New insights into Mn
Impurity ion and isotope partitioning into carbonate minerals provide a window into the molecular processes occurring at the fluid-mineral interface during crystal growth. Here, we employ calcium isotope fractionation together with process-based modeling to elucidate the mechanisms by which two diva...
Ausführliche Beschreibung
Autor*in: |
Mills, Jennifer V. [verfasserIn] Barnhart, Holly A. [verfasserIn] DePaolo, Donald J. [verfasserIn] Lammers, Laura N. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Geochimica et cosmochimica acta - New York, NY [u.a.] : Elsevier, 1950, 334, Seite 338-367 |
---|---|
Übergeordnetes Werk: |
volume:334 ; pages:338-367 |
DOI / URN: |
10.1016/j.gca.2022.06.015 |
---|
Katalog-ID: |
ELV008425531 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV008425531 | ||
003 | DE-627 | ||
005 | 20230524142930.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230508s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.gca.2022.06.015 |2 doi | |
035 | |a (DE-627)ELV008425531 | ||
035 | |a (ELSEVIER)S0016-7037(22)00303-9 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q DE-600 |
084 | |a 38.32 |2 bkl | ||
084 | |a 39.29 |2 bkl | ||
100 | 1 | |a Mills, Jennifer V. |e verfasserin |4 aut | |
245 | 1 | 0 | |a New insights into Mn |
264 | 1 | |c 2022 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Impurity ion and isotope partitioning into carbonate minerals provide a window into the molecular processes occurring at the fluid-mineral interface during crystal growth. Here, we employ calcium isotope fractionation together with process-based modeling to elucidate the mechanisms by which two divalent cations with starkly contrasting compatibility, magnesium and manganese, inhibit calcite growth and incorporate into the mineral lattice. Calcite growth inhibition by Mg2+ is log-linear and KMg is on the order of 0.02–0.03 throughout the range of {Mg2+}/{Ca2+} studied here (0.01–2.6). Mn2+ exhibits much stronger log-linear growth rate inhibition at low Mn2+ concentrations (fluid {Mn2+}/{Ca2+} = 0.001–0.02). Mn2+ is readily incorporated into the calcite lattice to form a calcite-rhodochrosite solid solution, with large partition coefficients (KMn 4.6–15.6) inversely correlated to growth rate. For both Mn2+ and Mg2+, calcium isotope fractionation is found to be invariant with {Me2+}/{Ca2+} despite more than an order of magnitude decline in growth rate. This invariant Δ44/40Ca suggests that the presence of Mn2+ or Mg2+ does not significantly change the relative rates of Ca2+ attachment and detachment at kink sites during growth, indicative of a dominantly kink blocking inhibition mechanism. Because the partitioning behavior dictates that Mn2+ must attach to the surface significantly faster than Ca2+, attachment of Mn2+ is likely to be as a non-monomer species such as an ion pair or possibly a larger polynuclear cluster. We propose that calcite growth rate inhibition by Mn is determined by the kinetics of carbonate attachment at Mn-occupied kink sites, potentially due to slow re-orientation kinetics of carbonate ions that have formed an inner-sphere complex with Mn2+ at the surface but must reorient to incorporate into the lattice. We demonstrate that patterns in Mg2+ partitioning and inhibition behavior are broadly consistent with growth inhibition driven by slow Mg2+-aquo complex dehydration relative to Ca2+ but argue that this mechanism likely represents one endmember scenario, seen in Mg-calcite growth at low supersaturations and net precipitation rates. During growth at faster net precipitation rates, some portion of Mg2+ is likely incorporated as a partially hydrated or otherwise complexed species, but calcite growth remains significantly inhibited by the kinetics of CO3 2− attachment at Mg2+ kink sites. These findings suggest a hybrid classical/nonclassical growth mechanism whereby Ca2+ incorporates largely as a free ion at kink sites while Mn2+ and some portion of Mg2+ are incorporated via non-monomer attachment. This pattern may be generalizable; trace constituent cations with aquo-complex desolvation rates significantly slower than the mineral growth rate preferentially incorporate as a non-monomer species during otherwise classical crystal growth. | ||
650 | 4 | |a Magnesium | |
650 | 4 | |a Manganese | |
650 | 4 | |a Calcite | |
650 | 4 | |a Calcium isotope fractionation | |
650 | 4 | |a Kinetic isotope effect | |
650 | 4 | |a Trace element partitioning | |
650 | 4 | |a Nonclassical growth | |
700 | 1 | |a Barnhart, Holly A. |e verfasserin |0 (orcid)0000-0002-0842-9464 |4 aut | |
700 | 1 | |a DePaolo, Donald J. |e verfasserin |4 aut | |
700 | 1 | |a Lammers, Laura N. |e verfasserin |0 (orcid)0000-0002-8509-7571 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Geochimica et cosmochimica acta |d New York, NY [u.a.] : Elsevier, 1950 |g 334, Seite 338-367 |h Online-Ressource |w (DE-627)300898797 |w (DE-600)1483679-8 |w (DE-576)120883465 |x 0016-7037 |7 nnns |
773 | 1 | 8 | |g volume:334 |g pages:338-367 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OPC-GGO | ||
912 | |a SSG-OPC-AST | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 38.32 |j Geochemie |
936 | b | k | |a 39.29 |j Theoretische Astronomie: Sonstiges |
951 | |a AR | ||
952 | |d 334 |h 338-367 |
author_variant |
j v m jv jvm h a b ha hab d j d dj djd l n l ln lnl |
---|---|
matchkey_str |
article:00167037:2022----::eisgti |
hierarchy_sort_str |
2022 |
bklnumber |
38.32 39.29 |
publishDate |
2022 |
allfields |
