The development of a chemical kinetic mechanism for combustion in supercritical carbon dioxide
Direct fired supercritical CO2 (sCO2) power cycles allow for the combustion of gaseous fuels under oxyfuel conditions with inherent carbon capture. As the CO2 is captured intrinsically, the efficiency penalty of capture on the overall plant is small, meaning that power plants achieve a similar effic...
Ausführliche Beschreibung
Autor*in: |
Harman-Thomas, James M. [verfasserIn] Hughes, Kevin J. [verfasserIn] Pourkashanian, Mohamed [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
Energie / Energieökonomik / Energietechnik / Energiemanagement / Energieforschung |
---|
Übergeordnetes Werk: |
Enthalten in: Energy - Amsterdam [u.a.] : Elsevier Science, 1976, 255 |
---|---|
Übergeordnetes Werk: |
volume:255 |
DOI / URN: |
10.1016/j.energy.2022.124490 |
---|
Katalog-ID: |
ELV008175942 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV008175942 | ||
003 | DE-627 | ||
005 | 20230524124429.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230508s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.energy.2022.124490 |2 doi | |
035 | |a (DE-627)ELV008175942 | ||
035 | |a (ELSEVIER)S0360-5442(22)01393-7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 600 |q DE-600 |
084 | |a 50.70 |2 bkl | ||
100 | 1 | |a Harman-Thomas, James M. |e verfasserin |4 aut | |
245 | 1 | 0 | |a The development of a chemical kinetic mechanism for combustion in supercritical carbon dioxide |
264 | 1 | |c 2022 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Direct fired supercritical CO2 (sCO2) power cycles allow for the combustion of gaseous fuels under oxyfuel conditions with inherent carbon capture. As the CO2 is captured intrinsically, the efficiency penalty of capture on the overall plant is small, meaning that power plants achieve a similar efficiency to traditional fossil fuel power plants without carbon capture and storage. However, at high pressures and in large dilutions of CO2, combustion mechanisms are poorly understood. Therefore, in this paper sensitivity and quantitative analysis of four established chemical kinetic mechanisms have been employed to determine the most important reactions and the best performing mechanisms over a range of different conditions. CH3O2 chemistry was identified as a pivotal mechanism component for modelling methane combustion above 200 atm. The University of Sheffield (UoS) sCO2 mechanism created in the present work better models the ignition delay time (IDT) of high-pressure combustion in a large dilution of CO2. Quantitative analysis showed that the UoS sCO2 mechanism was the best fit to the greatest number of IDT datasets and had the lowest average absolute error value, thus indicating a superior performance compared to the four existing chemical kinetic mechanisms, well-validated for lower pressure conditions. | ||
650 | 7 | |8 1.1\x |a Energie |0 (DE-2867)14175-2 |2 stw | |
650 | 7 | |8 1.2\x |a Energieökonomik |0 (DE-2867)18350-4 |2 stw | |
650 | 7 | |8 1.3\x |a Energietechnik |0 (DE-2867)18353-5 |2 stw | |
650 | 7 | |8 1.4\x |a Energiemanagement |0 (DE-2867)18349-3 |2 stw | |
650 | 7 | |8 1.5\x |a Energieforschung |0 (DE-2867)18348-5 |2 stw | |
700 | 1 | |a Hughes, Kevin J. |e verfasserin |4 aut | |
700 | 1 | |a Pourkashanian, Mohamed |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Energy |d Amsterdam [u.a.] : Elsevier Science, 1976 |g 255 |h Online-Ressource |w (DE-627)320597903 |w (DE-600)2019804-8 |w (DE-576)116451815 |x 1873-6785 |7 nnns |
773 | 1 | 8 | |g volume:255 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 50.70 |j Energie: Allgemeines |
951 | |a AR | ||
952 | |d 255 |
author_variant |
j m h t jmh jmht k j h kj kjh m p mp |
---|---|
matchkey_str |
article:18736785:2022----::hdvlpetfceiakntcehnsfrobsinnue |
hierarchy_sort_str |
2022 |
bklnumber |
50.70 |
publishDate |
2022 |
allfields |
