Effects of circumferential ribs on suppressing cross-flow and enhancing heat transfer in swirl cooling
This paper proposed a swirl chamber with circumferential ribs to avoid the impacting of cross-flow to jets, thus enhancing the penetration ability of jet and swirl cooling heat transfer intensity. To reveal the mutual effects between jets and cross-flow, the heat transfer features and flow structure...
Ausführliche Beschreibung
Autor*in: |
Xiao, Kun [verfasserIn] He, Juan [verfasserIn] Zheng, Pengfei [verfasserIn] Feng, Zhenping [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: International journal of thermal sciences - Amsterdam [u.a.] : Elsevier Science, 1996, 181 |
---|---|
Übergeordnetes Werk: |
volume:181 |
DOI / URN: |
10.1016/j.ijthermalsci.2022.107785 |
---|
Katalog-ID: |
ELV008199701 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV008199701 | ||
003 | DE-627 | ||
005 | 20230524131603.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230508s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ijthermalsci.2022.107785 |2 doi | |
035 | |a (DE-627)ELV008199701 | ||
035 | |a (ELSEVIER)S1290-0729(22)00315-5 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 620 |q DE-600 |
084 | |a 50.38 |2 bkl | ||
100 | 1 | |a Xiao, Kun |e verfasserin |4 aut | |
245 | 1 | 0 | |a Effects of circumferential ribs on suppressing cross-flow and enhancing heat transfer in swirl cooling |
264 | 1 | |c 2022 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a This paper proposed a swirl chamber with circumferential ribs to avoid the impacting of cross-flow to jets, thus enhancing the penetration ability of jet and swirl cooling heat transfer intensity. To reveal the mutual effects between jets and cross-flow, the heat transfer features and flow structures under different Reynolds numbers of smooth swirl chamber and novel rib-roughened swirl chambers were studied and compared using 3D steady numerical analysis. The influence of rib height ratio on flow and heat transfer features was investigated further. The investigation revealed that for smooth swirl chamber, the cross-flow seriously weakened the heat transfer intensity. In contrast, the novel rib-roughened swirl chamber had an excellent suppression effect on cross-flow, thus greatly enhancing the penetration ability of jet and strengthening the swirl cooling heat transfer intensity. Under the Reynolds number of 10,500, for smooth swirl chamber, the peak number of circumferentially-averaged Nusselt number decreased from 80 to 58 from the first pitch to the last pitch. While for the case that rib height ratio is equal to 0.5, it increased from 80 to 120. In addition, the suppression effects of circumferential ribs on cross-flow increased when the rib height ratio increased, likewise the heat transfer enhancement effect. When the rib height ratio is less than 0.5, the Nusselt number ratio was larger than the friction factor ratio, while when the rib height ratio is larger than 0.5, the Nusselt number ratio was less than the friction factor ratio. The best thermal performance can be achieved when the rib height ratio was 0.5. Besides, the heat transfer enhancement effect of circumferential ribs was more significant under a higher Reynolds number in the studying range. | ||
650 | 4 | |a Swirl cooling | |
650 | 4 | |a Cross-flow | |
650 | 4 | |a Heat transfer enhancement | |
650 | 4 | |a Ribs | |
650 | 4 | |a Blade leading edge | |
700 | 1 | |a He, Juan |e verfasserin |4 aut | |
700 | 1 | |a Zheng, Pengfei |e verfasserin |4 aut | |
700 | 1 | |a Feng, Zhenping |e verfasserin |0 (orcid)0000-0001-9112-310X |4 aut | |
773 | 0 | 8 | |i Enthalten in |t International journal of thermal sciences |d Amsterdam [u.a.] : Elsevier Science, 1996 |g 181 |h Online-Ressource |w (DE-627)320509982 |w (DE-600)2013298-0 |w (DE-576)259271438 |x 1778-4166 |7 nnns |
773 | 1 | 8 | |g volume:181 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 50.38 |j Technische Thermodynamik |
951 | |a AR | ||
952 | |d 181 |
author_variant |
k x kx j h jh p z pz z f zf |
---|---|
matchkey_str |
article:17784166:2022----::fetocrufrnilisnupesncoslwnehniget |
hierarchy_sort_str |
2022 |
bklnumber |
50.38 |
publishDate |
2022 |
allfields |
