evaluation of model speed and robustness shows that the model has a convergence rate of 100% and an average calculation speed of 12.4 s per case in various conditions. Scroll compressor Wrap temperature distribution Wet compression Liquid injection Vapor injection Refrigeration Wang, Baolong verfasserin aut Li, Xianting verfasserin aut Shi, Wenxing verfasserin aut Shao, Shuangquan verfasserin aut Enthalten in International journal of refrigeration Amsterdam [u.a.] : Elsevier Science, 1978 138, Seite 159-168 Online-Ressource (DE-627)32041180X (DE-600)2001414-4 (DE-576)259271098 0140-7007 nnns volume:138 pages:159-168 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.43 Kältetechnik AR 138 159-168 |
allfields_unstemmed |
10.1016/j.ijrefrig.2022.03.008 doi (DE-627)ELV008129541 (ELSEVIER)S0140-7007(22)00061-5 DE-627 ger DE-627 rda eng 620 DE-600 52.43 bkl Yang, Minghong verfasserin aut A computationally efficient scroll compressor model for both single-phase and two-phase compression considering scroll wrap temperature distribution 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A general scroll compressor model with high accuracy, fast simulation speed and good numerical robustness is proposed in this study. The governing ordinary differential equations derived from mass and energy conservation use pressure and specific enthalpy as state variables, which can be applied to both single-phase compression and two-phase compression. Both the governing equations for inner compression and the nonlinear equations for internal leakages are explicit in pressure and specific enthalpy to avoid severe numerical stiff problems. In addition, the detailed scroll wrap temperature distribution is calculated based on the proposed second order differential equation considering heat conduction and periodic heat convection. Validation against experimental data shows that cooling capacity errors are less than 3.5% and power consumption errors are less than 2.8% in non-injection and liquid injection conditions. Evaluation of model speed and robustness shows that the model has a convergence rate of 100% and an average calculation speed of 12.4 s per case in various conditions. Scroll compressor Wrap temperature distribution Wet compression Liquid injection Vapor injection Refrigeration Wang, Baolong verfasserin aut Li, Xianting verfasserin aut Shi, Wenxing verfasserin aut Shao, Shuangquan verfasserin aut Enthalten in International journal of refrigeration Amsterdam [u.a.] : Elsevier Science, 1978 138, Seite 159-168 Online-Ressource (DE-627)32041180X (DE-600)2001414-4 (DE-576)259271098 0140-7007 nnns volume:138 pages:159-168 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.43 Kältetechnik AR 138 159-168 |
allfieldsGer |
10.1016/j.ijrefrig.2022.03.008 doi (DE-627)ELV008129541 (ELSEVIER)S0140-7007(22)00061-5 DE-627 ger DE-627 rda eng 620 DE-600 52.43 bkl Yang, Minghong verfasserin aut A computationally efficient scroll compressor model for both single-phase and two-phase compression considering scroll wrap temperature distribution 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A general scroll compressor model with high accuracy, fast simulation speed and good numerical robustness is proposed in this study. The governing ordinary differential equations derived from mass and energy conservation use pressure and specific enthalpy as state variables, which can be applied to both single-phase compression and two-phase compression. Both the governing equations for inner compression and the nonlinear equations for internal leakages are explicit in pressure and specific enthalpy to avoid severe numerical stiff problems. In addition, the detailed scroll wrap temperature distribution is calculated based on the proposed second order differential equation considering heat conduction and periodic heat convection. Validation against experimental data shows that cooling capacity errors are less than 3.5% and power consumption errors are less than 2.8% in non-injection and liquid injection conditions. Evaluation of model speed and robustness shows that the model has a convergence rate of 100% and an average calculation speed of 12.4 s per case in various conditions. Scroll compressor Wrap temperature distribution Wet compression Liquid injection Vapor injection Refrigeration Wang, Baolong verfasserin aut Li, Xianting verfasserin aut Shi, Wenxing verfasserin aut Shao, Shuangquan verfasserin aut Enthalten in International journal of refrigeration Amsterdam [u.a.] : Elsevier Science, 1978 138, Seite 159-168 Online-Ressource (DE-627)32041180X (DE-600)2001414-4 (DE-576)259271098 0140-7007 nnns volume:138 pages:159-168 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.43 Kältetechnik AR 138 159-168 |
allfieldsSound |
