Numerical studies on aerodynamic forces and flow control regimes of square cylinder with four surface ribs
Façade ribs attached to building surface are effective in mitigating wind-induced effects. In this paper, LES approach is adopted to explore the impact of four surface ribs on aerodynamic forces and flow structure around a square cylinder with width D. ANSYS Fluent is used to carry out the simulatio...
Ausführliche Beschreibung
Autor*in: |
Liu, Jinyang [verfasserIn] Hui, Yi [verfasserIn] Li, Shouke [verfasserIn] Jiang, Yuan [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Computers & fluids - Amsterdam [u.a.] : Elsevier Science, 1973, 245 |
---|---|
Übergeordnetes Werk: |
volume:245 |
DOI / URN: |
10.1016/j.compfluid.2022.105609 |
---|
Katalog-ID: |
ELV008319340 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV008319340 | ||
003 | DE-627 | ||
005 | 20230524151137.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230508s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.compfluid.2022.105609 |2 doi | |
035 | |a (DE-627)ELV008319340 | ||
035 | |a (ELSEVIER)S0045-7930(22)00215-8 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q DE-600 |
084 | |a 50.33 |2 bkl | ||
084 | |a 38.90 |2 bkl | ||
084 | |a 38.85 |2 bkl | ||
100 | 1 | |a Liu, Jinyang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Numerical studies on aerodynamic forces and flow control regimes of square cylinder with four surface ribs |
264 | 1 | |c 2022 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Façade ribs attached to building surface are effective in mitigating wind-induced effects. In this paper, LES approach is adopted to explore the impact of four surface ribs on aerodynamic forces and flow structure around a square cylinder with width D. ANSYS Fluent is used to carry out the simulations at Re =2.2 × 104, the standard sub-grid scale (SGS) model is used. Simulation results indicate that small vortices formed near ribs can remarkably suppress flow separation, and reduce the shear layer's curvature and periodic flapping. Facade ribs accelerate the vortex shedding process, and clearly reduce the wake vortices’ intensity. The change of the flow field clearly mitigates surface pressure with increase in rib extension depth dr , resulting in a clear reduction in wind forces. When the depth dr is greater than 0.06D, the variation trends of drag coefficient C ¯ D and lift coefficient C’L are relatively complex with change of rib location br . This is due to the significant changes of flow patterns with different rib configurations. The maximum reduction rates of C ¯ D and C’L are 61% and 82%. It is found that extension of rib dr from around 0.08D to 0.1D with distance to the corner br from about 0.16D to 0.2D may show the best performance in reducing wind load. | ||
650 | 4 | |a Aerodynamic modification | |
650 | 4 | |a Vertical ribs | |
650 | 4 | |a LES | |
650 | 4 | |a Flow control regimes | |
650 | 4 | |a Optimal arrangement | |
700 | 1 | |a Hui, Yi |e verfasserin |4 aut | |
700 | 1 | |a Li, Shouke |e verfasserin |4 aut | |
700 | 1 | |a Jiang, Yuan |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Computers & fluids |d Amsterdam [u.a.] : Elsevier Science, 1973 |g 245 |h Online-Ressource |w (DE-627)306654938 |w (DE-600)1499975-4 |w (DE-576)094531250 |7 nnns |
773 | 1 | 8 | |g volume:245 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OPC-GGO | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 50.33 |j Technische Strömungsmechanik |
936 | b | k | |a 38.90 |j Ozeanologie |j Ozeanographie |
936 | b | k | |a 38.85 |j Hydrologie: Allgemeines |
951 | |a AR | ||
952 | |d 245 |
author_variant |
j l jl y h yh s l sl y j yj |
---|---|
matchkey_str |
liujinyanghuiyilishoukejiangyuan:2022----:ueiasuisneoyaifreadlwotorgmsfqaey |
hierarchy_sort_str |
2022 |
bklnumber |
50.33 38.90 38.85 |
publishDate |
2022 |
allfields |
10.1016/j.compfluid.2022.105609 doi (DE-627)ELV008319340 (ELSEVIER)S0045-7930(22)00215-8 DE-627 ger DE-627 rda eng 004 DE-600 50.33 bkl 38.90 bkl 38.85 bkl Liu, Jinyang verfasserin aut Numerical studies on aerodynamic forces and flow control regimes of square cylinder with four surface ribs 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Façade ribs attached to building surface are effective in mitigating wind-induced effects. In this paper, LES approach is adopted to explore the impact of four surface ribs on aerodynamic forces and flow structure around a square cylinder with width D. ANSYS Fluent is used to carry out the simulations at Re =2.2 × 104, the standard sub-grid scale (SGS) model is used. Simulation results indicate that small vortices formed near ribs can remarkably suppress flow separation, and reduce the shear layer's curvature and periodic flapping. Facade ribs accelerate the vortex shedding process, and clearly reduce