10.1016/j.energy.2022.124490 doi (DE-627)ELV008175942 (ELSEVIER)S0360-5442(22)01393-7 DE-627 ger DE-627 rda eng 600 DE-600 50.70 bkl Harman-Thomas, James M. verfasserin aut The development of a chemical kinetic mechanism for combustion in supercritical carbon dioxide 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Direct fired supercritical CO2 (sCO2) power cycles allow for the combustion of gaseous fuels under oxyfuel conditions with inherent carbon capture. As the CO2 is captured intrinsically, the efficiency penalty of capture on the overall plant is small, meaning that power plants achieve a similar efficiency to traditional fossil fuel power plants without carbon capture and storage. However, at high pressures and in large dilutions of CO2, combustion mechanisms are poorly understood. Therefore, in this paper sensitivity and quantitative analysis of four established chemical kinetic mechanisms have been employed to determine the most important reactions and the best performing mechanisms over a range of different conditions. CH3O2 chemistry was identified as a pivotal mechanism component for modelling methane combustion above 200 atm. The University of Sheffield (UoS) sCO2 mechanism created in the present work better models the ignition delay time (IDT) of high-pressure combustion in a large dilution of CO2. Quantitative analysis showed that the UoS sCO2 mechanism was the best fit to the greatest number of IDT datasets and had the lowest average absolute error value, thus indicating a superior performance compared to the four existing chemical kinetic mechanisms, well-validated for lower pressure conditions. 1.1\x Energie (DE-2867)14175-2 stw 1.2\x Energieökonomik (DE-2867)18350-4 stw 1.3\x Energietechnik (DE-2867)18353-5 stw 1.4\x Energiemanagement (DE-2867)18349-3 stw 1.5\x Energieforschung (DE-2867)18348-5 stw Hughes, Kevin J. verfasserin aut Pourkashanian, Mohamed verfasserin aut Enthalten in Energy Amsterdam [u.a.] : Elsevier Science, 1976 255 Online-Ressource (DE-627)320597903 (DE-600)2019804-8 (DE-576)116451815 1873-6785 nnns volume:255 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.70 Energie: Allgemeines AR 255 |
spelling |
10.1016/j.energy.2022.124490 doi (DE-627)ELV008175942 (ELSEVIER)S0360-5442(22)01393-7 DE-627 ger DE-627 rda eng 600 DE-600 50.70 bkl Harman-Thomas, James M. verfasserin aut The development of a chemical kinetic mechanism for combustion in supercritical carbon dioxide 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Direct fired supercritical CO2 (sCO2) power cycles allow for the combustion of gaseous fuels under oxyfuel conditions with inherent carbon capture. As the CO2 is captured intrinsically, the efficiency penalty of capture on the overall plant is small, meaning that power plants achieve a similar efficiency to traditional fossil fuel power plants without carbon capture and storage. However, at high pressures and in large dilutions of CO2, combustion mechanisms are poorly understood. Therefore, in this paper sensitivity and quantitative analysis of four established chemical kinetic mechanisms have been employed to determine the most important reactions and the best performing mechanisms over a range of different conditions. CH3O2 chemistry was identified as a pivotal mechanism component for modelling methane combustion above 200 atm. The University of Sheffield (UoS) sCO2 mechanism created in the present work better models the ignition delay time (IDT) of high-pressure combustion in a large dilution of CO2. Quantitative analysis showed that the UoS sCO2 mechanism was the best fit to the greatest number of IDT datasets and had the lowest average absolute error value, thus indicating a superior performance compared to the four existing chemical kinetic mechanisms, well-validated for lower pressure conditions. 1.1\x Energie (DE-2867)14175-2 stw 1.2\x Energieökonomik (DE-2867)18350-4 stw 1.3\x Energietechnik (DE-2867)18353-5 stw 1.4\x Energiemanagement (DE-2867)18349-3 stw 1.5\x Energieforschung (DE-2867)18348-5 stw Hughes, Kevin J. verfasserin aut Pourkashanian, Mohamed verfasserin aut Enthalten in Energy Amsterdam [u.a.] : Elsevier Science, 1976 255 Online-Ressource (DE-627)320597903 (DE-600)2019804-8 (DE-576)116451815 1873-6785 nnns volume:255 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.70 Energie: Allgemeines AR 255 |
allfields_unstemmed |
