Design and experimental research of a novel droplet flow field in proton exchange membrane fuel cell
The flow field plays a vital role in the performance and cost of the proton exchange membrane fuel cell (PEMFC). However, the traditional flow field structure cannot meet the high-power density requirements of PEMFC commercialization due to poor mass transport capacity. In addition, new flow field d...
Ausführliche Beschreibung
Autor*in: |
Meng, Xiangchao [verfasserIn] Ren, Hong [verfasserIn] Hao, Jinkai [verfasserIn] Shao, Zhigang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: The chemical engineering journal - Amsterdam : Elsevier, 1997, 450 |
---|---|
Übergeordnetes Werk: |
volume:450 |
DOI / URN: |
10.1016/j.cej.2022.138276 |
---|
Katalog-ID: |
ELV008457107 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV008457107 | ||
003 | DE-627 | ||
005 | 20230524131824.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230508s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.cej.2022.138276 |2 doi | |
035 | |a (DE-627)ELV008457107 | ||
035 | |a (ELSEVIER)S1385-8947(22)03759-7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | |a 660.05 |q DE-101 | |
082 | 0 | 4 | |a 660 |q DE-101 |
082 | 0 | 4 | |a 660 |q DE-600 |
084 | |a 58.10 |2 bkl | ||
100 | 1 | |a Meng, Xiangchao |e verfasserin |4 aut | |
245 | 1 | 0 | |a Design and experimental research of a novel droplet flow field in proton exchange membrane fuel cell |
264 | 1 | |c 2022 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The flow field plays a vital role in the performance and cost of the proton exchange membrane fuel cell (PEMFC). However, the traditional flow field structure cannot meet the high-power density requirements of PEMFC commercialization due to poor mass transport capacity. In addition, new flow field designs have some problems, such as complicated structure, high pressure drop and high manufacturing cost, which make them unsuitable for large-scale applications. In this paper, a novel droplet flow field (DFF) structure is proposed to further improve cell performance and reduce manufacturing cost. In particular, in-situ electrochemical measurement and printed circuit board segmented fuel cell technology are used to investigate the performance of cells with different DFFs. Based on the experimental results, the mass transport mechanism of DFF and its influence on the cell performance and current density distribution are deeply analyzed. The results indicate that DFFs have excellent oxygen transport and water management capabilities, thus improving the cell performance, especially at high current density. By optimizing the droplet placement direction in DFF, we found that the structure with the gas flow direction in contact with the droplet tail (DFF(a)) has the highest cell performance. Compared with the conventional parallel flow field, the maximum power density of the DFF(a) can be increased by 23.7%. Also, the introduction of droplet structure improves the current density distribution uniformity. Furthermore, DFFs have a lower pressure drop, which reduces the pump parasitic power and increases the PEMFC system net output power. Considering the cell performance, current density distribution uniformity and pressure drop, we think that the DFFs (especially the optimized DFF(a)) are more suitable for the practical application of PEMFC. | ||
650 | 4 | |a Proton exchange membrane fuel cell | |
650 | 4 | |a Droplet flow field | |
650 | 4 | |a Experimental research | |
650 | 4 | |a Current density distribution | |
650 | 4 | |a Oxygen transport | |
700 | 1 | |a Ren, Hong |e verfasserin |4 aut | |
700 | 1 | |a Hao, Jinkai |e verfasserin |4 aut | |
700 | 1 | |a Shao, Zhigang |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t The chemical engineering journal |d Amsterdam : Elsevier, 1997 |g 450 |h Online-Ressource |w (DE-627)320500322 |w (DE-600)2012137-4 |w (DE-576)098330152 |x 1873-3212 |7 nnns |
773 | 1 | 8 | |g volume:450 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 58.10 |j Verfahrenstechnik: Allgemeines |
951 | |a AR | ||
952 | |d 450 | ||
953 | |2 045F |a 660.05 |
author_variant |
x m xm h r hr j h jh z s zs |
---|---|
matchkey_str |
article:18733212:2022----::einneprmnarsacoaoedoltlwilipooe |
hierarchy_sort_str |
2022 |
bklnumber |
58.10 |
publishDate |
2022 |
allfields |
