Analytical method for predicting pile running during driving
Most offshore structures, such as conventional oil and gas jacket platforms or wind turbines, are typically supported by driven large-diameter steel piles. The piles resist the loads of the superstructure and environmental wind and wave forces. Pile running is a major hazard associated with the inst...
Ausführliche Beschreibung
Autor*in: |
Sun, Liqiang [verfasserIn] Shi, Jie [verfasserIn] Zhang, Yurong [verfasserIn] Feng, Xiaowei [verfasserIn] Tian, Yinghui [verfasserIn] Wang, Rong [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Applied ocean research - Amsterdam [u.a.] : Elsevier Science, 1979, 125 |
---|---|
Übergeordnetes Werk: |
volume:125 |
DOI / URN: |
10.1016/j.apor.2022.103234 |
---|
Katalog-ID: |
ELV00817170X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV00817170X | ||
003 | DE-627 | ||
005 | 20230524150208.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230508s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.apor.2022.103234 |2 doi | |
035 | |a (DE-627)ELV00817170X | ||
035 | |a (ELSEVIER)S0141-1187(22)00172-9 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |a 570 |q DE-600 |
084 | |a BIODIV |q DE-30 |2 fid | ||
084 | |a 38.90 |2 bkl | ||
084 | |a 50.92 |2 bkl | ||
084 | |a 56.30 |2 bkl | ||
100 | 1 | |a Sun, Liqiang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Analytical method for predicting pile running during driving |
264 | 1 | |c 2022 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Most offshore structures, such as conventional oil and gas jacket platforms or wind turbines, are typically supported by driven large-diameter steel piles. The piles resist the loads of the superstructure and environmental wind and wave forces. Pile running is a major hazard associated with the installation of driven piles in a layered seabed. An analytical method based on Newton's second law of motion is proposed to predict pile running. Two methods are used to calculate the soil resistance to dynamic penetration: (1) the conventional American Petroleum Institute (API) method, where the strain rate dependency and remoulding of the surrounding soil are considered, and (2) the Cone Penetration Test (CPT)-based method, which accounts for friction fatigue. The drag resistance in the context of fluid mechanics has also been considered for pile running. The velocity at the start of pile running was determined by the energy delivered by the piling hammer. A numerical programme was implemented and validated, and then used for three case studies; the results obtained were in good agreement with field measurements. The method presented in this study is dependable for analysing pile running and can provide significant support for pile installation assessment and risk management in offshore engineering design. | ||
650 | 4 | |a Driven piles | |
650 | 4 | |a Pile running | |
650 | 4 | |a Strain rate | |
650 | 4 | |a Offshore engineering | |
700 | 1 | |a Shi, Jie |e verfasserin |4 aut | |
700 | 1 | |a Zhang, Yurong |e verfasserin |4 aut | |
700 | 1 | |a Feng, Xiaowei |e verfasserin |0 (orcid)0000-0002-8666-9383 |4 aut | |
700 | 1 | |a Tian, Yinghui |e verfasserin |4 aut | |
700 | 1 | |a Wang, Rong |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Applied ocean research |d Amsterdam [u.a.] : Elsevier Science, 1979 |g 125 |h Online-Ressource |w (DE-627)306313944 |w (DE-600)1495994-X |w (DE-576)256144931 |x 0141-1187 |7 nnns |
773 | 1 | 8 | |g volume:125 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a FID-BIODIV | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OPC-GGO | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 38.90 |j Ozeanologie |j Ozeanographie |
936 | b | k | |a 50.92 |j Meerestechnik |
936 | b | k | |a 56.30 |j Wasserbau |
951 | |a AR | ||
952 | |d 125 |
author_variant |
l s ls j s js y z yz x f xf y t yt r w rw |
---|---|
matchkey_str |
article:01411187:2022----::nltclehdopeitnplrni |
hierarchy_sort_str |
2022 |
bklnumber |
38.90 50.92 56.30 |
publishDate |
2022 |
allfields |
10.1016/j.apor.2022.103234 doi (DE-627)ELV00817170X (ELSEVIER)S0141-1187(22)00172-9 DE-627 ger DE-627 rda eng 550 570 DE-600 BIODIV DE-30 fid 38.90 bkl 50.92 bkl 56.30 bkl Sun, Liqiang verfasserin aut Analytical method for predicting pile running during driving 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Most offshore structures, such as conventional oil and gas jacket platforms or wind turbines, are typically supported by driven large-diameter steel piles. The piles resist the loads of the superstructure and environmental wind and wave forces. Pile running is a major hazard associated with the installation of driven piles in a layered seabed. An analytical method based on Newton's second law of motion is proposed to predict pile running. Two methods are used to calculate the soil resistance to dynamic penetration: (1) the conventional American Petroleum Institute (API) method, where the strain rate dependency and remoulding of the surrounding soil