10.1016/j.energy.2022.124490 doi (DE-627)ELV008175942 (ELSEVIER)S0360-5442(22)01393-7 DE-627 ger DE-627 rda eng 600 DE-600 50.70 bkl Harman-Thomas, James M. verfasserin aut The development of a chemical kinetic mechanism for combustion in supercritical carbon dioxide 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Direct fired supercritical CO2 (sCO2) power cycles allow for the combustion of gaseous fuels under oxyfuel conditions with inherent carbon capture. As the CO2 is captured intrinsically, the efficiency penalty of capture on the overall plant is small, meaning that power plants achieve a similar efficiency to traditional fossil fuel power plants without carbon capture and storage. However, at high pressures and in large dilutions of CO2, combustion mechanisms are poorly understood. Therefore, in this paper sensitivity and quantitative analysis of four established chemical kinetic mechanisms have been employed to determine the most important reactions and the best performing mechanisms over a range of different conditions. CH3O2 chemistry was identified as a pivotal mechanism component for modelling methane combustion above 200 atm. The University of Sheffield (UoS) sCO2 mechanism created in the present work better models the ignition delay time (IDT) of high-pressure combustion in a large dilution of CO2. Quantitative analysis showed that the UoS sCO2 mechanism was the best fit to the greatest number of IDT datasets and had the lowest average absolute error value, thus indicating a superior performance compared to the four existing chemical kinetic mechanisms, well-validated for lower pressure conditions. 1.1\x Energie (DE-2867)14175-2 stw 1.2\x Energieökonomik (DE-2867)18350-4 stw 1.3\x Energietechnik (DE-2867)18353-5 stw 1.4\x Energiemanagement (DE-2867)18349-3 stw 1.5\x Energieforschung (DE-2867)18348-5 stw Hughes, Kevin J. verfasserin aut Pourkashanian, Mohamed verfasserin aut Enthalten in Energy Amsterdam [u.a.] : Elsevier Science, 1976 255 Online-Ressource (DE-627)320597903 (DE-600)2019804-8 (DE-576)116451815 1873-6785 nnns volume:255 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.70 Energie: Allgemeines AR 255 |
allfieldsGer |
10.1016/j.energy.2022.124490 doi (DE-627)ELV008175942 (ELSEVIER)S0360-5442(22)01393-7 DE-627 ger DE-627 rda eng 600 DE-600 50.70 bkl Harman-Thomas, James M. verfasserin aut The development of a chemical kinetic mechanism for combustion in supercritical carbon dioxide 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Direct fired supercritical CO2 (sCO2) power cycles allow for the combustion of gaseous fuels under oxyfuel conditions with inherent carbon capture. As the CO2 is captured intrinsically, the efficiency penalty of capture on the overall plant is small, meaning that power plants achieve a similar efficiency to traditional fossil fuel power plants without carbon capture and storage. However, at high pressures and in large dilutions of CO2, combustion mechanisms are poorly understood. Therefore, in this paper sensitivity and quantitative analysis of four established chemical kinetic mechanisms have been employed to determine the most important reactions and the best performing mechanisms over a range of different conditions. CH3O2 chemistry was identified as a pivotal mechanism component for modelling methane combustion above 200 atm. The University of Sheffield (UoS) sCO2 mechanism created in the present work better models the ignition delay time (IDT) of high-pressure combustion in a large dilution of CO2. Quantitative analysis showed that the UoS sCO2 mechanism was the best fit to the greatest number of IDT datasets and had the lowest average absolute error value, thus indicating a superior performance compared to the four existing chemical kinetic mechanisms, well-validated for lower pressure conditions. 1.1\x Energie (DE-2867)14175-2 stw 1.2\x Energieökonomik (DE-2867)18350-4 stw 1.3\x Energietechnik (DE-2867)18353-5 stw 1.4\x Energiemanagement (DE-2867)18349-3 stw 1.5\x Energieforschung (DE-2867)18348-5 stw Hughes, Kevin J. verfasserin aut Pourkashanian, Mohamed verfasserin aut Enthalten in Energy Amsterdam [u.a.] : Elsevier Science, 1976 255 Online-Ressource (DE-627)320597903 (DE-600)2019804-8 (DE-576)116451815 1873-6785 nnns volume:255 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.70 Energie: Allgemeines AR 255 |
allfieldsSound |