the wake vortices’ intensity. The change of the flow field clearly mitigates surface pressure with increase in rib extension depth dr , resulting in a clear reduction in wind forces. When the depth dr is greater than 0.06D, the variation trends of drag coefficient C ¯ D and lift coefficient C’L are relatively complex with change of rib location br . This is due to the significant changes of flow patterns with different rib configurations. The maximum reduction rates of C ¯ D and C’L are 61% and 82%. It is found that extension of rib dr from around 0.08D to 0.1D with distance to the corner br from about 0.16D to 0.2D may show the best performance in reducing wind load. Aerodynamic modification Vertical ribs LES Flow control regimes Optimal arrangement Hui, Yi verfasserin aut Li, Shouke verfasserin aut Jiang, Yuan verfasserin aut Enthalten in Computers & fluids Amsterdam [u.a.] : Elsevier Science, 1973 245 Online-Ressource (DE-627)306654938 (DE-600)1499975-4 (DE-576)094531250 nnns volume:245 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.33 Technische Strömungsmechanik 38.90 Ozeanologie Ozeanographie 38.85 Hydrologie: Allgemeines AR 245 |
spelling |
10.1016/j.compfluid.2022.105609 doi (DE-627)ELV008319340 (ELSEVIER)S0045-7930(22)00215-8 DE-627 ger DE-627 rda eng 004 DE-600 50.33 bkl 38.90 bkl 38.85 bkl Liu, Jinyang verfasserin aut Numerical studies on aerodynamic forces and flow control regimes of square cylinder with four surface ribs 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Façade ribs attached to building surface are effective in mitigating wind-induced effects. In this paper, LES approach is adopted to explore the impact of four surface ribs on aerodynamic forces and flow structure around a square cylinder with width D. ANSYS Fluent is used to carry out the simulations at Re =2.2 × 104, the standard sub-grid scale (SGS) model is used. Simulation results indicate that small vortices formed near ribs can remarkably suppress flow separation, and reduce the shear layer's curvature and periodic flapping. Facade ribs accelerate the vortex shedding process, and clearly reduce the wake vortices’ intensity. The change of the flow field clearly mitigates surface pressure with increase in rib extension depth dr , resulting in a clear reduction in wind forces. When the depth dr is greater than 0.06D, the variation trends of drag coefficient C ¯ D and lift coefficient C’L are relatively complex with change of rib location br . This is due to the significant changes of flow patterns with different rib configurations. The maximum reduction rates of C ¯ D and C’L are 61% and 82%. It is found that extension of rib dr from around 0.08D to 0.1D with distance to the corner br from about 0.16D to 0.2D may show the best performance in reducing wind load. Aerodynamic modification Vertical ribs LES Flow control regimes Optimal arrangement Hui, Yi verfasserin aut Li, Shouke verfasserin aut Jiang, Yuan verfasserin aut Enthalten in Computers & fluids Amsterdam [u.a.] : Elsevier Science, 1973 245 Online-Ressource (DE-627)306654938 (DE-600)1499975-4 (DE-576)094531250 nnns volume:245 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.33 Technische Strömungsmechanik 38.90 Ozeanologie Ozeanographie 38.85 Hydrologie: Allgemeines AR 245 |
allfields_unstemmed |
10.1016/j.compfluid.2022.105609 doi (DE-627)ELV008319340 (ELSEVIER)S0045-7930(22)00215-8 DE-627 ger DE-627 rda eng 004 DE-600 50.33 bkl 38.90 bkl 38.85 bkl Liu, Jinyang verfasserin aut Numerical studies on aerodynamic forces and flow control regimes of square cylinder with four surface ribs 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Façade ribs attached to building surface are effective in mitigating wind-induced effects. In this paper, LES approach is adopted to explore the impact of four surface ribs on aerodynamic forces and flow structure around a square cylinder with width D. ANSYS Fluent is used to carry out the simulations at Re =2.2 × 104, the standard sub-grid scale (SGS) model is used. Simulation results indicate that small vortices formed near ribs can remarkably suppress flow separation, and reduce the shear layer's curvature and periodic flapping. Facade ribs accelerate the vortex shedding process, and clearly reduce the wake vortices’ intensity. The change of the flow field clearly mitigates surface pressure with increase in rib extension depth dr , resulting in a clear reduction in wind forces. When the depth dr is greater than 0.06D, the variation trends of drag coefficient C ¯ D and lift coefficient C’L are relatively complex with change of rib location br . This is due to the significant changes of flow patterns with different rib configurations. The maximum reduction rates of C ¯ D and C’L are 61% and 82%. It is found that extension of rib dr from around 0.08D to 0.1D with distance to the corner br from about 0.16D to 0.2D may show the best performance in reducing wind load. Aerodynamic modification Vertical ribs LES Flow control regimes Optimal arrangement Hui, Yi verfasserin aut Li, Shouke verfasserin aut Jiang, Yuan verfasserin aut Enthalten in Computers & fluids Amsterdam [u.a.] : Elsevier Science, 1973 245 Online-Ressource (DE-627)306654938 (DE-600)1499975-4 (DE-576)094531250 nnns volume:245 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.33 Technische Strömungsmechanik 38.90 Ozeanologie Ozeanographie 38.85 Hydrologie: Allgemeines AR 245 |