are considered, and (2) the Cone Penetration Test (CPT)-based method, which accounts for friction fatigue. The drag resistance in the context of fluid mechanics has also been considered for pile running. The velocity at the start of pile running was determined by the energy delivered by the piling hammer. A numerical programme was implemented and validated, and then used for three case studies; the results obtained were in good agreement with field measurements. The method presented in this study is dependable for analysing pile running and can provide significant support for pile installation assessment and risk management in offshore engineering design. Driven piles Pile running Strain rate Offshore engineering Shi, Jie verfasserin aut Zhang, Yurong verfasserin aut Feng, Xiaowei verfasserin (orcid)0000-0002-8666-9383 aut Tian, Yinghui verfasserin aut Wang, Rong verfasserin aut Enthalten in Applied ocean research Amsterdam [u.a.] : Elsevier Science, 1979 125 Online-Ressource (DE-627)306313944 (DE-600)1495994-X (DE-576)256144931 0141-1187 nnns volume:125 GBV_USEFLAG_U SYSFLAG_U GBV_ELV FID-BIODIV SSG-OLC-PHA SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.90 Ozeanologie Ozeanographie 50.92 Meerestechnik 56.30 Wasserbau AR 125 |
spelling |
10.1016/j.apor.2022.103234 doi (DE-627)ELV00817170X (ELSEVIER)S0141-1187(22)00172-9 DE-627 ger DE-627 rda eng 550 570 DE-600 BIODIV DE-30 fid 38.90 bkl 50.92 bkl 56.30 bkl Sun, Liqiang verfasserin aut Analytical method for predicting pile running during driving 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Most offshore structures, such as conventional oil and gas jacket platforms or wind turbines, are typically supported by driven large-diameter steel piles. The piles resist the loads of the superstructure and environmental wind and wave forces. Pile running is a major hazard associated with the installation of driven piles in a layered seabed. An analytical method based on Newton's second law of motion is proposed to predict pile running. Two methods are used to calculate the soil resistance to dynamic penetration: (1) the conventional American Petroleum Institute (API) method, where the strain rate dependency and remoulding of the surrounding soil are considered, and (2) the Cone Penetration Test (CPT)-based method, which accounts for friction fatigue. The drag resistance in the context of fluid mechanics has also been considered for pile running. The velocity at the start of pile running was determined by the energy delivered by the piling hammer. A numerical programme was implemented and validated, and then used for three case studies; the results obtained were in good agreement with field measurements. The method presented in this study is dependable for analysing pile running and can provide significant support for pile installation assessment and risk management in offshore engineering design. Driven piles Pile running Strain rate Offshore engineering Shi, Jie verfasserin aut Zhang, Yurong verfasserin aut Feng, Xiaowei verfasserin (orcid)0000-0002-8666-9383 aut Tian, Yinghui verfasserin aut Wang, Rong verfasserin aut Enthalten in Applied ocean research Amsterdam [u.a.] : Elsevier Science, 1979 125 Online-Ressource (DE-627)306313944 (DE-600)1495994-X (DE-576)256144931 0141-1187 nnns volume:125 GBV_USEFLAG_U SYSFLAG_U GBV_ELV FID-BIODIV SSG-OLC-PHA SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.90 Ozeanologie Ozeanographie 50.92 Meerestechnik 56.30 Wasserbau AR 125 |
allfields_unstemmed |
10.1016/j.apor.2022.103234 doi (DE-627)ELV00817170X (ELSEVIER)S0141-1187(22)00172-9 DE-627 ger DE-627 rda eng 550 570 DE-600 BIODIV DE-30 fid 38.90 bkl 50.92 bkl 56.30 bkl Sun, Liqiang verfasserin aut Analytical method for predicting pile running during driving 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Most offshore structures, such as conventional oil and gas jacket platforms or wind turbines, are typically supported by driven large-diameter steel piles. The piles resist the loads of the superstructure and environmental wind and wave forces. Pile running is a major hazard associated with the installation of driven piles in a layered seabed. An analytical method based on Newton's second law of motion is proposed to predict pile running. Two methods are used to calculate the soil resistance to dynamic penetration: (1) the conventional American Petroleum Institute (API) method, where the strain rate dependency and remoulding of the surrounding soil are considered, and (2) the Cone Penetration Test (CPT)-based method, which accounts for friction fatigue. The drag resistance in the context of fluid mechanics has also been considered for pile running. The velocity at the start of pile running was determined by the energy delivered by the piling hammer. A numerical programme was implemented and validated, and then used for three case studies; the results obtained were in good agreement with field measurements. The method presented in this study is dependable for analysing pile running and can provide significant support for pile installation assessment and risk management in offshore engineering design. Driven piles Pile running Strain rate Offshore engineering Shi, Jie verfasserin aut Zhang, Yurong verfasserin aut Feng, Xiaowei verfasserin (orcid)0000-0002-8666-9383 aut Tian, Yinghui verfasserin aut Wang, Rong verfasserin aut Enthalten in Applied ocean research Amsterdam [u.a.] : Elsevier Science, 1979 125 Online-Ressource (DE-627)306313944 (DE-600)1495994-X (DE-576)256144931 0141-1187 nnns volume:125 GBV_USEFLAG_U SYSFLAG_U GBV_ELV FID-BIODIV SSG-OLC-PHA SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.90 Ozeanologie Ozeanographie 50.92 Meerestechnik 56.30 Wasserbau AR 125 |