10.1016/j.gca.2022.06.015 doi (DE-627)ELV008425531 (ELSEVIER)S0016-7037(22)00303-9 DE-627 ger DE-627 rda eng 550 DE-600 38.32 bkl 39.29 bkl Mills, Jennifer V. verfasserin aut New insights into Mn 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Impurity ion and isotope partitioning into carbonate minerals provide a window into the molecular processes occurring at the fluid-mineral interface during crystal growth. Here, we employ calcium isotope fractionation together with process-based modeling to elucidate the mechanisms by which two divalent cations with starkly contrasting compatibility, magnesium and manganese, inhibit calcite growth and incorporate into the mineral lattice. Calcite growth inhibition by Mg2+ is log-linear and KMg is on the order of 0.02–0.03 throughout the range of {Mg2+}/{Ca2+} studied here (0.01–2.6). Mn2+ exhibits much stronger log-linear growth rate inhibition at low Mn2+ concentrations (fluid {Mn2+}/{Ca2+} = 0.001–0.02). Mn2+ is readily incorporated into the calcite lattice to form a calcite-rhodochrosite solid solution, with large partition coefficients (KMn 4.6–15.6) inversely correlated to growth rate. For both Mn2+ and Mg2+, calcium isotope fractionation is found to be invariant with {Me2+}/{Ca2+} despite more than an order of magnitude decline in growth rate. This invariant Δ44/40Ca suggests that the presence of Mn2+ or Mg2+ does not significantly change the relative rates of Ca2+ attachment and detachment at kink sites during growth, indicative of a dominantly kink blocking inhibition mechanism. Because the partitioning behavior dictates that Mn2+ must attach to the surface significantly faster than Ca2+, attachment of Mn2+ is likely to be as a non-monomer species such as an ion pair or possibly a larger polynuclear cluster. We propose that calcite growth rate inhibition by Mn is determined by the kinetics of carbonate attachment at Mn-occupied kink sites, potentially due to slow re-orientation kinetics of carbonate ions that have formed an inner-sphere complex with Mn2+ at the surface but must reorient to incorporate into the lattice. We demonstrate that patterns in Mg2+ partitioning and inhibition behavior are broadly consistent with growth inhibition driven by slow Mg2+-aquo complex dehydration relative to Ca2+ but argue that this mechanism likely represents one endmember scenario, seen in Mg-calcite growth at low supersaturations and net precipitation rates. During growth at faster net precipitation rates, some portion of Mg2+ is likely incorporated as a partially hydrated or otherwise complexed species, but calcite growth remains significantly inhibited by the kinetics of CO3 2− attachment at Mg2+ kink sites. These findings suggest a hybrid classical/nonclassical growth mechanism whereby Ca2+ incorporates largely as a free ion at kink sites while Mn2+ and some portion of Mg2+ are incorporated via non-monomer attachment. This pattern may be generalizable; trace constituent cations with aquo-complex desolvation rates significantly slower than the mineral growth rate preferentially incorporate as a non-monomer species during otherwise classical crystal growth. Magnesium Manganese Calcite Calcium isotope fractionation Kinetic isotope effect Trace element partitioning Nonclassical growth Barnhart, Holly A. verfasserin (orcid)0000-0002-0842-9464 aut DePaolo, Donald J. verfasserin aut Lammers, Laura N. verfasserin (orcid)0000-0002-8509-7571 aut Enthalten in Geochimica et cosmochimica acta New York, NY [u.a.] : Elsevier, 1950 334, Seite 338-367 Online-Ressource (DE-627)300898797 (DE-600)1483679-8 (DE-576)120883465 0016-7037 nnns volume:334 pages:338-367 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO SSG-OPC-AST GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.32 Geochemie 39.29 Theoretische Astronomie: Sonstiges AR 334 338-367 |
spelling |
10.1016/j.gca.2022.06.015 doi (DE-627)ELV008425531 (ELSEVIER)S0016-7037(22)00303-9 DE-627 ger DE-627 rda eng 550 DE-600 38.32 bkl 39.29 bkl Mills, Jennifer V. verfasserin aut New insights into Mn 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Impurity ion and isotope partitioning into carbonate minerals provide a window into the molecular processes occurring at the fluid-mineral interface during crystal growth. Here, we employ calcium isotope fractionation together with process-based modeling to elucidate the mechanisms by which two divalent cations with starkly contrasting compatibility, magnesium and manganese, inhibit calcite growth and incorporate into the mineral lattice. Calcite growth inhibition by Mg2+ is log-linear and KMg is on the order of 0.02–0.03 throughout the range of {Mg2+}/{Ca2+} studied here (0.01–2.6). Mn2+ exhibits much stronger log-linear growth rate inhibition at low Mn2+ concentrations (fluid {Mn2+}/{Ca2+} = 0.001–0.02). Mn2+ is readily incorporated into the calcite lattice to form a calcite-rhodochrosite solid solution, with large partition coefficients (KMn 4.6–15.6) inversely correlated to growth rate. For both Mn2+ and Mg2+, calcium isotope fractionation is found to be invariant with {Me2+}/{Ca2+} despite more than an order of magnitude decline in growth rate. This invariant Δ44/40Ca suggests that the presence of Mn2+ or Mg2+ does not significantly change the relative rates of Ca2+ attachment and detachment at kink sites during growth, indicative of a dominantly kink blocking inhibition mechanism. Because the partitioning behavior dictates that Mn2+ must attach to the surface significantly faster than Ca2+, attachment of Mn2+ is likely to be as a non-monomer species such as an ion pair or possibly a larger polynuclear cluster. We propose that calcite growth rate inhibition by Mn is determined by the kinetics of carbonate attachment at Mn-occupied kink sites, potentially due to slow re-orientation kinetics of carbonate ions that have formed an inner-sphere complex with Mn2+ at the surface but must reorient to incorporate into the lattice. We demonstrate that patterns in Mg2+ partitioning and inhibition behavior are broadly consistent with growth inhibition driven by slow Mg2+-aquo complex dehydration relative to Ca2+ but argue that this mechanism likely represents one endmember scenario, seen in Mg-calcite growth at low supersaturations and net precipitation rates. During growth at faster net precipitation rates, some portion of Mg2+ is likely incorporated as a partially hydrated or otherwise complexed species, but calcite