10.1016/j.cej.2022.138276 doi (DE-627)ELV008457107 (ELSEVIER)S1385-8947(22)03759-7 DE-627 ger DE-627 rda eng 660.05 DE-101 660 DE-101 660 DE-600 58.10 bkl Meng, Xiangchao verfasserin aut Design and experimental research of a novel droplet flow field in proton exchange membrane fuel cell 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The flow field plays a vital role in the performance and cost of the proton exchange membrane fuel cell (PEMFC). However, the traditional flow field structure cannot meet the high-power density requirements of PEMFC commercialization due to poor mass transport capacity. In addition, new flow field designs have some problems, such as complicated structure, high pressure drop and high manufacturing cost, which make them unsuitable for large-scale applications. In this paper, a novel droplet flow field (DFF) structure is proposed to further improve cell performance and reduce manufacturing cost. In particular, in-situ electrochemical measurement and printed circuit board segmented fuel cell technology are used to investigate the performance of cells with different DFFs. Based on the experimental results, the mass transport mechanism of DFF and its influence on the cell performance and current density distribution are deeply analyzed. The results indicate that DFFs have excellent oxygen transport and water management capabilities, thus improving the cell performance, especially at high current density. By optimizing the droplet placement direction in DFF, we found that the structure with the gas flow direction in contact with the droplet tail (DFF(a)) has the highest cell performance. Compared with the conventional parallel flow field, the maximum power density of the DFF(a) can be increased by 23.7%. Also, the introduction of droplet structure improves the current density distribution uniformity. Furthermore, DFFs have a lower pressure drop, which reduces the pump parasitic power and increases the PEMFC system net output power. Considering the cell performance, current density distribution uniformity and pressure drop, we think that the DFFs (especially the optimized DFF(a)) are more suitable for the practical application of PEMFC. Proton exchange membrane fuel cell Droplet flow field Experimental research Current density distribution Oxygen transport Ren, Hong verfasserin aut Hao, Jinkai verfasserin aut Shao, Zhigang verfasserin aut Enthalten in The chemical engineering journal Amsterdam : Elsevier, 1997 450 Online-Ressource (DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 1873-3212 nnns volume:450 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 58.10 Verfahrenstechnik: Allgemeines AR 450 045F 660.05 |
spelling |
10.1016/j.cej.2022.138276 doi (DE-627)ELV008457107 (ELSEVIER)S1385-8947(22)03759-7 DE-627 ger DE-627 rda eng 660.05 DE-101 660 DE-101 660 DE-600 58.10 bkl Meng, Xiangchao verfasserin aut Design and experimental research of a novel droplet flow field in proton exchange membrane fuel cell 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The flow field plays a vital role in the performance and cost of the proton exchange membrane fuel cell (PEMFC). However, the traditional flow field structure cannot meet the high-power density requirements of PEMFC commercialization due to poor mass transport capacity. In addition, new flow field designs have some problems, such as complicated structure, high pressure drop and high manufacturing cost, which make them unsuitable for large-scale applications. In this paper, a novel droplet flow field (DFF) structure is proposed to further improve cell performance and reduce manufacturing cost. In particular, in-situ electrochemical measurement and printed circuit board segmented fuel cell technology are used to investigate the performance of cells with different DFFs. Based on the experimental results, the mass transport mechanism of DFF and its influence on the cell performance and current density distribution are deeply analyzed. The results indicate that DFFs have excellent oxygen transport and water management capabilities, thus improving the cell performance, especially at high current density. By optimizing the droplet placement direction in DFF, we found that the structure with the gas flow direction in contact with the droplet tail (DFF(a)) has the highest cell performance. Compared with the conventional parallel flow field, the maximum power density of the DFF(a) can be increased by 23.7%. Also, the introduction of droplet structure improves the current density distribution uniformity. Furthermore, DFFs have a lower pressure drop, which reduces the pump parasitic power and increases the PEMFC system net output power. Considering the cell performance, current density distribution uniformity and pressure drop, we think that the DFFs (especially the optimized DFF(a)) are more suitable for the practical application of PEMFC. Proton exchange membrane fuel cell Droplet flow field Experimental research Current density distribution Oxygen transport Ren, Hong verfasserin aut Hao, Jinkai verfasserin aut Shao, Zhigang verfasserin aut Enthalten in The chemical engineering journal Amsterdam : Elsevier, 1997 450 Online-Ressource (DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 1873-3212 nnns volume:450 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 58.10 Verfahrenstechnik: Allgemeines AR 450 045F 660.05 |
allfields_unstemmed |