10.1016/j.energy.2022.124490 doi (DE-627)ELV008175942 (ELSEVIER)S0360-5442(22)01393-7 DE-627 ger DE-627 rda eng 600 DE-600 50.70 bkl Harman-Thomas, James M. verfasserin aut The development of a chemical kinetic mechanism for combustion in supercritical carbon dioxide 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Direct fired supercritical CO2 (sCO2) power cycles allow for the combustion of gaseous fuels under oxyfuel conditions with inherent carbon capture. As the CO2 is captured intrinsically, the efficiency penalty of capture on the overall plant is small, meaning that power plants achieve a similar efficiency to traditional fossil fuel power plants without carbon capture and storage. However, at high pressures and in large dilutions of CO2, combustion mechanisms are poorly understood. Therefore, in this paper sensitivity and quantitative analysis of four established chemical kinetic mechanisms have been employed to determine the most important reactions and the best performing mechanisms over a range of different conditions. CH3O2 chemistry was identified as a pivotal mechanism component for modelling methane combustion above 200 atm. The University of Sheffield (UoS) sCO2 mechanism created in the present work better models the ignition delay time (IDT) of high-pressure combustion in a large dilution of CO2. Quantitative analysis showed that the UoS sCO2 mechanism was the best fit to the greatest number of IDT datasets and had the lowest average absolute error value, thus indicating a superior performance compared to the four existing chemical kinetic mechanisms, well-validated for lower pressure conditions. 1.1\x Energie (DE-2867)14175-2 stw 1.2\x Energieökonomik (DE-2867)18350-4 stw 1.3\x Energietechnik (DE-2867)18353-5 stw 1.4\x Energiemanagement (DE-2867)18349-3 stw 1.5\x Energieforschung (DE-2867)18348-5 stw Hughes, Kevin J. verfasserin aut Pourkashanian, Mohamed verfasserin aut Enthalten in Energy Amsterdam [u.a.] : Elsevier Science, 1976 255 Online-Ressource (DE-627)320597903 (DE-600)2019804-8 (DE-576)116451815 1873-6785 nnns volume:255 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.70 Energie: Allgemeines AR 255 |
language |
English |
source |
Enthalten in Energy 255 volume:255 |
sourceStr |
Enthalten in Energy 255 volume:255 |
format_phy_str_mv |
Article |
bklname |
Energie: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Energie Energieökonomik Energietechnik Energiemanagement Energieforschung |
dewey-raw |
600 |
isfreeaccess_bool |
false |
container_title |
Energy |
authorswithroles_txt_mv |
Harman-Thomas, James M. @@aut@@ Hughes, Kevin J. @@aut@@ Pourkashanian, Mohamed @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
320597903 |
dewey-sort |
3600 |
id |
ELV008175942 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV008175942</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524124429.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230508s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.energy.2022.124490</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV008175942</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0360-5442(22)01393-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Harman-Thomas, James M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The development of a chemical kinetic mechanism for combustion in supercritical carbon dioxide</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Direct fired supercritical CO2 (sCO2) power cycles allow for the combustion of gaseous fuels under oxyfuel conditions with inherent carbon capture. As the CO2 is captured intrinsically, the efficiency penalty of capture on the overall plant is small, meaning that power plants achieve a similar efficiency to traditional fossil fuel power plants without carbon capture and storage. However, at high pressures and in large dilutions of CO2, combustion mechanisms are poorly understood. Therefore, in this paper sensitivity and quantitative analysis of four established chemical kinetic mechanisms have been employed to determine the most important reactions and the best performing mechanisms over a range of different conditions. CH3O2 chemistry was identified as a pivotal mechanism component for modelling methane combustion above 200 atm. The University of Sheffield (UoS) sCO2 mechanism created in the present work better models the ignition delay time (IDT) of high-pressure combustion in a large dilution of CO2. Quantitative analysis showed that the UoS sCO2 mechanism was the best fit to the greatest number of IDT datasets and had the lowest average absolute error value, thus indicating a superior performance compared to the four existing chemical kinetic mechanisms, well-validated for lower pressure conditions.