allfieldsGer |
10.1016/j.apor.2022.103234 doi (DE-627)ELV00817170X (ELSEVIER)S0141-1187(22)00172-9 DE-627 ger DE-627 rda eng 550 570 DE-600 BIODIV DE-30 fid 38.90 bkl 50.92 bkl 56.30 bkl Sun, Liqiang verfasserin aut Analytical method for predicting pile running during driving 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Most offshore structures, such as conventional oil and gas jacket platforms or wind turbines, are typically supported by driven large-diameter steel piles. The piles resist the loads of the superstructure and environmental wind and wave forces. Pile running is a major hazard associated with the installation of driven piles in a layered seabed. An analytical method based on Newton's second law of motion is proposed to predict pile running. Two methods are used to calculate the soil resistance to dynamic penetration: (1) the conventional American Petroleum Institute (API) method, where the strain rate dependency and remoulding of the surrounding soil are considered, and (2) the Cone Penetration Test (CPT)-based method, which accounts for friction fatigue. The drag resistance in the context of fluid mechanics has also been considered for pile running. The velocity at the start of pile running was determined by the energy delivered by the piling hammer. A numerical programme was implemented and validated, and then used for three case studies; the results obtained were in good agreement with field measurements. The method presented in this study is dependable for analysing pile running and can provide significant support for pile installation assessment and risk management in offshore engineering design. Driven piles Pile running Strain rate Offshore engineering Shi, Jie verfasserin aut Zhang, Yurong verfasserin aut Feng, Xiaowei verfasserin (orcid)0000-0002-8666-9383 aut Tian, Yinghui verfasserin aut Wang, Rong verfasserin aut Enthalten in Applied ocean research Amsterdam [u.a.] : Elsevier Science, 1979 125 Online-Ressource (DE-627)306313944 (DE-600)1495994-X (DE-576)256144931 0141-1187 nnns volume:125 GBV_USEFLAG_U SYSFLAG_U GBV_ELV FID-BIODIV SSG-OLC-PHA SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.90 Ozeanologie Ozeanographie 50.92 Meerestechnik 56.30 Wasserbau AR 125 |
allfieldsSound |
10.1016/j.apor.2022.103234 doi (DE-627)ELV00817170X (ELSEVIER)S0141-1187(22)00172-9 DE-627 ger DE-627 rda eng 550 570 DE-600 BIODIV DE-30 fid 38.90 bkl 50.92 bkl 56.30 bkl Sun, Liqiang verfasserin aut Analytical method for predicting pile running during driving 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Most offshore structures, such as conventional oil and gas jacket platforms or wind turbines, are typically supported by driven large-diameter steel piles. The piles resist the loads of the superstructure and environmental wind and wave forces. Pile running is a major hazard associated with the installation of driven piles in a layered seabed. An analytical method based on Newton's second law of motion is proposed to predict pile running. Two methods are used to calculate the soil resistance to dynamic penetration: (1) the conventional American Petroleum Institute (API) method, where the strain rate dependency and remoulding of the surrounding soil are considered, and (2) the Cone Penetration Test (CPT)-based method, which accounts for friction fatigue. The drag resistance in the context of fluid mechanics has also been considered for pile running. The velocity at the start of pile running was determined by the energy delivered by the piling hammer. A numerical programme was implemented and validated, and then used for three case studies; the results obtained were in good agreement with field measurements. The method presented in this study is dependable for analysing pile running and can provide significant support for pile installation assessment and risk management in offshore engineering design. Driven piles Pile running Strain rate Offshore engineering Shi, Jie verfasserin aut Zhang, Yurong verfasserin aut Feng, Xiaowei verfasserin (orcid)0000-0002-8666-9383 aut Tian, Yinghui verfasserin aut Wang, Rong verfasserin aut Enthalten in Applied ocean research Amsterdam [u.a.] : Elsevier Science, 1979 125 Online-Ressource (DE-627)306313944 (DE-600)1495994-X (DE-576)256144931 0141-1187 nnns volume:125 GBV_USEFLAG_U SYSFLAG_U GBV_ELV FID-BIODIV SSG-OLC-PHA SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.90 Ozeanologie Ozeanographie 50.92 Meerestechnik 56.30 Wasserbau AR 125 |