10.1016/j.cej.2022.138276 doi (DE-627)ELV008457107 (ELSEVIER)S1385-8947(22)03759-7 DE-627 ger DE-627 rda eng 660.05 DE-101 660 DE-101 660 DE-600 58.10 bkl Meng, Xiangchao verfasserin aut Design and experimental research of a novel droplet flow field in proton exchange membrane fuel cell 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The flow field plays a vital role in the performance and cost of the proton exchange membrane fuel cell (PEMFC). However, the traditional flow field structure cannot meet the high-power density requirements of PEMFC commercialization due to poor mass transport capacity. In addition, new flow field designs have some problems, such as complicated structure, high pressure drop and high manufacturing cost, which make them unsuitable for large-scale applications. In this paper, a novel droplet flow field (DFF) structure is proposed to further improve cell performance and reduce manufacturing cost. In particular, in-situ electrochemical measurement and printed circuit board segmented fuel cell technology are used to investigate the performance of cells with different DFFs. Based on the experimental results, the mass transport mechanism of DFF and its influence on the cell performance and current density distribution are deeply analyzed. The results indicate that DFFs have excellent oxygen transport and water management capabilities, thus improving the cell performance, especially at high current density. By optimizing the droplet placement direction in DFF, we found that the structure with the gas flow direction in contact with the droplet tail (DFF(a)) has the highest cell performance. Compared with the conventional parallel flow field, the maximum power density of the DFF(a) can be increased by 23.7%. Also, the introduction of droplet structure improves the current density distribution uniformity. Furthermore, DFFs have a lower pressure drop, which reduces the pump parasitic power and increases the PEMFC system net output power. Considering the cell performance, current density distribution uniformity and pressure drop, we think that the DFFs (especially the optimized DFF(a)) are more suitable for the practical application of PEMFC. Proton exchange membrane fuel cell Droplet flow field Experimental research Current density distribution Oxygen transport Ren, Hong verfasserin aut Hao, Jinkai verfasserin aut Shao, Zhigang verfasserin aut Enthalten in The chemical engineering journal Amsterdam : Elsevier, 1997 450 Online-Ressource (DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 1873-3212 nnns volume:450 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 58.10 Verfahrenstechnik: Allgemeines AR 450 045F 660.05 |
allfieldsGer |
10.1016/j.cej.2022.138276 doi (DE-627)ELV008457107 (ELSEVIER)S1385-8947(22)03759-7 DE-627 ger DE-627 rda eng 660.05 DE-101 660 DE-101 660 DE-600 58.10 bkl Meng, Xiangchao verfasserin aut Design and experimental research of a novel droplet flow field in proton exchange membrane fuel cell 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The flow field plays a vital role in the performance and cost of the proton exchange membrane fuel cell (PEMFC). However, the traditional flow field structure cannot meet the high-power density requirements of PEMFC commercialization due to poor mass transport capacity. In addition, new flow field designs have some problems, such as complicated structure, high pressure drop and high manufacturing cost, which make them unsuitable for large-scale applications. In this paper, a novel droplet flow field (DFF) structure is proposed to further improve cell performance and reduce manufacturing cost. In particular, in-situ electrochemical measurement and printed circuit board segmented fuel cell technology are used to investigate the performance of cells with different DFFs. Based on the experimental results, the mass transport mechanism of DFF and its influence on the cell performance and current density distribution are deeply analyzed. The results indicate that DFFs have excellent oxygen transport and water management capabilities, thus improving the cell performance, especially at high current density. By optimizing the droplet placement direction in DFF, we found that the structure with the gas flow direction in contact with the droplet tail (DFF(a)) has the highest cell performance. Compared with the conventional parallel flow field, the maximum power density of the DFF(a) can be increased by 23.7%. Also, the introduction of droplet structure improves the current density distribution uniformity. Furthermore, DFFs have a lower pressure drop, which reduces the pump parasitic power and increases the PEMFC system net output power. Considering the cell performance, current density distribution uniformity and pressure drop, we think that the DFFs (especially the optimized DFF(a)) are more suitable for the practical application of PEMFC. Proton exchange membrane fuel cell Droplet flow field Experimental research Current density distribution Oxygen transport Ren, Hong verfasserin aut Hao, Jinkai verfasserin aut Shao, Zhigang verfasserin aut Enthalten in The chemical engineering journal Amsterdam : Elsevier, 1997 450 Online-Ressource (DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 1873-3212 nnns volume:450 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 58.10 Verfahrenstechnik: Allgemeines AR 450 045F 660.05 |
allfieldsSound |