allfieldsGer |
10.1016/j.compfluid.2022.105609 doi (DE-627)ELV008319340 (ELSEVIER)S0045-7930(22)00215-8 DE-627 ger DE-627 rda eng 004 DE-600 50.33 bkl 38.90 bkl 38.85 bkl Liu, Jinyang verfasserin aut Numerical studies on aerodynamic forces and flow control regimes of square cylinder with four surface ribs 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Façade ribs attached to building surface are effective in mitigating wind-induced effects. In this paper, LES approach is adopted to explore the impact of four surface ribs on aerodynamic forces and flow structure around a square cylinder with width D. ANSYS Fluent is used to carry out the simulations at Re =2.2 × 104, the standard sub-grid scale (SGS) model is used. Simulation results indicate that small vortices formed near ribs can remarkably suppress flow separation, and reduce the shear layer's curvature and periodic flapping. Facade ribs accelerate the vortex shedding process, and clearly reduce the wake vortices’ intensity. The change of the flow field clearly mitigates surface pressure with increase in rib extension depth dr , resulting in a clear reduction in wind forces. When the depth dr is greater than 0.06D, the variation trends of drag coefficient C ¯ D and lift coefficient C’L are relatively complex with change of rib location br . This is due to the significant changes of flow patterns with different rib configurations. The maximum reduction rates of C ¯ D and C’L are 61% and 82%. It is found that extension of rib dr from around 0.08D to 0.1D with distance to the corner br from about 0.16D to 0.2D may show the best performance in reducing wind load. Aerodynamic modification Vertical ribs LES Flow control regimes Optimal arrangement Hui, Yi verfasserin aut Li, Shouke verfasserin aut Jiang, Yuan verfasserin aut Enthalten in Computers & fluids Amsterdam [u.a.] : Elsevier Science, 1973 245 Online-Ressource (DE-627)306654938 (DE-600)1499975-4 (DE-576)094531250 nnns volume:245 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.33 Technische Strömungsmechanik 38.90 Ozeanologie Ozeanographie 38.85 Hydrologie: Allgemeines AR 245 |
allfieldsSound |
10.1016/j.compfluid.2022.105609 doi (DE-627)ELV008319340 (ELSEVIER)S0045-7930(22)00215-8 DE-627 ger DE-627 rda eng 004 DE-600 50.33 bkl 38.90 bkl 38.85 bkl Liu, Jinyang verfasserin aut Numerical studies on aerodynamic forces and flow control regimes of square cylinder with four surface ribs 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Façade ribs attached to building surface are effective in mitigating wind-induced effects. In this paper, LES approach is adopted to explore the impact of four surface ribs on aerodynamic forces and flow structure around a square cylinder with width D. ANSYS Fluent is used to carry out the simulations at Re =2.2 × 104, the standard sub-grid scale (SGS) model is used. Simulation results indicate that small vortices formed near ribs can remarkably suppress flow separation, and reduce the shear layer's curvature and periodic flapping. Facade ribs accelerate the vortex shedding process, and clearly reduce the wake vortices’ intensity. The change of the flow field clearly mitigates surface pressure with increase in rib extension depth dr , resulting in a clear reduction in wind forces. When the depth dr is greater than 0.06D, the variation trends of drag coefficient C ¯ D and lift coefficient C’L are relatively complex with change of rib location br . This is due to the significant changes of flow patterns with different rib configurations. The maximum reduction rates of C ¯ D and C’L are 61% and 82%. It is found that extension of rib dr from around 0.08D to 0.1D with distance to the corner br from about 0.16D to 0.2D may show the best performance in reducing wind load. Aerodynamic modification Vertical ribs LES Flow control regimes Optimal arrangement Hui, Yi verfasserin aut Li, Shouke verfasserin aut Jiang, Yuan verfasserin aut Enthalten in Computers & fluids Amsterdam [u.a.] : Elsevier Science, 1973 245 Online-Ressource (DE-627)306654938 (DE-600)1499975-4 (DE-576)094531250 nnns volume:245 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.33 Technische Strömungsmechanik 38.90 Ozeanologie Ozeanographie 38.85 Hydrologie: Allgemeines AR 245 |