growth remains significantly inhibited by the kinetics of CO3 2− attachment at Mg2+ kink sites. These findings suggest a hybrid classical/nonclassical growth mechanism whereby Ca2+ incorporates largely as a free ion at kink sites while Mn2+ and some portion of Mg2+ are incorporated via non-monomer attachment. This pattern may be generalizable; trace constituent cations with aquo-complex desolvation rates significantly slower than the mineral growth rate preferentially incorporate as a non-monomer species during otherwise classical crystal growth. Magnesium Manganese Calcite Calcium isotope fractionation Kinetic isotope effect Trace element partitioning Nonclassical growth Barnhart, Holly A. verfasserin (orcid)0000-0002-0842-9464 aut DePaolo, Donald J. verfasserin aut Lammers, Laura N. verfasserin (orcid)0000-0002-8509-7571 aut Enthalten in Geochimica et cosmochimica acta New York, NY [u.a.] : Elsevier, 1950 334, Seite 338-367 Online-Ressource (DE-627)300898797 (DE-600)1483679-8 (DE-576)120883465 0016-7037 nnns volume:334 pages:338-367 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO SSG-OPC-AST GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.32 Geochemie 39.29 Theoretische Astronomie: Sonstiges AR 334 338-367 |
allfields_unstemmed |
10.1016/j.gca.2022.06.015 doi (DE-627)ELV008425531 (ELSEVIER)S0016-7037(22)00303-9 DE-627 ger DE-627 rda eng 550 DE-600 38.32 bkl 39.29 bkl Mills, Jennifer V. verfasserin aut New insights into Mn 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Impurity ion and isotope partitioning into carbonate minerals provide a window into the molecular processes occurring at the fluid-mineral interface during crystal growth. Here, we employ calcium isotope fractionation together with process-based modeling to elucidate the mechanisms by which two divalent cations with starkly contrasting compatibility, magnesium and manganese, inhibit calcite growth and incorporate into the mineral lattice. Calcite growth inhibition by Mg2+ is log-linear and KMg is on the order of 0.02–0.03 throughout the range of {Mg2+}/{Ca2+} studied here (0.01–2.6). Mn2+ exhibits much stronger log-linear growth rate inhibition at low Mn2+ concentrations (fluid {Mn2+}/{Ca2+} = 0.001–0.02). Mn2+ is readily incorporated into the calcite lattice to form a calcite-rhodochrosite solid solution, with large partition coefficients (KMn 4.6–15.6) inversely correlated to growth rate. For both Mn2+ and Mg2+, calcium isotope fractionation is found to be invariant with {Me2+}/{Ca2+} despite more than an order of magnitude decline in growth rate. This invariant Δ44/40Ca suggests that the presence of Mn2+ or Mg2+ does not significantly change the relative rates of Ca2+ attachment and detachment at kink sites during growth, indicative of a dominantly kink blocking inhibition mechanism. Because the partitioning behavior dictates that Mn2+ must attach to the surface significantly faster than Ca2+, attachment of Mn2+ is likely to be as a non-monomer species such as an ion pair or possibly a larger polynuclear cluster. We propose that calcite growth rate inhibition by Mn is determined by the kinetics of carbonate attachment at Mn-occupied kink sites, potentially due to slow re-orientation kinetics of carbonate ions that have formed an inner-sphere complex with Mn2+ at the surface but must reorient to incorporate into the lattice. We demonstrate that patterns in Mg2+ partitioning and inhibition behavior are broadly consistent with growth inhibition driven by slow Mg2+-aquo complex dehydration relative to Ca2+ but argue that this mechanism likely represents one endmember scenario, seen in Mg-calcite growth at low supersaturations and net precipitation rates. During growth at faster net precipitation rates, some portion of Mg2+ is likely incorporated as a partially hydrated or otherwise complexed species, but calcite growth remains significantly inhibited by the kinetics of CO3 2− attachment at Mg2+ kink sites. These findings suggest a hybrid classical/nonclassical growth mechanism whereby Ca2+ incorporates largely as a free ion at kink sites while Mn2+ and some portion of Mg2+ are incorporated via non-monomer attachment. This pattern may be generalizable; trace constituent cations with aquo-complex desolvation rates significantly slower than the mineral growth rate preferentially incorporate as a non-monomer species during otherwise classical crystal growth. Magnesium Manganese Calcite Calcium isotope fractionation Kinetic isotope effect Trace element partitioning Nonclassical growth Barnhart, Holly A. verfasserin (orcid)0000-0002-0842-9464 aut DePaolo, Donald J. verfasserin aut Lammers, Laura N. verfasserin (orcid)0000-0002-8509-7571 aut Enthalten in Geochimica et cosmochimica acta New York, NY [u.a.] : Elsevier, 1950 334, Seite 338-367 Online-Ressource (DE-627)300898797 (DE-600)1483679-8 (DE-576)120883465 0016-7037 nnns volume:334 pages:338-367 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO SSG-OPC-AST GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.32 Geochemie 39.29 Theoretische Astronomie: Sonstiges AR 334 338-367 |
allfieldsGer |