10.1016/j.cej.2022.138276 doi (DE-627)ELV008457107 (ELSEVIER)S1385-8947(22)03759-7 DE-627 ger DE-627 rda eng 660.05 DE-101 660 DE-101 660 DE-600 58.10 bkl Meng, Xiangchao verfasserin aut Design and experimental research of a novel droplet flow field in proton exchange membrane fuel cell 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The flow field plays a vital role in the performance and cost of the proton exchange membrane fuel cell (PEMFC). However, the traditional flow field structure cannot meet the high-power density requirements of PEMFC commercialization due to poor mass transport capacity. In addition, new flow field designs have some problems, such as complicated structure, high pressure drop and high manufacturing cost, which make them unsuitable for large-scale applications. In this paper, a novel droplet flow field (DFF) structure is proposed to further improve cell performance and reduce manufacturing cost. In particular, in-situ electrochemical measurement and printed circuit board segmented fuel cell technology are used to investigate the performance of cells with different DFFs. Based on the experimental results, the mass transport mechanism of DFF and its influence on the cell performance and current density distribution are deeply analyzed. The results indicate that DFFs have excellent oxygen transport and water management capabilities, thus improving the cell performance, especially at high current density. By optimizing the droplet placement direction in DFF, we found that the structure with the gas flow direction in contact with the droplet tail (DFF(a)) has the highest cell performance. Compared with the conventional parallel flow field, the maximum power density of the DFF(a) can be increased by 23.7%. Also, the introduction of droplet structure improves the current density distribution uniformity. Furthermore, DFFs have a lower pressure drop, which reduces the pump parasitic power and increases the PEMFC system net output power. Considering the cell performance, current density distribution uniformity and pressure drop, we think that the DFFs (especially the optimized DFF(a)) are more suitable for the practical application of PEMFC. Proton exchange membrane fuel cell Droplet flow field Experimental research Current density distribution Oxygen transport Ren, Hong verfasserin aut Hao, Jinkai verfasserin aut Shao, Zhigang verfasserin aut Enthalten in The chemical engineering journal Amsterdam : Elsevier, 1997 450 Online-Ressource (DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 1873-3212 nnns volume:450 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 58.10 Verfahrenstechnik: Allgemeines AR 450 045F 660.05 |
language |
English |
source |
Enthalten in The chemical engineering journal 450 volume:450 |
sourceStr |
Enthalten in The chemical engineering journal 450 volume:450 |
format_phy_str_mv |
Article |
bklname |
Verfahrenstechnik: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Proton exchange membrane fuel cell Droplet flow field Experimental research Current density distribution Oxygen transport |
dewey-raw |
660.05 |
isfreeaccess_bool |
false |
container_title |
The chemical engineering journal |
authorswithroles_txt_mv |
Meng, Xiangchao @@aut@@ Ren, Hong @@aut@@ Hao, Jinkai @@aut@@ Shao, Zhigang @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
320500322 |
dewey-sort |
3660.05 |
id |
ELV008457107 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV008457107</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524131824.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230508s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.cej.2022.138276</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV008457107</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1385-8947(22)03759-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">660.05</subfield><subfield code="q">DE-101</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">DE-101</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.10</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Meng, Xiangchao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Design and experimental research of a novel droplet flow field in proton exchange membrane fuel cell</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The flow field plays a vital role in the performance and cost of the proton exchange membrane fuel cell (PEMFC). However, the traditional flow field structure cannot meet the high-power density requirements of PEMFC commercialization due to poor mass transport capacity. In addition, new flow field designs have some problems, such as complicated structure, high pressure drop and high manufacturing cost, which make them unsuitable for large-scale applications. In this paper, a novel droplet flow field (DFF) structure is proposed to further improve cell performance and reduce manufacturing cost. In particular, in-situ electrochemical measurement and printed circuit board segmented fuel cell technology are used to investigate the performance of cells with different