language |
English |
source |
Enthalten in Computers & fluids 245 volume:245 |
sourceStr |
Enthalten in Computers & fluids 245 volume:245 |
format_phy_str_mv |
Article |
bklname |
Technische Strömungsmechanik Ozeanologie Ozeanographie Hydrologie: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Aerodynamic modification Vertical ribs LES Flow control regimes Optimal arrangement |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Computers & fluids |
authorswithroles_txt_mv |
Liu, Jinyang @@aut@@ Hui, Yi @@aut@@ Li, Shouke @@aut@@ Jiang, Yuan @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
306654938 |
dewey-sort |
14 |
id |
ELV008319340 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV008319340</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524151137.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230508s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.compfluid.2022.105609</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV008319340</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0045-7930(22)00215-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.33</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.90</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.85</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Jinyang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerical studies on aerodynamic forces and flow control regimes of square cylinder with four surface ribs</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Façade ribs attached to building surface are effective in mitigating wind-induced effects. In this paper, LES approach is adopted to explore the impact of four surface ribs on aerodynamic forces and flow structure around a square cylinder with width D. ANSYS Fluent is used to carry out the simulations at Re =2.2 × 104, the standard sub-grid scale (SGS) model is used. Simulation results indicate that small vortices formed near ribs can remarkably suppress flow separation, and reduce the shear layer's curvature and periodic flapping. Facade ribs accelerate the vortex shedding process, and clearly reduce the wake vortices’ intensity. The change of the flow field clearly mitigates surface pressure with increase in rib extension depth dr , resulting in a clear reduction in wind forces. When the depth dr is greater than 0.06D, the variation trends of drag coefficient C ¯ D and lift coefficient C’L are relatively complex with change of rib location br . This is due to the significant changes of flow patterns with different rib configurations. The maximum reduction rates of C ¯ D and C’L are 61% and 82%. It is found that extension of rib dr from around 0.08D to 0.1D with distance to the corner br from about 0.16D to 0.2D may show the best performance in reducing wind load.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Aerodynamic modification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vertical ribs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">LES</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flow control regimes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimal arrangement</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hui, Yi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Shouke</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jiang, Yuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Computers & fluids</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1973</subfield><subfield code="g">245</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306654938</subfield><subfield code="w">(DE-600)1499975-4</subfield><subfield code="w">(DE-576)094531250</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:245</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.33</subfield><subfield code="j">Technische Strömungsmechanik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.90</subfield><subfield code="j">Ozeanologie</subfield><subfield code="j">Ozeanographie</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.85</subfield><subfield code="j">Hydrologie: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">245</subfield></datafield></record></collection>
|
author |
Liu, Jinyang |
spellingShingle |
Liu, Jinyang ddc 004 bkl 50.33 bkl 38.90 bkl 38.85 misc Aerodynamic modification misc Vertical ribs misc LES misc Flow control regimes misc Optimal arrangement Numerical studies on aerodynamic forces and flow control regimes of square cylinder with four surface ribs |
authorStr |
Liu, Jinyang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)306654938 |
format |
electronic Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
004 DE-600 50.33 bkl 38.90 bkl 38.85 bkl Numerical studies on aerodynamic forces and flow control regimes of square cylinder with four surface ribs Aerodynamic modification Vertical ribs LES Flow control regimes Optimal arrangement |