10.1016/j.gca.2022.06.015 doi (DE-627)ELV008425531 (ELSEVIER)S0016-7037(22)00303-9 DE-627 ger DE-627 rda eng 550 DE-600 38.32 bkl 39.29 bkl Mills, Jennifer V. verfasserin aut New insights into Mn 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Impurity ion and isotope partitioning into carbonate minerals provide a window into the molecular processes occurring at the fluid-mineral interface during crystal growth. Here, we employ calcium isotope fractionation together with process-based modeling to elucidate the mechanisms by which two divalent cations with starkly contrasting compatibility, magnesium and manganese, inhibit calcite growth and incorporate into the mineral lattice. Calcite growth inhibition by Mg2+ is log-linear and KMg is on the order of 0.02–0.03 throughout the range of {Mg2+}/{Ca2+} studied here (0.01–2.6). Mn2+ exhibits much stronger log-linear growth rate inhibition at low Mn2+ concentrations (fluid {Mn2+}/{Ca2+} = 0.001–0.02). Mn2+ is readily incorporated into the calcite lattice to form a calcite-rhodochrosite solid solution, with large partition coefficients (KMn 4.6–15.6) inversely correlated to growth rate. For both Mn2+ and Mg2+, calcium isotope fractionation is found to be invariant with {Me2+}/{Ca2+} despite more than an order of magnitude decline in growth rate. This invariant Δ44/40Ca suggests that the presence of Mn2+ or Mg2+ does not significantly change the relative rates of Ca2+ attachment and detachment at kink sites during growth, indicative of a dominantly kink blocking inhibition mechanism. Because the partitioning behavior dictates that Mn2+ must attach to the surface significantly faster than Ca2+, attachment of Mn2+ is likely to be as a non-monomer species such as an ion pair or possibly a larger polynuclear cluster. We propose that calcite growth rate inhibition by Mn is determined by the kinetics of carbonate attachment at Mn-occupied kink sites, potentially due to slow re-orientation kinetics of carbonate ions that have formed an inner-sphere complex with Mn2+ at the surface but must reorient to incorporate into the lattice. We demonstrate that patterns in Mg2+ partitioning and inhibition behavior are broadly consistent with growth inhibition driven by slow Mg2+-aquo complex dehydration relative to Ca2+ but argue that this mechanism likely represents one endmember scenario, seen in Mg-calcite growth at low supersaturations and net precipitation rates. During growth at faster net precipitation rates, some portion of Mg2+ is likely incorporated as a partially hydrated or otherwise complexed species, but calcite growth remains significantly inhibited by the kinetics of CO3 2− attachment at Mg2+ kink sites. These findings suggest a hybrid classical/nonclassical growth mechanism whereby Ca2+ incorporates largely as a free ion at kink sites while Mn2+ and some portion of Mg2+ are incorporated via non-monomer attachment. This pattern may be generalizable; trace constituent cations with aquo-complex desolvation rates significantly slower than the mineral growth rate preferentially incorporate as a non-monomer species during otherwise classical crystal growth. Magnesium Manganese Calcite Calcium isotope fractionation Kinetic isotope effect Trace element partitioning Nonclassical growth Barnhart, Holly A. verfasserin (orcid)0000-0002-0842-9464 aut DePaolo, Donald J. verfasserin aut Lammers, Laura N. verfasserin (orcid)0000-0002-8509-7571 aut Enthalten in Geochimica et cosmochimica acta New York, NY [u.a.] : Elsevier, 1950 334, Seite 338-367 Online-Ressource (DE-627)300898797 (DE-600)1483679-8 (DE-576)120883465 0016-7037 nnns volume:334 pages:338-367 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO SSG-OPC-AST GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.32 Geochemie 39.29 Theoretische Astronomie: Sonstiges AR 334 338-367 |
allfieldsSound |
10.1016/j.gca.2022.06.015 doi (DE-627)ELV008425531 (ELSEVIER)S0016-7037(22)00303-9 DE-627 ger DE-627 rda eng 550 DE-600 38.32 bkl 39.29 bkl Mills, Jennifer V. verfasserin aut New insights into Mn 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Impurity ion and isotope partitioning into carbonate minerals provide a window into the molecular processes occurring at the fluid-mineral interface during crystal growth. Here, we employ calcium isotope fractionation together with process-based modeling to elucidate the mechanisms by which two divalent cations with starkly contrasting compatibility, magnesium and manganese, inhibit calcite growth and incorporate into the mineral lattice. Calcite growth inhibition by Mg2+ is log-linear and KMg is on the order of 0.02–0.03 throughout the range of {Mg2+}/{Ca2+} studied here (0.01–2.6). Mn2+ exhibits much stronger log-linear growth rate inhibition at low Mn2+ concentrations (fluid {Mn2+}/{Ca2+} = 0.001–0.02). Mn2+ is readily incorporated into the calcite lattice to form a calcite-rhodochrosite solid solution, with large partition coefficients (KMn 4.6–15.6) inversely correlated to growth rate. For both Mn2+ and Mg2+, calcium isotope fractionation is found to be invariant with {Me2+}/{Ca2+} despite more than an order of magnitude decline in growth rate. This invariant Δ44/40Ca suggests that the presence of Mn2+ or Mg2+ does not significantly change the relative rates of Ca2+ attachment and detachment at kink sites during growth, indicative of a dominantly kink blocking inhibition mechanism. Because the partitioning behavior dictates that Mn2+ must attach to the surface significantly faster than Ca2+, attachment of Mn2+ is likely to be as a non-monomer species such as an ion pair or possibly a larger polynuclear cluster. We propose that calcite growth rate inhibition by Mn is determined by the kinetics of carbonate attachment at Mn-occupied kink sites, potentially due to slow re-orientation kinetics of carbonate ions that have formed an inner-sphere complex with Mn2+ at the surface but must reorient to incorporate into the lattice. We demonstrate that patterns in Mg2+ partitioning and inhibition behavior are broadly consistent with growth inhibition driven by slow Mg2+-aquo complex dehydration relative to Ca2+ but argue that this mechanism likely represents one endmember scenario, seen in Mg-calcite growth at low supersaturations and net precipitation rates. During growth at faster net precipitation rates, some portion of Mg2+ is likely incorporated as a partially hydrated or otherwise complexed species, but calcite growth remains significantly inhibited by the kinetics of CO3 2− attachment at Mg2+ kink sites. These findings suggest a hybrid classical/nonclassical growth mechanism whereby Ca2+ incorporates largely as a free ion at kink sites while Mn2+ and some portion of Mg2+ are incorporated via non-monomer attachment. This pattern may be generalizable; trace constituent cations with aquo-complex desolvation rates significantly slower than the mineral growth rate preferentially incorporate as a non-monomer species during otherwise classical crystal growth. Magnesium Manganese Calcite Calcium isotope fractionation Kinetic isotope effect Trace element partitioning Nonclassical growth Barnhart, Holly A. verfasserin (orcid)0000-0002-0842-9464 aut DePaolo, Donald J. verfasserin aut Lammers, Laura N. verfasserin (orcid)0000-0002-8509-7571 aut Enthalten in Geochimica et cosmochimica acta New York, NY [u.a.] : Elsevier, 1950 334, Seite 338-367 Online-Ressource (DE-627)300898797 (DE-600)1483679-8 (DE-576)120883465 0016-7037 nnns volume:334 pages:338-367 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO SSG-OPC-AST GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.32 Geochemie 39.29 Theoretische Astronomie: Sonstiges AR 334 338-367 |