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="8">1.1\x</subfield><subfield code="a">Energie</subfield><subfield code="0">(DE-2867)14175-2</subfield><subfield code="2">stw</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="8">1.2\x</subfield><subfield code="a">Energieökonomik</subfield><subfield code="0">(DE-2867)18350-4</subfield><subfield code="2">stw</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="8">1.3\x</subfield><subfield code="a">Energietechnik</subfield><subfield code="0">(DE-2867)18353-5</subfield><subfield code="2">stw</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="8">1.4\x</subfield><subfield code="a">Energiemanagement</subfield><subfield code="0">(DE-2867)18349-3</subfield><subfield code="2">stw</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="8">1.5\x</subfield><subfield code="a">Energieforschung</subfield><subfield code="0">(DE-2867)18348-5</subfield><subfield code="2">stw</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hughes, Kevin J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pourkashanian, Mohamed</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Energy</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1976</subfield><subfield code="g">255</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320597903</subfield><subfield code="w">(DE-600)2019804-8</subfield><subfield code="w">(DE-576)116451815</subfield><subfield code="x">1873-6785</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:255</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.70</subfield><subfield code="j">Energie: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">255</subfield></datafield></record></collection>
|
author |
Harman-Thomas, James M. |
spellingShingle |
Harman-Thomas, James M. ddc 600 bkl 50.70 stw Energie stw Energieökonomik stw Energietechnik stw Energiemanagement stw Energieforschung The development of a chemical kinetic mechanism for combustion in supercritical carbon dioxide |
authorStr |
Harman-Thomas, James M. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320597903 |
format |
electronic Article |
dewey-ones |
600 - Technology |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1873-6785 |
topic_title |
600 DE-600 50.70 bkl The development of a chemical kinetic mechanism for combustion in supercritical carbon dioxide 1.1\x Energie (DE-2867)14175-2 stw 1.2\x Energieökonomik (DE-2867)18350-4 stw 1.3\x Energietechnik (DE-2867)18353-5 stw 1.4\x Energiemanagement (DE-2867)18349-3 stw 1.5\x Energieforschung (DE-2867)18348-5 stw |
topic |
ddc 600 bkl 50.70 stw Energie stw Energieökonomik stw Energietechnik stw Energiemanagement stw Energieforschung |
topic_unstemmed |
ddc 600 bkl 50.70 stw Energie stw Energieökonomik stw Energietechnik stw Energiemanagement stw Energieforschung |
topic_browse |
ddc 600 bkl 50.70 stw Energie stw Energieökonomik stw Energietechnik stw Energiemanagement stw Energieforschung |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Energy |
hierarchy_parent_id |
320597903 |
dewey-tens |
600 - Technology |
hierarchy_top_title |
Energy |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320597903 (DE-600)2019804-8 (DE-576)116451815 |
title |
The development of a chemical kinetic mechanism for combustion in supercritical carbon dioxide |
ctrlnum |
(DE-627)ELV008175942 (ELSEVIER)S0360-5442(22)01393-7 |
title_full |
The development of a chemical kinetic mechanism for combustion in supercritical carbon dioxide |
author_sort |
Harman-Thomas, James M. |
journal |
Energy |
journalStr |
Energy |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
author_browse |
Harman-Thomas, James M. Hughes, Kevin J. Pourkashanian, Mohamed |
container_volume |
255 |
class |
600 DE-600 50.70 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Harman-Thomas, James M. |
doi_str_mv |
10.1016/j.energy.2022.124490 |
normlink |
(DE-2867)14175-2 (DE-2867)18350-4 (DE-2867)18353-5 (DE-2867)18349-3 (DE-2867)18348-5 |
normlink_prefix_str_mv |