DFFs. Based on the experimental results, the mass transport mechanism of DFF and its influence on the cell performance and current density distribution are deeply analyzed. The results indicate that DFFs have excellent oxygen transport and water management capabilities, thus improving the cell performance, especially at high current density. By optimizing the droplet placement direction in DFF, we found that the structure with the gas flow direction in contact with the droplet tail (DFF(a)) has the highest cell performance. Compared with the conventional parallel flow field, the maximum power density of the DFF(a) can be increased by 23.7%. Also, the introduction of droplet structure improves the current density distribution uniformity. Furthermore, DFFs have a lower pressure drop, which reduces the pump parasitic power and increases the PEMFC system net output power. Considering the cell performance, current density distribution uniformity and pressure drop, we think that the DFFs (especially the optimized DFF(a)) are more suitable for the practical application of PEMFC.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Proton exchange membrane fuel cell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Droplet flow field</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Experimental research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Current density distribution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Oxygen transport</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ren, Hong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hao, Jinkai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shao, Zhigang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The chemical engineering journal</subfield><subfield code="d">Amsterdam : Elsevier, 1997</subfield><subfield code="g">450</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320500322</subfield><subfield code="w">(DE-600)2012137-4</subfield><subfield code="w">(DE-576)098330152</subfield><subfield code="x">1873-3212</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:450</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.10</subfield><subfield code="j">Verfahrenstechnik: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">450</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">660.05</subfield></datafield></record></collection>
|
author |
Meng, Xiangchao |
spellingShingle |
Meng, Xiangchao ddc 660.05 ddc 660 bkl 58.10 misc Proton exchange membrane fuel cell misc Droplet flow field misc Experimental research misc Current density distribution misc Oxygen transport Design and experimental research of a novel droplet flow field in proton exchange membrane fuel cell |
authorStr |
Meng, Xiangchao |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320500322 |
format |
electronic Article |
dewey-ones |
660 - Chemical engineering |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1873-3212 |
topic_title |
660.05 DE-101 660 DE-101 660 DE-600 58.10 bkl Design and experimental research of a novel droplet flow field in proton exchange membrane fuel cell Proton exchange membrane fuel cell Droplet flow field Experimental research Current density distribution Oxygen transport |
topic |
ddc 660.05 ddc 660 bkl 58.10 misc Proton exchange membrane fuel cell misc Droplet flow field misc Experimental research misc Current density distribution misc Oxygen transport |
topic_unstemmed |
ddc 660.05 ddc 660 bkl 58.10 misc Proton exchange membrane fuel cell misc Droplet flow field misc Experimental research misc Current density distribution misc Oxygen transport |
topic_browse |
ddc 660.05 ddc 660 bkl 58.10 misc Proton exchange membrane fuel cell misc Droplet flow field misc Experimental research misc Current density distribution misc Oxygen transport |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
The chemical engineering journal |
hierarchy_parent_id |
320500322 |
dewey-tens |
660 - Chemical engineering |
hierarchy_top_title |
The chemical engineering journal |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 |
title |
Design and experimental research of a novel droplet flow field in proton exchange membrane fuel cell |
ctrlnum |
(DE-627)ELV008457107 (ELSEVIER)S1385-8947(22)03759-7 |
title_full |
Design and experimental research of a novel droplet flow field in proton exchange membrane fuel cell |
author_sort |
Meng, Xiangchao |
journal |
The chemical engineering journal |
journalStr |
The chemical engineering journal |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
author_browse |
Meng, Xiangchao Ren, Hong Hao, Jinkai Shao, Zhigang |
container_volume |
450 |
class |
660.05 DE-101 660 DE-101 660 DE-600 58.10 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Meng, Xiangchao |
doi_str_mv |
10.1016/j.cej.2022.138276 |
dewey-full |
660.05 660 |
author2-role |
verfasserin |
title_sort |
design and experimental research of a novel droplet flow field in proton exchange membrane fuel cell |
title_auth |
Design and experimental research of a novel droplet flow field in proton exchange membrane fuel cell |