language |
English |
source |
Enthalten in Geochimica et cosmochimica acta 334, Seite 338-367 volume:334 pages:338-367 |
sourceStr |
Enthalten in Geochimica et cosmochimica acta 334, Seite 338-367 volume:334 pages:338-367 |
format_phy_str_mv |
Article |
bklname |
Geochemie Theoretische Astronomie: Sonstiges |
institution |
findex.gbv.de |
topic_facet |
Magnesium Manganese Calcite Calcium isotope fractionation Kinetic isotope effect Trace element partitioning Nonclassical growth |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Geochimica et cosmochimica acta |
authorswithroles_txt_mv |
Mills, Jennifer V. @@aut@@ Barnhart, Holly A. @@aut@@ DePaolo, Donald J. @@aut@@ Lammers, Laura N. @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
300898797 |
dewey-sort |
3550 |
id |
ELV008425531 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV008425531</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524142930.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230508s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.gca.2022.06.015</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV008425531</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0016-7037(22)00303-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.32</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">39.29</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mills, Jennifer V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">New insights into Mn</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Impurity ion and isotope partitioning into carbonate minerals provide a window into the molecular processes occurring at the fluid-mineral interface during crystal growth. Here, we employ calcium isotope fractionation together with process-based modeling to elucidate the mechanisms by which two divalent cations with starkly contrasting compatibility, magnesium and manganese, inhibit calcite growth and incorporate into the mineral lattice. Calcite growth inhibition by Mg2+ is log-linear and KMg is on the order of 0.02–0.03 throughout the range of {Mg2+}/{Ca2+} studied here (0.01–2.6). Mn2+ exhibits much stronger log-linear growth rate inhibition at low Mn2+ concentrations (fluid {Mn2+}/{Ca2+} = 0.001–0.02). Mn2+ is readily incorporated into the calcite lattice to form a calcite-rhodochrosite solid solution, with large partition coefficients (KMn 4.6–15.6) inversely correlated to growth rate. For both Mn2+ and Mg2+, calcium isotope fractionation is found to be invariant with {Me2+}/{Ca2+} despite more than an order of magnitude decline in growth rate. This invariant Δ44/40Ca suggests that the presence of Mn2+ or Mg2+ does not significantly change the relative rates of Ca2+ attachment and detachment at kink sites during growth, indicative of a dominantly kink blocking inhibition mechanism. Because the partitioning behavior dictates that Mn2+ must attach to the surface significantly faster than Ca2+, attachment of Mn2+ is likely to be as a non-monomer species such as an ion pair or possibly a larger polynuclear cluster. We propose that calcite growth rate inhibition by Mn is determined by the kinetics of carbonate attachment at Mn-occupied kink sites, potentially due to slow re-orientation kinetics of carbonate ions that have formed an inner-sphere complex with Mn2+ at the surface but must reorient to incorporate into the lattice. We demonstrate that patterns in Mg2+ partitioning and inhibition behavior are broadly consistent with growth inhibition driven by slow Mg2+-aquo complex dehydration relative to Ca2+ but argue that this mechanism likely represents one endmember scenario, seen in Mg-calcite growth at low supersaturations and net precipitation rates. During growth at faster net precipitation rates, some portion of Mg2+ is likely incorporated as a partially hydrated or otherwise complexed species, but calcite growth remains significantly inhibited by the kinetics of CO3 2− attachment at Mg2+ kink sites. These findings suggest a hybrid classical/nonclassical growth mechanism whereby Ca2+ incorporates largely as a free ion at kink sites while Mn2+ and some portion of Mg2+ are incorporated via non-monomer attachment. This pattern may be generalizable; trace constituent cations with aquo-complex desolvation rates significantly slower than the mineral growth rate preferentially incorporate as a non-monomer species during otherwise classical crystal growth.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnesium</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manganese</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calcite</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calcium isotope fractionation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kinetic isotope effect</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Trace element partitioning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonclassical growth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Barnhart, Holly A.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-0842-9464</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">DePaolo, Donald J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lammers, Laura N.