10.1016/j.ijrefrig.2022.03.008 doi (DE-627)ELV008129541 (ELSEVIER)S0140-7007(22)00061-5 DE-627 ger DE-627 rda eng 620 DE-600 52.43 bkl Yang, Minghong verfasserin aut A computationally efficient scroll compressor model for both single-phase and two-phase compression considering scroll wrap temperature distribution 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A general scroll compressor model with high accuracy, fast simulation speed and good numerical robustness is proposed in this study. The governing ordinary differential equations derived from mass and energy conservation use pressure and specific enthalpy as state variables, which can be applied to both single-phase compression and two-phase compression. Both the governing equations for inner compression and the nonlinear equations for internal leakages are explicit in pressure and specific enthalpy to avoid severe numerical stiff problems. In addition, the detailed scroll wrap temperature distribution is calculated based on the proposed second order differential equation considering heat conduction and periodic heat convection. Validation against experimental data shows that cooling capacity errors are less than 3.5% and power consumption errors are less than 2.8% in non-injection and liquid injection conditions. Evaluation of model speed and robustness shows that the model has a convergence rate of 100% and an average calculation speed of 12.4 s per case in various conditions. Scroll compressor Wrap temperature distribution Wet compression Liquid injection Vapor injection Refrigeration Wang, Baolong verfasserin aut Li, Xianting verfasserin aut Shi, Wenxing verfasserin aut Shao, Shuangquan verfasserin aut Enthalten in International journal of refrigeration Amsterdam [u.a.] : Elsevier Science, 1978 138, Seite 159-168 Online-Ressource (DE-627)32041180X (DE-600)2001414-4 (DE-576)259271098 0140-7007 nnns volume:138 pages:159-168 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 52.43 Kältetechnik AR 138 159-168 |
language |
English |
source |
Enthalten in International journal of refrigeration 138, Seite 159-168 volume:138 pages:159-168 |
sourceStr |
Enthalten in International journal of refrigeration 138, Seite 159-168 volume:138 pages:159-168 |
format_phy_str_mv |
Article |
bklname |
Kältetechnik |
institution |
findex.gbv.de |
topic_facet |
Scroll compressor Wrap temperature distribution Wet compression Liquid injection Vapor injection Refrigeration |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
International journal of refrigeration |
authorswithroles_txt_mv |
Yang, Minghong @@aut@@ Wang, Baolong @@aut@@ Li, Xianting @@aut@@ Shi, Wenxing @@aut@@ Shao, Shuangquan @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
32041180X |
dewey-sort |
3620 |
id |
ELV008129541 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV008129541</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524153630.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230508s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijrefrig.2022.03.008</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV008129541</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0140-7007(22)00061-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.43</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yang, Minghong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A computationally efficient scroll compressor model for both single-phase and two-phase compression considering scroll wrap temperature distribution</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A general scroll compressor model with high accuracy, fast simulation speed and good numerical robustness is proposed in this study. The governing ordinary differential equations derived from mass and energy conservation use pressure and specific enthalpy as state variables, which can be applied to both single-phase compression and two-phase compression. Both the governing equations for inner compression and the nonlinear equations for internal leakages are explicit in pressure and specific enthalpy to avoid severe numerical stiff problems. In addition, the detailed scroll wrap temperature distribution is calculated based on the proposed second order differential equation considering heat conduction and periodic heat convection. Validation against experimental data shows that cooling capacity errors are less than 3.5% and power consumption errors are less than 2.8% in non-injection and liquid injection conditions. Evaluation of model speed and robustness shows that the model has a convergence rate of 100% and an average calculation speed of 12.4 s per case in various conditions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Scroll compressor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wrap temperature distribution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wet compression</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Liquid injection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vapor injection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Refrigeration</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Baolong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Xianting</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shi, Wenxing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shao, Shuangquan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of refrigeration</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1978</subfield><subfield code="g">138, Seite 159-168</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)32041180X</subfield><subfield code="w">(DE-600)2001414-4</subfield><subfield code="w">(DE-576)259271098</subfield><subfield code="x">0140-7007</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:138</subfield><subfield code="g">pages:159-168</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.43</subfield><subfield code="j">Kältetechnik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">138</subfield><subfield code="h">159-168</subfield></datafield></record></collection>