10.1016/j.ijthermalsci.2022.107785 doi (DE-627)ELV008199701 (ELSEVIER)S1290-0729(22)00315-5 DE-627 ger DE-627 rda eng 530 620 DE-600 50.38 bkl Xiao, Kun verfasserin aut Effects of circumferential ribs on suppressing cross-flow and enhancing heat transfer in swirl cooling 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper proposed a swirl chamber with circumferential ribs to avoid the impacting of cross-flow to jets, thus enhancing the penetration ability of jet and swirl cooling heat transfer intensity. To reveal the mutual effects between jets and cross-flow, the heat transfer features and flow structures under different Reynolds numbers of smooth swirl chamber and novel rib-roughened swirl chambers were studied and compared using 3D steady numerical analysis. The influence of rib height ratio on flow and heat transfer features was investigated further. The investigation revealed that for smooth swirl chamber, the cross-flow seriously weakened the heat transfer intensity. In contrast, the novel rib-roughened swirl chamber had an excellent suppression effect on cross-flow, thus greatly enhancing the penetration ability of jet and strengthening the swirl cooling heat transfer intensity. Under the Reynolds number of 10,500, for smooth swirl chamber, the peak number of circumferentially-averaged Nusselt number decreased from 80 to 58 from the first pitch to the last pitch. While for the case that rib height ratio is equal to 0.5, it increased from 80 to 120. In addition, the suppression effects of circumferential ribs on cross-flow increased when the rib height ratio increased, likewise the heat transfer enhancement effect. When the rib height ratio is less than 0.5, the Nusselt number ratio was larger than the friction factor ratio, while when the rib height ratio is larger than 0.5, the Nusselt number ratio was less than the friction factor ratio. The best thermal performance can be achieved when the rib height ratio was 0.5. Besides, the heat transfer enhancement effect of circumferential ribs was more significant under a higher Reynolds number in the studying range. Swirl cooling Cross-flow Heat transfer enhancement Ribs Blade leading edge He, Juan verfasserin aut Zheng, Pengfei verfasserin aut Feng, Zhenping verfasserin (orcid)0000-0001-9112-310X aut Enthalten in International journal of thermal sciences Amsterdam [u.a.] : Elsevier Science, 1996 181 Online-Ressource (DE-627)320509982 (DE-600)2013298-0 (DE-576)259271438 1778-4166 nnns volume:181 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.38 Technische Thermodynamik AR 181 |
spelling |
10.1016/j.ijthermalsci.2022.107785 doi (DE-627)ELV008199701 (ELSEVIER)S1290-0729(22)00315-5 DE-627 ger DE-627 rda eng 530 620 DE-600 50.38 bkl Xiao, Kun verfasserin aut Effects of circumferential ribs on suppressing cross-flow and enhancing heat transfer in swirl cooling 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper proposed a swirl chamber with circumferential ribs to avoid the impacting of cross-flow to jets, thus enhancing the penetration ability of jet and swirl cooling heat transfer intensity. To reveal the mutual effects between jets and cross-flow, the heat transfer features and flow structures under different Reynolds numbers of smooth swirl chamber and novel rib-roughened swirl chambers were studied and compared using 3D steady numerical analysis. The influence of rib height ratio on flow and heat transfer features was investigated further. The investigation revealed that for smooth swirl chamber, the cross-flow seriously weakened the heat transfer intensity. In contrast, the novel rib-roughened swirl chamber had an excellent suppression effect on cross-flow, thus greatly enhancing the penetration ability of jet and strengthening the swirl cooling heat transfer intensity. Under the Reynolds number of 10,500, for smooth swirl chamber, the peak number of circumferentially-averaged Nusselt number decreased from 80 to 58 from the first pitch to the last pitch. While for the case that rib height ratio is equal to 0.5, it increased from 80 to 120. In addition, the suppression effects of circumferential ribs on cross-flow increased when the rib height ratio increased, likewise the heat transfer enhancement effect. When the rib height ratio is less than 0.5, the Nusselt number ratio was larger than the friction factor ratio, while when the rib height ratio is larger than 0.5, the Nusselt number ratio was less than the friction factor ratio. The best thermal performance can be achieved when the rib height ratio was 0.5. Besides, the heat transfer enhancement effect of circumferential ribs was more significant under a higher Reynolds number in the studying range. Swirl cooling Cross-flow Heat transfer enhancement Ribs Blade leading edge He, Juan verfasserin aut Zheng, Pengfei verfasserin aut Feng, Zhenping verfasserin (orcid)0000-0001-9112-310X aut Enthalten in International journal of thermal sciences Amsterdam [u.a.] : Elsevier Science, 1996 181 Online-Ressource (DE-627)320509982 (DE-600)2013298-0 (DE-576)259271438 1778-4166 nnns volume:181 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.38 Technische Thermodynamik AR 181 |
allfields_unstemmed |