language |
English |
source |
Enthalten in Applied ocean research 125 volume:125 |
sourceStr |
Enthalten in Applied ocean research 125 volume:125 |
format_phy_str_mv |
Article |
bklname |
Ozeanologie Ozeanographie Meerestechnik Wasserbau |
institution |
findex.gbv.de |
topic_facet |
Driven piles Pile running Strain rate Offshore engineering |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Applied ocean research |
authorswithroles_txt_mv |
Sun, Liqiang @@aut@@ Shi, Jie @@aut@@ Zhang, Yurong @@aut@@ Feng, Xiaowei @@aut@@ Tian, Yinghui @@aut@@ Wang, Rong @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
306313944 |
dewey-sort |
3550 |
id |
ELV00817170X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV00817170X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524150208.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230508s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.apor.2022.103234</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV00817170X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0141-1187(22)00172-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="a">570</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.90</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.92</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">56.30</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sun, Liqiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analytical method for predicting pile running during driving</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Most offshore structures, such as conventional oil and gas jacket platforms or wind turbines, are typically supported by driven large-diameter steel piles. The piles resist the loads of the superstructure and environmental wind and wave forces. Pile running is a major hazard associated with the installation of driven piles in a layered seabed. An analytical method based on Newton's second law of motion is proposed to predict pile running. Two methods are used to calculate the soil resistance to dynamic penetration: (1) the conventional American Petroleum Institute (API) method, where the strain rate dependency and remoulding of the surrounding soil are considered, and (2) the Cone Penetration Test (CPT)-based method, which accounts for friction fatigue. The drag resistance in the context of fluid mechanics has also been considered for pile running. The velocity at the start of pile running was determined by the energy delivered by the piling hammer. A numerical programme was implemented and validated, and then used for three case studies; the results obtained were in good agreement with field measurements. The method presented in this study is dependable for analysing pile running and can provide significant support for pile installation assessment and risk management in offshore engineering design.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Driven piles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pile running</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Strain rate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Offshore engineering</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shi, Jie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Yurong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Feng, Xiaowei</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-8666-9383</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tian, Yinghui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Rong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied ocean research</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1979</subfield><subfield code="g">125</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306313944</subfield><subfield code="w">(DE-600)1495994-X</subfield><subfield code="w">(DE-576)256144931</subfield><subfield code="x">0141-1187</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.90</subfield><subfield code="j">Ozeanologie</subfield><subfield code="j">Ozeanographie</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.92</subfield><subfield code="j">Meerestechnik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">56.30</subfield><subfield code="j">Wasserbau</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">125</subfield></datafield></record></collection>
|
author |
Sun, Liqiang |
spellingShingle |
Sun, Liqiang ddc 550 fid BIODIV bkl 38.90 bkl 50.92 bkl 56.30 misc Driven piles misc Pile running misc Strain rate misc Offshore engineering Analytical method for predicting pile running during driving |
authorStr |
Sun, Liqiang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)306313944 |
format |
electronic Article |
dewey-ones |
550 - Earth sciences 570 - Life sciences; biology |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0141-1187 |
topic_title |