(DE-2867)14175-2 (DE-2867)18350-4 (DE-2867)18353-5 (DE-2867)18349-3 (DE-2867)18348-5 |
dewey-full |
600 |
author2-role |
verfasserin |
title_sort |
the development of a chemical kinetic mechanism for combustion in supercritical carbon dioxide |
title_auth |
The development of a chemical kinetic mechanism for combustion in supercritical carbon dioxide |
abstract |
Direct fired supercritical CO2 (sCO2) power cycles allow for the combustion of gaseous fuels under oxyfuel conditions with inherent carbon capture. As the CO2 is captured intrinsically, the efficiency penalty of capture on the overall plant is small, meaning that power plants achieve a similar efficiency to traditional fossil fuel power plants without carbon capture and storage. However, at high pressures and in large dilutions of CO2, combustion mechanisms are poorly understood. Therefore, in this paper sensitivity and quantitative analysis of four established chemical kinetic mechanisms have been employed to determine the most important reactions and the best performing mechanisms over a range of different conditions. CH3O2 chemistry was identified as a pivotal mechanism component for modelling methane combustion above 200 atm. The University of Sheffield (UoS) sCO2 mechanism created in the present work better models the ignition delay time (IDT) of high-pressure combustion in a large dilution of CO2. Quantitative analysis showed that the UoS sCO2 mechanism was the best fit to the greatest number of IDT datasets and had the lowest average absolute error value, thus indicating a superior performance compared to the four existing chemical kinetic mechanisms, well-validated for lower pressure conditions. |
abstractGer |
Direct fired supercritical CO2 (sCO2) power cycles allow for the combustion of gaseous fuels under oxyfuel conditions with inherent carbon capture. As the CO2 is captured intrinsically, the efficiency penalty of capture on the overall plant is small, meaning that power plants achieve a similar efficiency to traditional fossil fuel power plants without carbon capture and storage. However, at high pressures and in large dilutions of CO2, combustion mechanisms are poorly understood. Therefore, in this paper sensitivity and quantitative analysis of four established chemical kinetic mechanisms have been employed to determine the most important reactions and the best performing mechanisms over a range of different conditions. CH3O2 chemistry was identified as a pivotal mechanism component for modelling methane combustion above 200 atm. The University of Sheffield (UoS) sCO2 mechanism created in the present work better models the ignition delay time (IDT) of high-pressure combustion in a large dilution of CO2. Quantitative analysis showed that the UoS sCO2 mechanism was the best fit to the greatest number of IDT datasets and had the lowest average absolute error value, thus indicating a superior performance compared to the four existing chemical kinetic mechanisms, well-validated for lower pressure conditions. |
abstract_unstemmed |
Direct fired supercritical CO2 (sCO2) power cycles allow for the combustion of gaseous fuels under oxyfuel conditions with inherent carbon capture. As the CO2 is captured intrinsically, the efficiency penalty of capture on the overall plant is small, meaning that power plants achieve a similar efficiency to traditional fossil fuel power plants without carbon capture and storage. However, at high pressures and in large dilutions of CO2, combustion mechanisms are poorly understood. Therefore, in this paper sensitivity and quantitative analysis of four established chemical kinetic mechanisms have been employed to determine the most important reactions and the best performing mechanisms over a range of different conditions. CH3O2 chemistry was identified as a pivotal mechanism component for modelling methane combustion above 200 atm. The University of Sheffield (UoS) sCO2 mechanism created in the present work better models the ignition delay time (IDT) of high-pressure combustion in a large dilution of CO2. Quantitative analysis showed that the UoS sCO2 mechanism was the best fit to the greatest number of IDT datasets and had the lowest average absolute error value, thus indicating a superior performance compared to the four existing chemical kinetic mechanisms, well-validated for lower pressure conditions. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