|
author |
Yang, Minghong |
spellingShingle |
Yang, Minghong ddc 620 bkl 52.43 misc Scroll compressor misc Wrap temperature distribution misc Wet compression misc Liquid injection misc Vapor injection misc Refrigeration A computationally efficient scroll compressor model for both single-phase and two-phase compression considering scroll wrap temperature distribution |
authorStr |
Yang, Minghong |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)32041180X |
format |
electronic Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0140-7007 |
topic_title |
620 DE-600 52.43 bkl A computationally efficient scroll compressor model for both single-phase and two-phase compression considering scroll wrap temperature distribution Scroll compressor Wrap temperature distribution Wet compression Liquid injection Vapor injection Refrigeration |
topic |
ddc 620 bkl 52.43 misc Scroll compressor misc Wrap temperature distribution misc Wet compression misc Liquid injection misc Vapor injection misc Refrigeration |
topic_unstemmed |
ddc 620 bkl 52.43 misc Scroll compressor misc Wrap temperature distribution misc Wet compression misc Liquid injection misc Vapor injection misc Refrigeration |
topic_browse |
ddc 620 bkl 52.43 misc Scroll compressor misc Wrap temperature distribution misc Wet compression misc Liquid injection misc Vapor injection misc Refrigeration |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International journal of refrigeration |
hierarchy_parent_id |
32041180X |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
International journal of refrigeration |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)32041180X (DE-600)2001414-4 (DE-576)259271098 |
title |
A computationally efficient scroll compressor model for both single-phase and two-phase compression considering scroll wrap temperature distribution |
ctrlnum |
(DE-627)ELV008129541 (ELSEVIER)S0140-7007(22)00061-5 |
title_full |
A computationally efficient scroll compressor model for both single-phase and two-phase compression considering scroll wrap temperature distribution |
author_sort |
Yang, Minghong |
journal |
International journal of refrigeration |
journalStr |
International journal of refrigeration |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
container_start_page |
159 |
author_browse |
Yang, Minghong Wang, Baolong Li, Xianting Shi, Wenxing Shao, Shuangquan |
container_volume |
138 |
class |
620 DE-600 52.43 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Yang, Minghong |
doi_str_mv |
10.1016/j.ijrefrig.2022.03.008 |
dewey-full |
620 |
author2-role |
verfasserin |
title_sort |
a computationally efficient scroll compressor model for both single-phase and two-phase compression considering scroll wrap temperature distribution |
title_auth |
A computationally efficient scroll compressor model for both single-phase and two-phase compression considering scroll wrap temperature distribution |
abstract |
A general scroll compressor model with high accuracy, fast simulation speed and good numerical robustness is proposed in this study. The governing ordinary differential equations derived from mass and energy conservation use pressure and specific enthalpy as state variables, which can be applied to both single-phase compression and two-phase compression. Both the governing equations for inner compression and the nonlinear equations for internal leakages are explicit in pressure and specific enthalpy to avoid severe numerical stiff problems. In addition, the detailed scroll wrap temperature distribution is calculated based on the proposed second order differential equation considering heat conduction and periodic heat convection. Validation against experimental data shows that cooling capacity errors are less than 3.5% and power consumption errors are less than 2.8% in non-injection and liquid injection conditions. Evaluation of model speed and robustness shows that the model has a convergence rate of 100% and an average calculation speed of 12.4 s per case in various conditions. |
abstractGer |
A general scroll compressor model with high accuracy, fast simulation speed and good numerical robustness is proposed in this study. The governing ordinary differential equations derived from mass and energy conservation use pressure and specific enthalpy as state variables, which can be applied to both single-phase compression and two-phase compression. Both the governing equations for inner compression and the nonlinear equations for internal leakages are explicit in pressure and specific enthalpy to avoid severe numerical stiff problems. In addition, the detailed scroll wrap temperature distribution is calculated based on the proposed second order differential equation considering heat conduction and periodic heat convection. Validation against experimental data shows that cooling capacity errors are less than 3.5% and power consumption errors are less than 2.8% in non-injection and liquid injection conditions. Evaluation of model speed and robustness shows that the model has a convergence rate of 100% and an average calculation speed of 12.4 s per case in various conditions. |