550 570 DE-600 BIODIV DE-30 fid 38.90 bkl 50.92 bkl 56.30 bkl Analytical method for predicting pile running during driving Driven piles Pile running Strain rate Offshore engineering |
topic |
ddc 550 fid BIODIV bkl 38.90 bkl 50.92 bkl 56.30 misc Driven piles misc Pile running misc Strain rate misc Offshore engineering |
topic_unstemmed |
ddc 550 fid BIODIV bkl 38.90 bkl 50.92 bkl 56.30 misc Driven piles misc Pile running misc Strain rate misc Offshore engineering |
topic_browse |
ddc 550 fid BIODIV bkl 38.90 bkl 50.92 bkl 56.30 misc Driven piles misc Pile running misc Strain rate misc Offshore engineering |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Applied ocean research |
hierarchy_parent_id |
306313944 |
dewey-tens |
550 - Earth sciences & geology 570 - Life sciences; biology |
hierarchy_top_title |
Applied ocean research |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)306313944 (DE-600)1495994-X (DE-576)256144931 |
title |
Analytical method for predicting pile running during driving |
ctrlnum |
(DE-627)ELV00817170X (ELSEVIER)S0141-1187(22)00172-9 |
title_full |
Analytical method for predicting pile running during driving |
author_sort |
Sun, Liqiang |
journal |
Applied ocean research |
journalStr |
Applied ocean research |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
author_browse |
Sun, Liqiang Shi, Jie Zhang, Yurong Feng, Xiaowei Tian, Yinghui Wang, Rong |
container_volume |
125 |
class |
550 570 DE-600 BIODIV DE-30 fid 38.90 bkl 50.92 bkl 56.30 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Sun, Liqiang |
doi_str_mv |
10.1016/j.apor.2022.103234 |
normlink |
(ORCID)0000-0002-8666-9383 |
normlink_prefix_str_mv |
(orcid)0000-0002-8666-9383 |
dewey-full |
550 570 |
author2-role |
verfasserin |
title_sort |
analytical method for predicting pile running during driving |
title_auth |
Analytical method for predicting pile running during driving |
abstract |
Most offshore structures, such as conventional oil and gas jacket platforms or wind turbines, are typically supported by driven large-diameter steel piles. The piles resist the loads of the superstructure and environmental wind and wave forces. Pile running is a major hazard associated with the installation of driven piles in a layered seabed. An analytical method based on Newton's second law of motion is proposed to predict pile running. Two methods are used to calculate the soil resistance to dynamic penetration: (1) the conventional American Petroleum Institute (API) method, where the strain rate dependency and remoulding of the surrounding soil are considered, and (2) the Cone Penetration Test (CPT)-based method, which accounts for friction fatigue. The drag resistance in the context of fluid mechanics has also been considered for pile running. The velocity at the start of pile running was determined by the energy delivered by the piling hammer. A numerical programme was implemented and validated, and then used for three case studies; the results obtained were in good agreement with field measurements. The method presented in this study is dependable for analysing pile running and can provide significant support for pile installation assessment and risk management in offshore engineering design. |
abstractGer |
Most offshore structures, such as conventional oil and gas jacket platforms or wind turbines, are typically supported by driven large-diameter steel piles. The piles resist the loads of the superstructure and environmental wind and wave forces. Pile running is a major hazard associated with the installation of driven piles in a layered seabed. An analytical method based on Newton's second law of motion is proposed to predict pile running. Two methods are used to calculate the soil resistance to dynamic penetration: (1) the conventional American Petroleum Institute (API) method, where the strain rate dependency and remoulding of the surrounding soil are considered, and (2) the Cone Penetration Test (CPT)-based method, which accounts for friction fatigue. The drag resistance in the context of fluid mechanics has also been considered for pile running. The velocity at the start of pile running was determined by the energy delivered by the piling hammer. A numerical programme was implemented and validated, and then used for three case studies; the results obtained were in good agreement with field measurements. The method presented in this study is dependable for analysing pile running and can provide significant support for pile installation assessment and risk management in offshore engineering design. |
abstract_unstemmed |
