Structure optimization of the protection inductor for the high energy density pulse pump power supply
High energy density pulse pump power supply is an important part of a large laser fusion facility. When a short-circuit fault occurs, massive energy injection will cause the capacitor and switch to damage or even explode. Therefore, it is of great significance to set a series protection inductor. In...
Ausführliche Beschreibung
Autor*in: |
Su, Xiang [verfasserIn] Lin, Fuchang [verfasserIn] Zhang, Qin [verfasserIn] Wang, Yan [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Fusion engineering and design - New York, NY [u.a.] : Elsevier, 1987, 183 |
---|---|
Übergeordnetes Werk: |
volume:183 |
DOI / URN: |
10.1016/j.fusengdes.2022.113253 |
---|
Katalog-ID: |
ELV008486972 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV008486972 | ||
003 | DE-627 | ||
005 | 20230612073035.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230509s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.fusengdes.2022.113253 |2 doi | |
035 | |a (DE-627)ELV008486972 | ||
035 | |a (ELSEVIER)S0920-3796(22)00247-2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |a 530 |q VZ |
084 | |a 33.81 |2 bkl | ||
100 | 1 | |a Su, Xiang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Structure optimization of the protection inductor for the high energy density pulse pump power supply |
264 | 1 | |c 2022 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a High energy density pulse pump power supply is an important part of a large laser fusion facility. When a short-circuit fault occurs, massive energy injection will cause the capacitor and switch to damage or even explode. Therefore, it is of great significance to set a series protection inductor. In this paper, the structure of the widely used solenoid inductor is optimized. The geometric mean distance principle is introduced, and Neumann’s formula is extended to calculate the inductance of the solenoid. The electromagnetic force on each turn is solved by the virtual displacement method. The analytical expression of the electromagnetic stress in the current-carrying solenoid is deduced by combining the force balance equation, constitutive equation and geometric constraint equation. The electromagnetic-structure coupling simulation verifies the accuracy of the expression. Based on the Taguchi method, the structure parameters of the solenoid are optimized. The results show that the solenoid’s wire radius and layer count are the two most important influencing factors. As the wire radius increases and the layer count increases, the maximum carrying energy per unit volume increases. The influence of insulation encapsulation on the stress distribution in the inductor is studied based on electromagnetic-structure coupling simulation. It can be known that insulation encapsulation can effectively reduce stress and restrain deformation. On this basis, a novel type of double-layer solenoid inductor is designed and processed. Several pulse discharge tests verify its large current-carrying capacity and high reliability. The above results are useful for structure design and application of the protection inductor. | ||
650 | 4 | |a Solenoid inductor | |
650 | 4 | |a Electromagnetic stress | |
650 | 4 | |a Taguchi method | |
650 | 4 | |a Finite element simulation | |
650 | 4 | |a Structure optimization | |
650 | 4 | |a Pulse discharge test | |
700 | 1 | |a Lin, Fuchang |e verfasserin |0 (orcid)0000-0003-4786-5282 |4 aut | |
700 | 1 | |a Zhang, Qin |e verfasserin |4 aut | |
700 | 1 | |a Wang, Yan |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Fusion engineering and design |d New York, NY [u.a.] : Elsevier, 1987 |g 183 |h Online-Ressource |w (DE-627)302722386 |w (DE-600)1492280-0 |w (DE-576)120883481 |x 0920-3796 |7 nnns |
773 | 1 | 8 | |g volume:183 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 33.81 |j Kernfusion |q VZ |
951 | |a AR | ||
952 | |d 183 |
author_variant |
x s xs f l fl q z qz y w yw |
---|---|
matchkey_str |
article:09203796:2022----::tutrotmztootertcinnutroteihnrye |
hierarchy_sort_str |
2022 |
bklnumber |
33.81 |
publishDate |
2022 |
allfields |
10.1016/j.fusengdes.2022.113253 doi (DE-627)ELV008486972 (ELSEVIER)S0920-3796(22)00247-2 DE-627 ger DE-627 rda eng 620 530 VZ 33.81 bkl Su, Xiang verfasserin aut Structure optimization of the protection inductor for the high energy density pulse pump power supply 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier High energy density pulse pump power supply is an important part of a large laser fusion facility. When a short-circuit fault occurs, massive energy injection will cause the capacitor and switch to damage or even explode. Therefore, it is of great significance to set a series protection inductor. In this paper, the structure of the widely used solenoid inductor is optimized. The geometric mean distance principle is introduced, and Neumann’s formula is extended to calculate the inductance of the solenoid. The electromagnetic force on each turn is solved by the virtual displacement method. The analytical expression of the electromagnetic stress in the current-carrying solenoid is deduced by combining the force balance equation, constitutive equation and geometric constraint equation. The electromagnetic-structure coupling simulation verifies the accuracy of the expression. Based on the Taguchi method, the structure parameters of the solenoid are optimized. The results show that the solenoid’s wire radius and layer count are the two most important influencing factors. As the wire radius increases and the layer count increases, the maximum carrying energy per unit volume increases. The influence of insulation encapsulation on the stress distribution in the inductor is studied based on electromagnetic-structure coupling