The development of a chemical kinetic mechanism for combustion in supercritical carbon dioxide |
remote_bool |
true |
author2 |
Hughes, Kevin J. Pourkashanian, Mohamed |
author2Str |
Hughes, Kevin J. Pourkashanian, Mohamed |
ppnlink |
320597903 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.energy.2022.124490 |
up_date |
2024-07-06T18:48:15.862Z |
_version_ |
1803856585282289664 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV008175942</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524124429.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230508s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.energy.2022.124490</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV008175942</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0360-5442(22)01393-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.70</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Harman-Thomas, James M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The development of a chemical kinetic mechanism for combustion in supercritical carbon dioxide</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Direct fired supercritical CO2 (sCO2) power cycles allow for the combustion of gaseous fuels under oxyfuel conditions with inherent carbon capture. As the CO2 is captured intrinsically, the efficiency penalty of capture on the overall plant is small, meaning that power plants achieve a similar efficiency to traditional fossil fuel power plants without carbon capture and storage. However, at high pressures and in large dilutions of CO2, combustion mechanisms are poorly understood. Therefore, in this paper sensitivity and quantitative analysis of four established chemical kinetic mechanisms have been employed to determine the most important reactions and the best performing mechanisms over a range of different conditions. CH3O2 chemistry was identified as a pivotal mechanism component for modelling methane combustion above 200 atm. The University of Sheffield (UoS) sCO2 mechanism created in the present work better models the ignition delay time (IDT) of high-pressure combustion in a large dilution of CO2. Quantitative analysis showed that the UoS sCO2 mechanism was the best fit to the greatest number of IDT datasets and had the lowest average absolute error value, thus indicating a superior performance compared to the four existing chemical kinetic mechanisms, well-validated for lower pressure conditions.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="8">1.1\x</subfield><subfield code="a">Energie</subfield><subfield code="0">(DE-2867)14175-2</subfield><subfield code="2">stw</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="8">1.2\x</subfield><subfield code="a">Energieökonomik</subfield><subfield code="0">(DE-2867)18350-4</subfield><subfield code="2">stw</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="8">1.3\x</subfield><subfield code="a">Energietechnik</subfield><subfield code="0">(DE-2867)18353-5</subfield><subfield code="2">stw</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="8">1.4\x</subfield><subfield code="a">Energiemanagement</subfield><subfield code="0">(DE-2867)18349-3</subfield><subfield code="2">stw</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="8">1.5\x</subfield><subfield code="a">Energieforschung</subfield><subfield code="0">(DE-2867)18348-5</subfield><subfield code="2">stw</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hughes, Kevin J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pourkashanian, Mohamed</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Energy</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1976</subfield><subfield code="g">255</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320597903</subfield><subfield code="w">(DE-600)2019804-8</subfield><subfield code="w">(DE-576)116451815</subfield><subfield code="x">1873-6785</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:255</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.70</subfield><subfield code="j">Energie: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">255</subfield></datafield></record></collection>
|
score |
7.4016542 |