10.1016/j.ijthermalsci.2022.107785 doi (DE-627)ELV008199701 (ELSEVIER)S1290-0729(22)00315-5 DE-627 ger DE-627 rda eng 530 620 DE-600 50.38 bkl Xiao, Kun verfasserin aut Effects of circumferential ribs on suppressing cross-flow and enhancing heat transfer in swirl cooling 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper proposed a swirl chamber with circumferential ribs to avoid the impacting of cross-flow to jets, thus enhancing the penetration ability of jet and swirl cooling heat transfer intensity. To reveal the mutual effects between jets and cross-flow, the heat transfer features and flow structures under different Reynolds numbers of smooth swirl chamber and novel rib-roughened swirl chambers were studied and compared using 3D steady numerical analysis. The influence of rib height ratio on flow and heat transfer features was investigated further. The investigation revealed that for smooth swirl chamber, the cross-flow seriously weakened the heat transfer intensity. In contrast, the novel rib-roughened swirl chamber had an excellent suppression effect on cross-flow, thus greatly enhancing the penetration ability of jet and strengthening the swirl cooling heat transfer intensity. Under the Reynolds number of 10,500, for smooth swirl chamber, the peak number of circumferentially-averaged Nusselt number decreased from 80 to 58 from the first pitch to the last pitch. While for the case that rib height ratio is equal to 0.5, it increased from 80 to 120. In addition, the suppression effects of circumferential ribs on cross-flow increased when the rib height ratio increased, likewise the heat transfer enhancement effect. When the rib height ratio is less than 0.5, the Nusselt number ratio was larger than the friction factor ratio, while when the rib height ratio is larger than 0.5, the Nusselt number ratio was less than the friction factor ratio. The best thermal performance can be achieved when the rib height ratio was 0.5. Besides, the heat transfer enhancement effect of circumferential ribs was more significant under a higher Reynolds number in the studying range. Swirl cooling Cross-flow Heat transfer enhancement Ribs Blade leading edge He, Juan verfasserin aut Zheng, Pengfei verfasserin aut Feng, Zhenping verfasserin (orcid)0000-0001-9112-310X aut Enthalten in International journal of thermal sciences Amsterdam [u.a.] : Elsevier Science, 1996 181 Online-Ressource (DE-627)320509982 (DE-600)2013298-0 (DE-576)259271438 1778-4166 nnns volume:181 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.38 Technische Thermodynamik AR 181 |
allfieldsGer |
10.1016/j.ijthermalsci.2022.107785 doi (DE-627)ELV008199701 (ELSEVIER)S1290-0729(22)00315-5 DE-627 ger DE-627 rda eng 530 620 DE-600 50.38 bkl Xiao, Kun verfasserin aut Effects of circumferential ribs on suppressing cross-flow and enhancing heat transfer in swirl cooling 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper proposed a swirl chamber with circumferential ribs to avoid the impacting of cross-flow to jets, thus enhancing the penetration ability of jet and swirl cooling heat transfer intensity. To reveal the mutual effects between jets and cross-flow, the heat transfer features and flow structures under different Reynolds numbers of smooth swirl chamber and novel rib-roughened swirl chambers were studied and compared using 3D steady numerical analysis. The influence of rib height ratio on flow and heat transfer features was investigated further. The investigation revealed that for smooth swirl chamber, the cross-flow seriously weakened the heat transfer intensity. In contrast, the novel rib-roughened swirl chamber had an excellent suppression effect on cross-flow, thus greatly enhancing the penetration ability of jet and strengthening the swirl cooling heat transfer intensity. Under the Reynolds number of 10,500, for smooth swirl chamber, the peak number of circumferentially-averaged Nusselt number decreased from 80 to 58 from the first pitch to the last pitch. While for the case that rib height ratio is equal to 0.5, it increased from 80 to 120. In addition, the suppression effects of circumferential ribs on cross-flow increased when the rib height ratio increased, likewise the heat transfer enhancement effect. When the rib height ratio is less than 0.5, the Nusselt number ratio was larger than the friction factor ratio, while when the rib height ratio is larger than 0.5, the Nusselt number ratio was less than the friction factor ratio. The best thermal performance can be achieved when the rib height ratio was 0.5. Besides, the heat transfer enhancement effect of circumferential ribs was more significant under a higher Reynolds number in the studying range. Swirl cooling Cross-flow Heat transfer enhancement Ribs Blade leading edge He, Juan verfasserin aut Zheng, Pengfei verfasserin aut Feng, Zhenping verfasserin (orcid)0000-0001-9112-310X aut Enthalten in International journal of thermal sciences Amsterdam [u.a.] : Elsevier Science, 1996 181 Online-Ressource (DE-627)320509982 (DE-600)2013298-0 (DE-576)259271438 1778-4166 nnns volume:181 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.38 Technische Thermodynamik AR 181 |