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-8509-7571</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Geochimica et cosmochimica acta</subfield><subfield code="d">New York, NY [u.a.] : Elsevier, 1950</subfield><subfield code="g">334, Seite 338-367</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)300898797</subfield><subfield code="w">(DE-600)1483679-8</subfield><subfield code="w">(DE-576)120883465</subfield><subfield code="x">0016-7037</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:334</subfield><subfield code="g">pages:338-367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.32</subfield><subfield code="j">Geochemie</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">39.29</subfield><subfield code="j">Theoretische Astronomie: Sonstiges</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">334</subfield><subfield code="h">338-367</subfield></datafield></record></collection>
|
author |
Mills, Jennifer V. |
spellingShingle |
Mills, Jennifer V. ddc 550 bkl 38.32 bkl 39.29 misc Magnesium misc Manganese misc Calcite misc Calcium isotope fractionation misc Kinetic isotope effect misc Trace element partitioning misc Nonclassical growth New insights into Mn |
authorStr |
Mills, Jennifer V. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)300898797 |
format |
electronic Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0016-7037 |
topic_title |
550 DE-600 38.32 bkl 39.29 bkl New insights into Mn Magnesium Manganese Calcite Calcium isotope fractionation Kinetic isotope effect Trace element partitioning Nonclassical growth |
topic |
ddc 550 bkl 38.32 bkl 39.29 misc Magnesium misc Manganese misc Calcite misc Calcium isotope fractionation misc Kinetic isotope effect misc Trace element partitioning misc Nonclassical growth |
topic_unstemmed |
ddc 550 bkl 38.32 bkl 39.29 misc Magnesium misc Manganese misc Calcite misc Calcium isotope fractionation misc Kinetic isotope effect misc Trace element partitioning misc Nonclassical growth |
topic_browse |
ddc 550 bkl 38.32 bkl 39.29 misc Magnesium misc Manganese misc Calcite misc Calcium isotope fractionation misc Kinetic isotope effect misc Trace element partitioning misc Nonclassical growth |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Geochimica et cosmochimica acta |
hierarchy_parent_id |
300898797 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
Geochimica et cosmochimica acta |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)300898797 (DE-600)1483679-8 (DE-576)120883465 |
title |
New insights into Mn |
ctrlnum |
(DE-627)ELV008425531 (ELSEVIER)S0016-7037(22)00303-9 |
title_full |
New insights into Mn |
author_sort |
Mills, Jennifer V. |
journal |
Geochimica et cosmochimica acta |
journalStr |
Geochimica et cosmochimica acta |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
container_start_page |
338 |
author_browse |
Mills, Jennifer V. Barnhart, Holly A. DePaolo, Donald J. Lammers, Laura N. |
container_volume |
334 |
class |
550 DE-600 38.32 bkl 39.29 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Mills, Jennifer V. |
doi_str_mv |
10.1016/j.gca.2022.06.015 |
normlink |
(ORCID)0000-0002-0842-9464 (ORCID)0000-0002-8509-7571 |
normlink_prefix_str_mv |
(orcid)0000-0002-0842-9464 (orcid)0000-0002-8509-7571 |
dewey-full |
550 |
author2-role |
verfasserin |
title_sort |
new insights into mn |
title_auth |
New insights into Mn |
abstract |
Impurity ion and isotope partitioning into carbonate minerals provide a window into the molecular processes occurring at the fluid-mineral interface during crystal growth. Here, we employ calcium isotope fractionation together with process-based modeling to elucidate the mechanisms by which two divalent cations with starkly contrasting compatibility, magnesium and manganese, inhibit calcite growth and incorporate into the mineral lattice. Calcite growth inhibition by Mg2+ is log-linear and KMg is on the order of 0.02–0.03 throughout the range of {Mg2+}/{Ca2+} studied here (0.01–2.6). Mn2+ exhibits much stronger log-linear growth rate inhibition at low Mn2+ concentrations (fluid {Mn2+}/{Ca2+} = 0.001–0.02). Mn2+ is readily incorporated into the calcite lattice to form a calcite-rhodochrosite solid solution, with large partition coefficients (KMn 4.6–15.6) inversely correlated to growth rate. For both Mn2+ and Mg2+, calcium isotope fractionation is found to be invariant with {Me2+}/{Ca2+} despite more than an order of magnitude decline in growth rate. This invariant Δ44/40Ca suggests that the presence of Mn2+ or Mg2+ does not significantly change the relative rates of Ca2+ attachment and detachment at kink sites during growth, indicative of a dominantly kink blocking inhibition mechanism. Because the partitioning behavior dictates that Mn2+ must attach to the surface significantly faster than Ca2+, attachment of Mn2+ is likely to be as a non-monomer species such as an ion pair or possibly a larger polynuclear cluster. We propose that calcite growth rate inhibition by Mn is determined by the kinetics of carbonate attachment at Mn-occupied kink sites, potentially due to slow re-orientation kinetics of carbonate ions that have formed an inner-sphere complex with Mn2+ at the surface but must reorient to incorporate into the lattice. We demonstrate that patterns in Mg2+ partitioning and inhibition behavior are broadly consistent with growth inhibition driven by slow Mg2+-aquo complex dehydration relative to Ca2+ but argue that this mechanism likely represents one endmember scenario, seen in Mg-calcite growth at low supersaturations and net precipitation rates. During growth at faster net precipitation rates, some portion of Mg2+ is likely incorporated as a partially hydrated or otherwise complexed species, but calcite growth remains significantly inhibited by the kinetics of CO3 2− attachment at Mg2+ kink sites. These findings suggest a hybrid classical/nonclassical growth mechanism whereby Ca2+ incorporates largely as a free ion at kink sites while Mn2+ and some portion of Mg2+ are incorporated via non-monomer attachment. This pattern may be generalizable; trace constituent cations with aquo-complex desolvation rates significantly slower than the mineral growth rate preferentially incorporate as a non-monomer species during otherwise classical crystal growth. |