Most offshore structures, such as conventional oil and gas jacket platforms or wind turbines, are typically supported by driven large-diameter steel piles. The piles resist the loads of the superstructure and environmental wind and wave forces. Pile running is a major hazard associated with the installation of driven piles in a layered seabed. An analytical method based on Newton's second law of motion is proposed to predict pile running. Two methods are used to calculate the soil resistance to dynamic penetration: (1) the conventional American Petroleum Institute (API) method, where the strain rate dependency and remoulding of the surrounding soil are considered, and (2) the Cone Penetration Test (CPT)-based method, which accounts for friction fatigue. The drag resistance in the context of fluid mechanics has also been considered for pile running. The velocity at the start of pile running was determined by the energy delivered by the piling hammer. A numerical programme was implemented and validated, and then used for three case studies; the results obtained were in good agreement with field measurements. The method presented in this study is dependable for analysing pile running and can provide significant support for pile installation assessment and risk management in offshore engineering design. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV FID-BIODIV SSG-OLC-PHA SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Analytical method for predicting pile running during driving |
remote_bool |
true |
author2 |
Shi, Jie Zhang, Yurong Feng, Xiaowei Tian, Yinghui Wang, Rong |
author2Str |
Shi, Jie Zhang, Yurong Feng, Xiaowei Tian, Yinghui Wang, Rong |
ppnlink |
306313944 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.apor.2022.103234 |
up_date |
2024-07-06T18:47:24.102Z |
_version_ |
1803856531006947328 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV00817170X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524150208.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230508s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.apor.2022.103234</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV00817170X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0141-1187(22)00172-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="a">570</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.90</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.92</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">56.30</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sun, Liqiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analytical method for predicting pile running during driving</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Most offshore structures, such as conventional oil and gas jacket platforms or wind turbines, are typically supported by driven large-diameter steel piles. The piles resist the loads of the superstructure and environmental wind and wave forces. Pile running is a major hazard associated with the installation of driven piles in a layered seabed. An analytical method based on Newton's second law of motion is proposed to predict pile running. Two methods are used to calculate the soil resistance to dynamic penetration: (1) the conventional American Petroleum Institute (API) method, where the strain rate dependency and remoulding of the surrounding soil are considered, and (2) the Cone Penetration Test (CPT)-based method, which accounts for friction fatigue. The drag resistance in the context of fluid mechanics has also been considered for pile running. The velocity at the start of pile running was determined by the energy delivered by the piling hammer. A numerical programme was implemented and validated, and then used for three case studies; the results obtained were in good agreement with field measurements. The method presented in this study is dependable for analysing pile running and can provide significant support for pile installation assessment and risk management in offshore engineering design.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Driven piles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pile running</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Strain rate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Offshore engineering</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shi, Jie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Yurong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Feng, Xiaowei</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-8666-9383</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tian, Yinghui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Rong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied ocean research</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1979</subfield><subfield code="g">125</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306313944</subfield><subfield code="w">(DE-600)1495994-X</subfield><subfield code="w">(DE-576)256144931</subfield><subfield code="x">0141-1187</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.90</subfield><subfield code="j">Ozeanologie</subfield><subfield code="j">Ozeanographie</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.92</subfield><subfield code="j">Meerestechnik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">56.30</subfield><subfield code="j">Wasserbau</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">125</subfield></datafield></record></collection>
|
score |
7.402916 |