allfieldsSound |
10.1016/j.ijthermalsci.2022.107785 doi (DE-627)ELV008199701 (ELSEVIER)S1290-0729(22)00315-5 DE-627 ger DE-627 rda eng 530 620 DE-600 50.38 bkl Xiao, Kun verfasserin aut Effects of circumferential ribs on suppressing cross-flow and enhancing heat transfer in swirl cooling 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper proposed a swirl chamber with circumferential ribs to avoid the impacting of cross-flow to jets, thus enhancing the penetration ability of jet and swirl cooling heat transfer intensity. To reveal the mutual effects between jets and cross-flow, the heat transfer features and flow structures under different Reynolds numbers of smooth swirl chamber and novel rib-roughened swirl chambers were studied and compared using 3D steady numerical analysis. The influence of rib height ratio on flow and heat transfer features was investigated further. The investigation revealed that for smooth swirl chamber, the cross-flow seriously weakened the heat transfer intensity. In contrast, the novel rib-roughened swirl chamber had an excellent suppression effect on cross-flow, thus greatly enhancing the penetration ability of jet and strengthening the swirl cooling heat transfer intensity. Under the Reynolds number of 10,500, for smooth swirl chamber, the peak number of circumferentially-averaged Nusselt number decreased from 80 to 58 from the first pitch to the last pitch. While for the case that rib height ratio is equal to 0.5, it increased from 80 to 120. In addition, the suppression effects of circumferential ribs on cross-flow increased when the rib height ratio increased, likewise the heat transfer enhancement effect. When the rib height ratio is less than 0.5, the Nusselt number ratio was larger than the friction factor ratio, while when the rib height ratio is larger than 0.5, the Nusselt number ratio was less than the friction factor ratio. The best thermal performance can be achieved when the rib height ratio was 0.5. Besides, the heat transfer enhancement effect of circumferential ribs was more significant under a higher Reynolds number in the studying range. Swirl cooling Cross-flow Heat transfer enhancement Ribs Blade leading edge He, Juan verfasserin aut Zheng, Pengfei verfasserin aut Feng, Zhenping verfasserin (orcid)0000-0001-9112-310X aut Enthalten in International journal of thermal sciences Amsterdam [u.a.] : Elsevier Science, 1996 181 Online-Ressource (DE-627)320509982 (DE-600)2013298-0 (DE-576)259271438 1778-4166 nnns volume:181 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.38 Technische Thermodynamik AR 181 |
language |
English |
source |
Enthalten in International journal of thermal sciences 181 volume:181 |
sourceStr |
Enthalten in International journal of thermal sciences 181 volume:181 |
format_phy_str_mv |
Article |
bklname |
Technische Thermodynamik |
institution |
findex.gbv.de |
topic_facet |
Swirl cooling Cross-flow Heat transfer enhancement Ribs Blade leading edge |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
International journal of thermal sciences |
authorswithroles_txt_mv |
Xiao, Kun @@aut@@ He, Juan @@aut@@ Zheng, Pengfei @@aut@@ Feng, Zhenping @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
320509982 |
dewey-sort |
3530 |
id |
ELV008199701 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV008199701</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524131603.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230508s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijthermalsci.2022.107785</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV008199701</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1290-0729(22)00315-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Xiao, Kun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Effects of circumferential ribs on suppressing cross-flow and enhancing heat transfer in swirl cooling</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper proposed a swirl chamber with circumferential ribs to avoid the impacting of cross-flow to jets, thus enhancing the penetration ability of jet and swirl cooling heat transfer intensity. To reveal the mutual effects between jets and cross-flow, the heat transfer features and flow structures under different Reynolds numbers of smooth swirl chamber and novel rib-roughened swirl chambers were studied and compared using 3D steady numerical analysis. The influence of rib height ratio on flow and heat transfer features was investigated further. The investigation revealed that for smooth swirl chamber, the cross-flow seriously weakened the heat transfer intensity. In contrast, the novel rib-roughened