abstractGer |
Impurity ion and isotope partitioning into carbonate minerals provide a window into the molecular processes occurring at the fluid-mineral interface during crystal growth. Here, we employ calcium isotope fractionation together with process-based modeling to elucidate the mechanisms by which two divalent cations with starkly contrasting compatibility, magnesium and manganese, inhibit calcite growth and incorporate into the mineral lattice. Calcite growth inhibition by Mg2+ is log-linear and KMg is on the order of 0.02–0.03 throughout the range of {Mg2+}/{Ca2+} studied here (0.01–2.6). Mn2+ exhibits much stronger log-linear growth rate inhibition at low Mn2+ concentrations (fluid {Mn2+}/{Ca2+} = 0.001–0.02). Mn2+ is readily incorporated into the calcite lattice to form a calcite-rhodochrosite solid solution, with large partition coefficients (KMn 4.6–15.6) inversely correlated to growth rate. For both Mn2+ and Mg2+, calcium isotope fractionation is found to be invariant with {Me2+}/{Ca2+} despite more than an order of magnitude decline in growth rate. This invariant Δ44/40Ca suggests that the presence of Mn2+ or Mg2+ does not significantly change the relative rates of Ca2+ attachment and detachment at kink sites during growth, indicative of a dominantly kink blocking inhibition mechanism. Because the partitioning behavior dictates that Mn2+ must attach to the surface significantly faster than Ca2+, attachment of Mn2+ is likely to be as a non-monomer species such as an ion pair or possibly a larger polynuclear cluster. We propose that calcite growth rate inhibition by Mn is determined by the kinetics of carbonate attachment at Mn-occupied kink sites, potentially due to slow re-orientation kinetics of carbonate ions that have formed an inner-sphere complex with Mn2+ at the surface but must reorient to incorporate into the lattice. We demonstrate that patterns in Mg2+ partitioning and inhibition behavior are broadly consistent with growth inhibition driven by slow Mg2+-aquo complex dehydration relative to Ca2+ but argue that this mechanism likely represents one endmember scenario, seen in Mg-calcite growth at low supersaturations and net precipitation rates. During growth at faster net precipitation rates, some portion of Mg2+ is likely incorporated as a partially hydrated or otherwise complexed species, but calcite growth remains significantly inhibited by the kinetics of CO3 2− attachment at Mg2+ kink sites. These findings suggest a hybrid classical/nonclassical growth mechanism whereby Ca2+ incorporates largely as a free ion at kink sites while Mn2+ and some portion of Mg2+ are incorporated via non-monomer attachment. This pattern may be generalizable; trace constituent cations with aquo-complex desolvation rates significantly slower than the mineral growth rate preferentially incorporate as a non-monomer species during otherwise classical crystal growth. |
abstract_unstemmed |
Impurity ion and isotope partitioning into carbonate minerals provide a window into the molecular processes occurring at the fluid-mineral interface during crystal growth. Here, we employ calcium isotope fractionation together with process-based modeling to elucidate the mechanisms by which two divalent cations with starkly contrasting compatibility, magnesium and manganese, inhibit calcite growth and incorporate into the mineral lattice. Calcite growth inhibition by Mg2+ is log-linear and KMg is on the order of 0.02–0.03 throughout the range of {Mg2+}/{Ca2+} studied here (0.01–2.6). Mn2+ exhibits much stronger log-linear growth rate inhibition at low Mn2+ concentrations (fluid {Mn2+}/{Ca2+} = 0.001–0.02). Mn2+ is readily incorporated into the calcite lattice to form a calcite-rhodochrosite solid solution, with large partition coefficients (KMn 4.6–15.6) inversely correlated to growth rate. For both Mn2+ and Mg2+, calcium isotope fractionation is found to be invariant with {Me2+}/{Ca2+} despite more than an order of magnitude decline in growth rate. This invariant Δ44/40Ca suggests that the presence of Mn2+ or Mg2+ does not significantly change the relative rates of Ca2+ attachment and detachment at kink sites during growth, indicative of a dominantly kink blocking inhibition mechanism. Because the partitioning behavior dictates that Mn2+ must attach to the surface significantly faster than Ca2+, attachment of Mn2+ is likely to be as a non-monomer species such as an ion pair or possibly a larger polynuclear cluster. We propose that calcite growth rate inhibition by Mn is determined by the kinetics of carbonate attachment at Mn-occupied kink sites, potentially due to slow re-orientation kinetics of carbonate ions that have formed an inner-sphere complex with Mn2+ at the surface but must reorient to incorporate into the lattice. We demonstrate that patterns in Mg2+ partitioning and inhibition behavior are broadly consistent with growth inhibition driven by slow Mg2+-aquo complex dehydration relative to Ca2+ but argue that this mechanism likely represents one endmember scenario, seen in Mg-calcite growth at low supersaturations and net precipitation rates. During growth at faster net precipitation rates, some portion of Mg2+ is likely incorporated as a partially hydrated or otherwise complexed species, but calcite growth remains significantly inhibited by the kinetics of CO3 2− attachment at Mg2+ kink sites. These findings suggest a hybrid classical/nonclassical growth mechanism whereby Ca2+ incorporates largely as a free ion at kink sites while Mn2+ and some portion of Mg2+ are incorporated via non-monomer attachment. This pattern may be generalizable; trace constituent cations with aquo-complex desolvation rates significantly slower than the mineral growth rate preferentially incorporate as a non-monomer species during otherwise classical crystal growth. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO SSG-OPC-AST GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