simulation. It can be known that insulation encapsulation can effectively reduce stress and restrain deformation. On this basis, a novel type of double-layer solenoid inductor is designed and processed. Several pulse discharge tests verify its large current-carrying capacity and high reliability. The above results are useful for structure design and application of the protection inductor. Solenoid inductor Electromagnetic stress Taguchi method Finite element simulation Structure optimization Pulse discharge test Lin, Fuchang verfasserin (orcid)0000-0003-4786-5282 aut Zhang, Qin verfasserin aut Wang, Yan verfasserin aut Enthalten in Fusion engineering and design New York, NY [u.a.] : Elsevier, 1987 183 Online-Ressource (DE-627)302722386 (DE-600)1492280-0 (DE-576)120883481 0920-3796 nnns volume:183 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 33.81 Kernfusion VZ AR 183 |
spelling |
10.1016/j.fusengdes.2022.113253 doi (DE-627)ELV008486972 (ELSEVIER)S0920-3796(22)00247-2 DE-627 ger DE-627 rda eng 620 530 VZ 33.81 bkl Su, Xiang verfasserin aut Structure optimization of the protection inductor for the high energy density pulse pump power supply 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier High energy density pulse pump power supply is an important part of a large laser fusion facility. When a short-circuit fault occurs, massive energy injection will cause the capacitor and switch to damage or even explode. Therefore, it is of great significance to set a series protection inductor. In this paper, the structure of the widely used solenoid inductor is optimized. The geometric mean distance principle is introduced, and Neumann’s formula is extended to calculate the inductance of the solenoid. The electromagnetic force on each turn is solved by the virtual displacement method. The analytical expression of the electromagnetic stress in the current-carrying solenoid is deduced by combining the force balance equation, constitutive equation and geometric constraint equation. The electromagnetic-structure coupling simulation verifies the accuracy of the expression. Based on the Taguchi method, the structure parameters of the solenoid are optimized. The results show that the solenoid’s wire radius and layer count are the two most important influencing factors. As the wire radius increases and the layer count increases, the maximum carrying energy per unit volume increases. The influence of insulation encapsulation on the stress distribution in the inductor is studied based on electromagnetic-structure coupling simulation. It can be known that insulation encapsulation can effectively reduce stress and restrain deformation. On this basis, a novel type of double-layer solenoid inductor is designed and processed. Several pulse discharge tests verify its large current-carrying capacity and high reliability. The above results are useful for structure design and application of the protection inductor. Solenoid inductor Electromagnetic stress Taguchi method Finite element simulation Structure optimization Pulse discharge test Lin, Fuchang verfasserin (orcid)0000-0003-4786-5282 aut Zhang, Qin verfasserin aut Wang, Yan verfasserin aut Enthalten in Fusion engineering and design New York, NY [u.a.] : Elsevier, 1987 183 Online-Ressource (DE-627)302722386 (DE-600)1492280-0 (DE-576)120883481 0920-3796 nnns volume:183 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 33.81 Kernfusion VZ AR 183 |
allfields_unstemmed |
10.1016/j.fusengdes.2022.113253 doi (DE-627)ELV008486972 (ELSEVIER)S0920-3796(22)00247-2 DE-627 ger DE-627 rda eng 620 530 VZ 33.81 bkl Su, Xiang verfasserin aut Structure optimization of the protection inductor for the high energy density pulse pump power supply 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier High energy density pulse pump power supply is an important part of a large laser fusion facility. When a short-circuit fault occurs, massive energy injection will cause the capacitor and switch to damage or even explode. Therefore, it is of great significance to set a series protection inductor. In this paper, the structure of the widely used solenoid inductor is optimized. The geometric mean distance principle is introduced, and Neumann’s formula is extended to calculate the inductance of the solenoid. The electromagnetic force on each turn is solved by the virtual displacement method. The analytical expression of the electromagnetic stress in the current-carrying solenoid is deduced by combining the force balance equation, constitutive equation and geometric constraint equation. The electromagnetic-structure coupling simulation verifies the accuracy of the expression. Based on the Taguchi method, the structure parameters of the solenoid are optimized. The results show that the solenoid’s wire radius and layer count are the two most important influencing factors. As the wire radius increases and the layer count increases, the maximum carrying energy per unit volume increases. The influence of insulation encapsulation on the stress distribution in the inductor is studied based on electromagnetic-structure coupling simulation. It can be known that insulation encapsulation can effectively reduce stress and restrain deformation. On this basis, a novel type of double-layer solenoid inductor is designed and processed. Several pulse discharge tests verify its large current-carrying capacity and high reliability. The above results are useful for structure design and application of the protection inductor. Solenoid inductor Electromagnetic stress Taguchi method Finite element simulation Structure optimization Pulse discharge test Lin, Fuchang verfasserin (orcid)0000-0003-4786-5282 aut Zhang, Qin verfasserin aut Wang, Yan verfasserin aut Enthalten in Fusion engineering and design New York, NY [u.a.] : Elsevier, 1987 183 Online-Ressource (DE-627)302722386 (DE-600)1492280-0 (DE-576)120883481 0920-3796 nnns volume:183 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 33.81 Kernfusion VZ AR 183 |