swirl chamber had an excellent suppression effect on cross-flow, thus greatly enhancing the penetration ability of jet and strengthening the swirl cooling heat transfer intensity. Under the Reynolds number of 10,500, for smooth swirl chamber, the peak number of circumferentially-averaged Nusselt number decreased from 80 to 58 from the first pitch to the last pitch. While for the case that rib height ratio is equal to 0.5, it increased from 80 to 120. In addition, the suppression effects of circumferential ribs on cross-flow increased when the rib height ratio increased, likewise the heat transfer enhancement effect. When the rib height ratio is less than 0.5, the Nusselt number ratio was larger than the friction factor ratio, while when the rib height ratio is larger than 0.5, the Nusselt number ratio was less than the friction factor ratio. The best thermal performance can be achieved when the rib height ratio was 0.5. Besides, the heat transfer enhancement effect of circumferential ribs was more significant under a higher Reynolds number in the studying range.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Swirl cooling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cross-flow</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heat transfer enhancement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ribs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Blade leading edge</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">He, Juan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zheng, Pengfei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Feng, Zhenping</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-9112-310X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of thermal sciences</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1996</subfield><subfield code="g">181</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320509982</subfield><subfield code="w">(DE-600)2013298-0</subfield><subfield code="w">(DE-576)259271438</subfield><subfield code="x">1778-4166</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:181</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.38</subfield><subfield code="j">Technische Thermodynamik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">181</subfield></datafield></record></collection>
|
author |
Xiao, Kun |
spellingShingle |
Xiao, Kun ddc 530 bkl 50.38 misc Swirl cooling misc Cross-flow misc Heat transfer enhancement misc Ribs misc Blade leading edge Effects of circumferential ribs on suppressing cross-flow and enhancing heat transfer in swirl cooling |
authorStr |
Xiao, Kun |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320509982 |
format |
electronic Article |
dewey-ones |
530 - Physics 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1778-4166 |
topic_title |
530 620 DE-600 50.38 bkl Effects of circumferential ribs on suppressing cross-flow and enhancing heat transfer in swirl cooling Swirl cooling Cross-flow Heat transfer enhancement Ribs Blade leading edge |
topic |
ddc 530 bkl 50.38 misc Swirl cooling misc Cross-flow misc Heat transfer enhancement misc Ribs misc Blade leading edge |
topic_unstemmed |
ddc 530 bkl 50.38 misc Swirl cooling misc Cross-flow misc Heat transfer enhancement misc Ribs misc Blade leading edge |
topic_browse |
ddc 530 bkl 50.38 misc Swirl cooling misc Cross-flow misc Heat transfer enhancement misc Ribs misc Blade leading edge |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International journal of thermal sciences |
hierarchy_parent_id |
320509982 |
dewey-tens |
530 - Physics 620 - Engineering |
hierarchy_top_title |
International journal of thermal sciences |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320509982 (DE-600)2013298-0 (DE-576)259271438 |
title |
Effects of circumferential ribs on suppressing cross-flow and enhancing heat transfer in swirl cooling |
ctrlnum |
(DE-627)ELV008199701 (ELSEVIER)S1290-0729(22)00315-5 |
title_full |
Effects of circumferential ribs on suppressing cross-flow and enhancing heat transfer in swirl cooling |
author_sort |
Xiao, Kun |
journal |
International journal of thermal sciences |
journalStr |
International journal of thermal sciences |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
author_browse |
Xiao, Kun He, Juan Zheng, Pengfei Feng, Zhenping |
container_volume |
181 |
class |
530 620 DE-600 50.38 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Xiao, Kun |
doi_str_mv |
10.1016/j.ijthermalsci.2022.107785 |
normlink |
(ORCID)0000-0001-9112-310X |
normlink_prefix_str_mv |
(orcid)0000-0001-9112-310X |
dewey-full |
530 620 |
author2-role |
verfasserin |
title_sort |
effects of circumferential ribs on suppressing cross-flow and enhancing heat transfer in swirl cooling |
title_auth |
Effects of circumferential ribs on suppressing cross-flow and enhancing heat transfer in swirl cooling |