topic |
ddc 004 bkl 50.33 bkl 38.90 bkl 38.85 misc Aerodynamic modification misc Vertical ribs misc LES misc Flow control regimes misc Optimal arrangement |
topic_unstemmed |
ddc 004 bkl 50.33 bkl 38.90 bkl 38.85 misc Aerodynamic modification misc Vertical ribs misc LES misc Flow control regimes misc Optimal arrangement |
topic_browse |
ddc 004 bkl 50.33 bkl 38.90 bkl 38.85 misc Aerodynamic modification misc Vertical ribs misc LES misc Flow control regimes misc Optimal arrangement |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Computers & fluids |
hierarchy_parent_id |
306654938 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Computers & fluids |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)306654938 (DE-600)1499975-4 (DE-576)094531250 |
title |
Numerical studies on aerodynamic forces and flow control regimes of square cylinder with four surface ribs |
ctrlnum |
(DE-627)ELV008319340 (ELSEVIER)S0045-7930(22)00215-8 |
title_full |
Numerical studies on aerodynamic forces and flow control regimes of square cylinder with four surface ribs |
author_sort |
Liu, Jinyang |
journal |
Computers & fluids |
journalStr |
Computers & fluids |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
author_browse |
Liu, Jinyang Hui, Yi Li, Shouke Jiang, Yuan |
container_volume |
245 |
class |
004 DE-600 50.33 bkl 38.90 bkl 38.85 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Liu, Jinyang |
doi_str_mv |
10.1016/j.compfluid.2022.105609 |
dewey-full |
004 |
author2-role |
verfasserin |
title_sort |
numerical studies on aerodynamic forces and flow control regimes of square cylinder with four surface ribs |
title_auth |
Numerical studies on aerodynamic forces and flow control regimes of square cylinder with four surface ribs |
abstract |
Façade ribs attached to building surface are effective in mitigating wind-induced effects. In this paper, LES approach is adopted to explore the impact of four surface ribs on aerodynamic forces and flow structure around a square cylinder with width D. ANSYS Fluent is used to carry out the simulations at Re =2.2 × 104, the standard sub-grid scale (SGS) model is used. Simulation results indicate that small vortices formed near ribs can remarkably suppress flow separation, and reduce the shear layer's curvature and periodic flapping. Facade ribs accelerate the vortex shedding process, and clearly reduce the wake vortices’ intensity. The change of the flow field clearly mitigates surface pressure with increase in rib extension depth dr , resulting in a clear reduction in wind forces. When the depth dr is greater than 0.06D, the variation trends of drag coefficient C ¯ D and lift coefficient C’L are relatively complex with change of rib location br . This is due to the significant changes of flow patterns with different rib configurations. The maximum reduction rates of C ¯ D and C’L are 61% and 82%. It is found that extension of rib dr from around 0.08D to 0.1D with distance to the corner br from about 0.16D to 0.2D may show the best performance in reducing wind load. |
abstractGer |
Façade ribs attached to building surface are effective in mitigating wind-induced effects. In this paper, LES approach is adopted to explore the impact of four surface ribs on aerodynamic forces and flow structure around a square cylinder with width D. ANSYS Fluent is used to carry out the simulations at Re =2.2 × 104, the standard sub-grid scale (SGS) model is used. Simulation results indicate that small vortices formed near ribs can remarkably suppress flow separation, and reduce the shear layer's curvature and periodic flapping. Facade ribs accelerate the vortex shedding process, and clearly reduce the wake vortices’ intensity. The change of the flow field clearly mitigates surface pressure with increase in rib extension depth dr , resulting in a clear reduction in wind forces. When the depth dr is greater than 0.06D, the variation trends of drag coefficient C ¯ D and lift coefficient C’L are relatively complex with change of rib location br . This is due to the significant changes of flow patterns with different rib configurations. The maximum reduction rates of C ¯ D and C’L are 61% and 82%. It is found that extension of rib dr from around 0.08D to 0.1D with distance to the corner br from about 0.16D to 0.2D may show the best performance in reducing wind load. |
abstract_unstemmed |