abstract |
The flow field plays a vital role in the performance and cost of the proton exchange membrane fuel cell (PEMFC). However, the traditional flow field structure cannot meet the high-power density requirements of PEMFC commercialization due to poor mass transport capacity. In addition, new flow field designs have some problems, such as complicated structure, high pressure drop and high manufacturing cost, which make them unsuitable for large-scale applications. In this paper, a novel droplet flow field (DFF) structure is proposed to further improve cell performance and reduce manufacturing cost. In particular, in-situ electrochemical measurement and printed circuit board segmented fuel cell technology are used to investigate the performance of cells with different DFFs. Based on the experimental results, the mass transport mechanism of DFF and its influence on the cell performance and current density distribution are deeply analyzed. The results indicate that DFFs have excellent oxygen transport and water management capabilities, thus improving the cell performance, especially at high current density. By optimizing the droplet placement direction in DFF, we found that the structure with the gas flow direction in contact with the droplet tail (DFF(a)) has the highest cell performance. Compared with the conventional parallel flow field, the maximum power density of the DFF(a) can be increased by 23.7%. Also, the introduction of droplet structure improves the current density distribution uniformity. Furthermore, DFFs have a lower pressure drop, which reduces the pump parasitic power and increases the PEMFC system net output power. Considering the cell performance, current density distribution uniformity and pressure drop, we think that the DFFs (especially the optimized DFF(a)) are more suitable for the practical application of PEMFC. |
abstractGer |
The flow field plays a vital role in the performance and cost of the proton exchange membrane fuel cell (PEMFC). However, the traditional flow field structure cannot meet the high-power density requirements of PEMFC commercialization due to poor mass transport capacity. In addition, new flow field designs have some problems, such as complicated structure, high pressure drop and high manufacturing cost, which make them unsuitable for large-scale applications. In this paper, a novel droplet flow field (DFF) structure is proposed to further improve cell performance and reduce manufacturing cost. In particular, in-situ electrochemical measurement and printed circuit board segmented fuel cell technology are used to investigate the performance of cells with different DFFs. Based on the experimental results, the mass transport mechanism of DFF and its influence on the cell performance and current density distribution are deeply analyzed. The results indicate that DFFs have excellent oxygen transport and water management capabilities, thus improving the cell performance, especially at high current density. By optimizing the droplet placement direction in DFF, we found that the structure with the gas flow direction in contact with the droplet tail (DFF(a)) has the highest cell performance. Compared with the conventional parallel flow field, the maximum power density of the DFF(a) can be increased by 23.7%. Also, the introduction of droplet structure improves the current density distribution uniformity. Furthermore, DFFs have a lower pressure drop, which reduces the pump parasitic power and increases the PEMFC system net output power. Considering the cell performance, current density distribution uniformity and pressure drop, we think that the DFFs (especially the optimized DFF(a)) are more suitable for the practical application of PEMFC. |
abstract_unstemmed |
The flow field plays a vital role in the performance and cost of the proton exchange membrane fuel cell (PEMFC). However, the traditional flow field structure cannot meet the high-power density requirements of PEMFC commercialization due to poor mass transport capacity. In addition, new flow field designs have some problems, such as complicated structure, high pressure drop and high manufacturing cost, which make them unsuitable for large-scale applications. In this paper, a novel droplet flow field (DFF) structure is proposed to further improve cell performance and reduce manufacturing cost. In particular, in-situ electrochemical measurement and printed circuit board segmented fuel cell technology are used to investigate the performance of cells with different DFFs. Based on the experimental results, the mass transport mechanism of DFF and its influence on the cell performance and current density distribution are deeply analyzed. The results indicate that DFFs have excellent oxygen transport and water management capabilities, thus improving the cell performance, especially at high current density. By optimizing the droplet placement direction in DFF, we found that the structure with the gas flow direction in contact with the droplet tail (DFF(a)) has the highest cell performance. Compared with the conventional parallel flow field, the maximum power density of the DFF(a) can be increased by 23.7%. Also, the introduction of droplet structure improves the current density distribution uniformity. Furthermore, DFFs have a lower pressure drop, which reduces the pump parasitic power and increases the PEMFC system net output power. Considering the cell performance, current density distribution uniformity and pressure drop, we think that the DFFs (especially the optimized DFF(a)) are more suitable for the practical application of PEMFC. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Design and experimental research of a novel droplet flow field in proton exchange membrane fuel cell |