abstract |
This paper proposed a swirl chamber with circumferential ribs to avoid the impacting of cross-flow to jets, thus enhancing the penetration ability of jet and swirl cooling heat transfer intensity. To reveal the mutual effects between jets and cross-flow, the heat transfer features and flow structures under different Reynolds numbers of smooth swirl chamber and novel rib-roughened swirl chambers were studied and compared using 3D steady numerical analysis. The influence of rib height ratio on flow and heat transfer features was investigated further. The investigation revealed that for smooth swirl chamber, the cross-flow seriously weakened the heat transfer intensity. In contrast, the novel rib-roughened swirl chamber had an excellent suppression effect on cross-flow, thus greatly enhancing the penetration ability of jet and strengthening the swirl cooling heat transfer intensity. Under the Reynolds number of 10,500, for smooth swirl chamber, the peak number of circumferentially-averaged Nusselt number decreased from 80 to 58 from the first pitch to the last pitch. While for the case that rib height ratio is equal to 0.5, it increased from 80 to 120. In addition, the suppression effects of circumferential ribs on cross-flow increased when the rib height ratio increased, likewise the heat transfer enhancement effect. When the rib height ratio is less than 0.5, the Nusselt number ratio was larger than the friction factor ratio, while when the rib height ratio is larger than 0.5, the Nusselt number ratio was less than the friction factor ratio. The best thermal performance can be achieved when the rib height ratio was 0.5. Besides, the heat transfer enhancement effect of circumferential ribs was more significant under a higher Reynolds number in the studying range. |
abstractGer |
This paper proposed a swirl chamber with circumferential ribs to avoid the impacting of cross-flow to jets, thus enhancing the penetration ability of jet and swirl cooling heat transfer intensity. To reveal the mutual effects between jets and cross-flow, the heat transfer features and flow structures under different Reynolds numbers of smooth swirl chamber and novel rib-roughened swirl chambers were studied and compared using 3D steady numerical analysis. The influence of rib height ratio on flow and heat transfer features was investigated further. The investigation revealed that for smooth swirl chamber, the cross-flow seriously weakened the heat transfer intensity. In contrast, the novel rib-roughened swirl chamber had an excellent suppression effect on cross-flow, thus greatly enhancing the penetration ability of jet and strengthening the swirl cooling heat transfer intensity. Under the Reynolds number of 10,500, for smooth swirl chamber, the peak number of circumferentially-averaged Nusselt number decreased from 80 to 58 from the first pitch to the last pitch. While for the case that rib height ratio is equal to 0.5, it increased from 80 to 120. In addition, the suppression effects of circumferential ribs on cross-flow increased when the rib height ratio increased, likewise the heat transfer enhancement effect. When the rib height ratio is less than 0.5, the Nusselt number ratio was larger than the friction factor ratio, while when the rib height ratio is larger than 0.5, the Nusselt number ratio was less than the friction factor ratio. The best thermal performance can be achieved when the rib height ratio was 0.5. Besides, the heat transfer enhancement effect of circumferential ribs was more significant under a higher Reynolds number in the studying range. |
abstract_unstemmed |
This paper proposed a swirl chamber with circumferential ribs to avoid the impacting of cross-flow to jets, thus enhancing the penetration ability of jet and swirl cooling heat transfer intensity. To reveal the mutual effects between jets and cross-flow, the heat transfer features and flow structures under different Reynolds numbers of smooth swirl chamber and novel rib-roughened swirl chambers were studied and compared using 3D steady numerical analysis. The influence of rib height ratio on flow and heat transfer features was investigated further. The investigation revealed that for smooth swirl chamber, the cross-flow seriously weakened the heat transfer intensity. In contrast, the novel rib-roughened swirl chamber had an excellent suppression effect on cross-flow, thus greatly enhancing the penetration ability of jet and strengthening the swirl cooling heat transfer intensity. Under the Reynolds number of 10,500, for smooth swirl chamber, the peak number of circumferentially-averaged Nusselt number decreased from 80 to 58 from the first pitch to the last pitch. While for the case that rib height ratio is equal to 0.5, it increased from 80 to 120. In addition, the suppression effects of circumferential ribs on cross-flow increased when the rib height ratio increased, likewise the heat transfer enhancement effect. When the rib height ratio is less than 0.5, the Nusselt number ratio was larger than the friction factor ratio, while when the rib height ratio is larger than 0.5, the Nusselt number ratio was less than the friction factor ratio. The best thermal performance can be achieved when the rib height ratio was 0.5. Besides, the heat transfer enhancement effect of circumferential ribs was more significant under a higher Reynolds number in the studying range. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Effects of circumferential ribs on suppressing cross-flow and enhancing heat transfer in swirl cooling |
remote_bool |
true |
author2 |
He, Juan Zheng, Pengfei Feng, Zhenping |
author2Str |
He, Juan Zheng, Pengfei Feng, Zhenping |
ppnlink |
320509982 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.ijthermalsci.2022.107785 |
up_date |
2024-07-06T18:53:12.096Z |
_version_ |
1803856895905103872 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV008199701</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524131603.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230508s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijthermalsci.2022.107785</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV008199701</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1290-0729(22)00315-5</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Xiao, Kun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Effects of circumferential ribs on suppressing cross-flow and enhancing heat transfer in swirl cooling</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper proposed a swirl chamber with circumferential ribs to avoid the impacting of cross-flow to jets, thus enhancing the penetration ability of jet and swirl cooling heat transfer intensity. To reveal the mutual effects between jets and cross-flow, the heat transfer features and flow structures under different Reynolds numbers of smooth swirl chamber and novel rib-roughened swirl chambers were studied and compared using 3D steady numerical analysis. The influence of rib height ratio on flow and heat transfer features was investigated further. The investigation revealed that for smooth swirl chamber, the cross-flow seriously weakened the heat transfer intensity. In contrast, the novel rib-roughened swirl chamber had an excellent suppression effect on cross-flow, thus greatly enhancing the penetration ability of jet and strengthening the swirl cooling heat transfer intensity. Under the Reynolds number of 10,500, for smooth swirl chamber, the peak number of circumferentially-averaged Nusselt number decreased from 80 to 58 from the first pitch to the last pitch. While for the case that rib height ratio is equal to 0.5, it increased from 80 to 120. In addition, the suppression effects of circumferential ribs on cross-flow increased when the rib height ratio increased, likewise the heat transfer enhancement effect. When the rib height ratio is less than 0.5, the Nusselt number ratio was larger than the friction factor ratio, while when the rib height ratio is larger than 0.5, the Nusselt number ratio was less than the friction factor ratio. The best thermal performance can be achieved when the rib height ratio was 0.5. Besides, the heat transfer enhancement effect of circumferential ribs was more significant under a higher Reynolds number in the studying range.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Swirl cooling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cross-flow</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heat transfer enhancement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ribs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Blade leading edge</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">He, Juan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zheng, Pengfei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Feng, Zhenping</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-9112-310X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of thermal sciences</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1996</subfield><subfield code="g">181</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320509982</subfield><subfield code="w">(DE-600)2013298-0</subfield><subfield code="w">(DE-576)259271438</subfield><subfield code="x">1778-4166</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:181</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.38</subfield><subfield code="j">Technische Thermodynamik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">181</subfield></datafield></record></collection>
|
score |
7.400522 |