abstract_unstemmed |
A general scroll compressor model with high accuracy, fast simulation speed and good numerical robustness is proposed in this study. The governing ordinary differential equations derived from mass and energy conservation use pressure and specific enthalpy as state variables, which can be applied to both single-phase compression and two-phase compression. Both the governing equations for inner compression and the nonlinear equations for internal leakages are explicit in pressure and specific enthalpy to avoid severe numerical stiff problems. In addition, the detailed scroll wrap temperature distribution is calculated based on the proposed second order differential equation considering heat conduction and periodic heat convection. Validation against experimental data shows that cooling capacity errors are less than 3.5% and power consumption errors are less than 2.8% in non-injection and liquid injection conditions. Evaluation of model speed and robustness shows that the model has a convergence rate of 100% and an average calculation speed of 12.4 s per case in various conditions. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
A computationally efficient scroll compressor model for both single-phase and two-phase compression considering scroll wrap temperature distribution |
remote_bool |
true |
author2 |
Wang, Baolong Li, Xianting Shi, Wenxing Shao, Shuangquan |
author2Str |
Wang, Baolong Li, Xianting Shi, Wenxing Shao, Shuangquan |
ppnlink |
32041180X |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.ijrefrig.2022.03.008 |
up_date |
2024-07-06T18:38:43.250Z |
_version_ |
1803855984855089152 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV008129541</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524153630.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230508s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijrefrig.2022.03.008</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV008129541</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0140-7007(22)00061-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.43</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yang, Minghong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A computationally efficient scroll compressor model for both single-phase and two-phase compression considering scroll wrap temperature distribution</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A general scroll compressor model with high accuracy, fast simulation speed and good numerical robustness is proposed in this study. The governing ordinary differential equations derived from mass and energy conservation use pressure and specific enthalpy as state variables, which can be applied to both single-phase compression and two-phase compression. Both the governing equations for inner compression and the nonlinear equations for internal leakages are explicit in pressure and specific enthalpy to avoid severe numerical stiff problems. In addition, the detailed scroll wrap temperature distribution is calculated based on the proposed second order differential equation considering heat conduction and periodic heat convection. Validation against experimental data shows that cooling capacity errors are less than 3.5% and power consumption errors are less than 2.8% in non-injection and liquid injection conditions. Evaluation of model speed and robustness shows that the model has a convergence rate of 100% and an average calculation speed of 12.4 s per case in various conditions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Scroll compressor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wrap temperature distribution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wet compression</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Liquid injection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vapor injection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Refrigeration</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Baolong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Xianting</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shi, Wenxing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shao, Shuangquan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of refrigeration</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1978</subfield><subfield code="g">138, Seite 159-168</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)32041180X</subfield><subfield code="w">(DE-600)2001414-4</subfield><subfield code="w">(DE-576)259271098</subfield><subfield code="x">0140-7007</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:138</subfield><subfield code="g">pages:159-168</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.43</subfield><subfield code="j">Kältetechnik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">138</subfield><subfield code="h">159-168</subfield></datafield></record></collection>
|
score |
7.399083 |