New insights into Mn |
remote_bool |
true |
author2 |
Barnhart, Holly A. DePaolo, Donald J. Lammers, Laura N. |
author2Str |
Barnhart, Holly A. DePaolo, Donald J. Lammers, Laura N. |
ppnlink |
300898797 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.gca.2022.06.015 |
up_date |
2024-07-06T19:39:41.287Z |
_version_ |
1803859820583845888 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV008425531</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524142930.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230508s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.gca.2022.06.015</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV008425531</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0016-7037(22)00303-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.32</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">39.29</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mills, Jennifer V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">New insights into Mn</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Impurity ion and isotope partitioning into carbonate minerals provide a window into the molecular processes occurring at the fluid-mineral interface during crystal growth. Here, we employ calcium isotope fractionation together with process-based modeling to elucidate the mechanisms by which two divalent cations with starkly contrasting compatibility, magnesium and manganese, inhibit calcite growth and incorporate into the mineral lattice. Calcite growth inhibition by Mg2+ is log-linear and KMg is on the order of 0.02–0.03 throughout the range of {Mg2+}/{Ca2+} studied here (0.01–2.6). Mn2+ exhibits much stronger log-linear growth rate inhibition at low Mn2+ concentrations (fluid {Mn2+}/{Ca2+} = 0.001–0.02). Mn2+ is readily incorporated into the calcite lattice to form a calcite-rhodochrosite solid solution, with large partition coefficients (KMn 4.6–15.6) inversely correlated to growth rate. For both Mn2+ and Mg2+, calcium isotope fractionation is found to be invariant with {Me2+}/{Ca2+} despite more than an order of magnitude decline in growth rate. This invariant Δ44/40Ca suggests that the presence of Mn2+ or Mg2+ does not significantly change the relative rates of Ca2+ attachment and detachment at kink sites during growth, indicative of a dominantly kink blocking inhibition mechanism. Because the partitioning behavior dictates that Mn2+ must attach to the surface significantly faster than Ca2+, attachment of Mn2+ is likely to be as a non-monomer species such as an ion pair or possibly a larger polynuclear cluster. We propose that calcite growth rate inhibition by Mn is determined by the kinetics of carbonate attachment at Mn-occupied kink sites, potentially due to slow re-orientation kinetics of carbonate ions that have formed an inner-sphere complex with Mn2+ at the surface but must reorient to incorporate into the lattice. We demonstrate that patterns in Mg2+ partitioning and inhibition behavior are broadly consistent with growth inhibition driven by slow Mg2+-aquo complex dehydration relative to Ca2+ but argue that this mechanism likely represents one endmember scenario, seen in Mg-calcite growth at low supersaturations and net precipitation rates. During growth at faster net precipitation rates, some portion of Mg2+ is likely incorporated as a partially hydrated or otherwise complexed species, but calcite growth remains significantly inhibited by the kinetics of CO3 2− attachment at Mg2+ kink sites. These findings suggest a hybrid classical/nonclassical growth mechanism whereby Ca2+ incorporates largely as a free ion at kink sites while Mn2+ and some portion of Mg2+ are incorporated via non-monomer attachment. This pattern may be generalizable; trace constituent cations with aquo-complex desolvation rates significantly slower than the mineral growth rate preferentially incorporate as a non-monomer species during otherwise classical crystal growth.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnesium</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manganese</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calcite</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calcium isotope fractionation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kinetic isotope effect</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Trace element partitioning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonclassical growth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Barnhart, Holly A.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-0842-9464</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">DePaolo, Donald J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lammers, Laura N.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-8509-7571</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Geochimica et cosmochimica acta</subfield><subfield code="d">New York, NY [u.a.] : Elsevier, 1950</subfield><subfield code="g">334, Seite 338-367</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)300898797</subfield><subfield code="w">(DE-600)1483679-8</subfield><subfield code="w">(DE-576)120883465</subfield><subfield code="x">0016-7037</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:334</subfield><subfield code="g">pages:338-367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.32</subfield><subfield code="j">Geochemie</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">39.29</subfield><subfield code="j">Theoretische Astronomie: Sonstiges</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">334</subfield><subfield code="h">338-367</subfield></datafield></record></collection>
|
score |
7.4000883 |