Façade ribs attached to building surface are effective in mitigating wind-induced effects. In this paper, LES approach is adopted to explore the impact of four surface ribs on aerodynamic forces and flow structure around a square cylinder with width D. ANSYS Fluent is used to carry out the simulations at Re =2.2 × 104, the standard sub-grid scale (SGS) model is used. Simulation results indicate that small vortices formed near ribs can remarkably suppress flow separation, and reduce the shear layer's curvature and periodic flapping. Facade ribs accelerate the vortex shedding process, and clearly reduce the wake vortices’ intensity. The change of the flow field clearly mitigates surface pressure with increase in rib extension depth dr , resulting in a clear reduction in wind forces. When the depth dr is greater than 0.06D, the variation trends of drag coefficient C ¯ D and lift coefficient C’L are relatively complex with change of rib location br . This is due to the significant changes of flow patterns with different rib configurations. The maximum reduction rates of C ¯ D and C’L are 61% and 82%. It is found that extension of rib dr from around 0.08D to 0.1D with distance to the corner br from about 0.16D to 0.2D may show the best performance in reducing wind load. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Numerical studies on aerodynamic forces and flow control regimes of square cylinder with four surface ribs |
remote_bool |
true |
author2 |
Hui, Yi Li, Shouke Jiang, Yuan |
author2Str |
Hui, Yi Li, Shouke Jiang, Yuan |
ppnlink |
306654938 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.compfluid.2022.105609 |
up_date |
2024-07-06T19:17:41.273Z |
_version_ |
1803858436448845824 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV008319340</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524151137.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230508s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.compfluid.2022.105609</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV008319340</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0045-7930(22)00215-8</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.33</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.90</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.85</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Jinyang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerical studies on aerodynamic forces and flow control regimes of square cylinder with four surface ribs</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Façade ribs attached to building surface are effective in mitigating wind-induced effects. In this paper, LES approach is adopted to explore the impact of four surface ribs on aerodynamic forces and flow structure around a square cylinder with width D. ANSYS Fluent is used to carry out the simulations at Re =2.2 × 104, the standard sub-grid scale (SGS) model is used. Simulation results indicate that small vortices formed near ribs can remarkably suppress flow separation, and reduce the shear layer's curvature and periodic flapping. Facade ribs accelerate the vortex shedding process, and clearly reduce the wake vortices’ intensity. The change of the flow field clearly mitigates surface pressure with increase in rib extension depth dr , resulting in a clear reduction in wind forces. When the depth dr is greater than 0.06D, the variation trends of drag coefficient C ¯ D and lift coefficient C’L are relatively complex with change of rib location br . This is due to the significant changes of flow patterns with different rib configurations. The maximum reduction rates of C ¯ D and C’L are 61% and 82%. It is found that extension of rib dr from around 0.08D to 0.1D with distance to the corner br from about 0.16D to 0.2D may show the best performance in reducing wind load.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Aerodynamic modification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vertical ribs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">LES</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flow control regimes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimal arrangement</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hui, Yi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Shouke</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jiang, Yuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Computers & fluids</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1973</subfield><subfield code="g">245</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306654938</subfield><subfield code="w">(DE-600)1499975-4</subfield><subfield code="w">(DE-576)094531250</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:245</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.33</subfield><subfield code="j">Technische Strömungsmechanik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.90</subfield><subfield code="j">Ozeanologie</subfield><subfield code="j">Ozeanographie</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.85</subfield><subfield code="j">Hydrologie: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">245</subfield></datafield></record></collection>
|
score |
7.399868 |