remote_bool |
true |
author2 |
Ren, Hong Hao, Jinkai Shao, Zhigang |
author2Str |
Ren, Hong Hao, Jinkai Shao, Zhigang |
ppnlink |
320500322 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.cej.2022.138276 |
up_date |
2024-07-06T19:45:48.491Z |
_version_ |
1803860205626195968 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV008457107</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524131824.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230508s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.cej.2022.138276</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV008457107</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1385-8947(22)03759-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">660.05</subfield><subfield code="q">DE-101</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">DE-101</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.10</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Meng, Xiangchao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Design and experimental research of a novel droplet flow field in proton exchange membrane fuel cell</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The flow field plays a vital role in the performance and cost of the proton exchange membrane fuel cell (PEMFC). However, the traditional flow field structure cannot meet the high-power density requirements of PEMFC commercialization due to poor mass transport capacity. In addition, new flow field designs have some problems, such as complicated structure, high pressure drop and high manufacturing cost, which make them unsuitable for large-scale applications. In this paper, a novel droplet flow field (DFF) structure is proposed to further improve cell performance and reduce manufacturing cost. In particular, in-situ electrochemical measurement and printed circuit board segmented fuel cell technology are used to investigate the performance of cells with different DFFs. Based on the experimental results, the mass transport mechanism of DFF and its influence on the cell performance and current density distribution are deeply analyzed. The results indicate that DFFs have excellent oxygen transport and water management capabilities, thus improving the cell performance, especially at high current density. By optimizing the droplet placement direction in DFF, we found that the structure with the gas flow direction in contact with the droplet tail (DFF(a)) has the highest cell performance. Compared with the conventional parallel flow field, the maximum power density of the DFF(a) can be increased by 23.7%. Also, the introduction of droplet structure improves the current density distribution uniformity. Furthermore, DFFs have a lower pressure drop, which reduces the pump parasitic power and increases the PEMFC system net output power. Considering the cell performance, current density distribution uniformity and pressure drop, we think that the DFFs (especially the optimized DFF(a)) are more suitable for the practical application of PEMFC.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Proton exchange membrane fuel cell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Droplet flow field</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Experimental research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Current density distribution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Oxygen transport</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ren, Hong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hao, Jinkai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shao, Zhigang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The chemical engineering journal</subfield><subfield code="d">Amsterdam : Elsevier, 1997</subfield><subfield code="g">450</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320500322</subfield><subfield code="w">(DE-600)2012137-4</subfield><subfield code="w">(DE-576)098330152</subfield><subfield code="x">1873-3212</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:450</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.10</subfield><subfield code="j">Verfahrenstechnik: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">450</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">660.05</subfield></datafield></record></collection>
|
score |
7.3985834 |