allfieldsGer |
10.1016/j.fusengdes.2022.113253 doi (DE-627)ELV008486972 (ELSEVIER)S0920-3796(22)00247-2 DE-627 ger DE-627 rda eng 620 530 VZ 33.81 bkl Su, Xiang verfasserin aut Structure optimization of the protection inductor for the high energy density pulse pump power supply 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier High energy density pulse pump power supply is an important part of a large laser fusion facility. When a short-circuit fault occurs, massive energy injection will cause the capacitor and switch to damage or even explode. Therefore, it is of great significance to set a series protection inductor. In this paper, the structure of the widely used solenoid inductor is optimized. The geometric mean distance principle is introduced, and Neumann’s formula is extended to calculate the inductance of the solenoid. The electromagnetic force on each turn is solved by the virtual displacement method. The analytical expression of the electromagnetic stress in the current-carrying solenoid is deduced by combining the force balance equation, constitutive equation and geometric constraint equation. The electromagnetic-structure coupling simulation verifies the accuracy of the expression. Based on the Taguchi method, the structure parameters of the solenoid are optimized. The results show that the solenoid’s wire radius and layer count are the two most important influencing factors. As the wire radius increases and the layer count increases, the maximum carrying energy per unit volume increases. The influence of insulation encapsulation on the stress distribution in the inductor is studied based on electromagnetic-structure coupling simulation. It can be known that insulation encapsulation can effectively reduce stress and restrain deformation. On this basis, a novel type of double-layer solenoid inductor is designed and processed. Several pulse discharge tests verify its large current-carrying capacity and high reliability. The above results are useful for structure design and application of the protection inductor. Solenoid inductor Electromagnetic stress Taguchi method Finite element simulation Structure optimization Pulse discharge test Lin, Fuchang verfasserin (orcid)0000-0003-4786-5282 aut Zhang, Qin verfasserin aut Wang, Yan verfasserin aut Enthalten in Fusion engineering and design New York, NY [u.a.] : Elsevier, 1987 183 Online-Ressource (DE-627)302722386 (DE-600)1492280-0 (DE-576)120883481 0920-3796 nnns volume:183 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 33.81 Kernfusion VZ AR 183 |
allfieldsSound |
10.1016/j.fusengdes.2022.113253 doi (DE-627)ELV008486972 (ELSEVIER)S0920-3796(22)00247-2 DE-627 ger DE-627 rda eng 620 530 VZ 33.81 bkl Su, Xiang verfasserin aut Structure optimization of the protection inductor for the high energy density pulse pump power supply 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier High energy density pulse pump power supply is an important part of a large laser fusion facility. When a short-circuit fault occurs, massive energy injection will cause the capacitor and switch to damage or even explode. Therefore, it is of great significance to set a series protection inductor. In this paper, the structure of the widely used solenoid inductor is optimized. The geometric mean distance principle is introduced, and Neumann’s formula is extended to calculate the inductance of the solenoid. The electromagnetic force on each turn is solved by the virtual displacement method. The analytical expression of the electromagnetic stress in the current-carrying solenoid is deduced by combining the force balance equation, constitutive equation and geometric constraint equation. The electromagnetic-structure coupling simulation verifies the accuracy of the expression. Based on the Taguchi method, the structure parameters of the solenoid are optimized. The results show that the solenoid’s wire radius and layer count are the two most important influencing factors. As the wire radius increases and the layer count increases, the maximum carrying energy per unit volume increases. The influence of insulation encapsulation on the stress distribution in the inductor is studied based on electromagnetic-structure coupling simulation. It can be known that insulation encapsulation can effectively reduce stress and restrain deformation. On this basis, a novel type of double-layer solenoid inductor is designed and processed. Several pulse discharge tests verify its large current-carrying capacity and high reliability. The above results are useful for structure design and application of the protection inductor. Solenoid inductor Electromagnetic stress Taguchi method Finite element simulation Structure optimization Pulse discharge test Lin, Fuchang verfasserin (orcid)0000-0003-4786-5282 aut Zhang, Qin verfasserin aut Wang, Yan verfasserin aut Enthalten in Fusion engineering and design New York, NY [u.a.] : Elsevier, 1987 183 Online-Ressource (DE-627)302722386 (DE-600)1492280-0 (DE-576)120883481 0920-3796 nnns volume:183 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 33.81 Kernfusion VZ AR 183 |
language |
English |
source |
Enthalten in Fusion engineering and design 183 volume:183 |
sourceStr |
Enthalten in Fusion engineering and design 183 volume:183 |
format_phy_str_mv |
Article |
bklname |
Kernfusion |
institution |
findex.gbv.de |
topic_facet |
Solenoid inductor Electromagnetic stress Taguchi method Finite element simulation Structure optimization Pulse discharge test |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
Fusion engineering and design |
authorswithroles_txt_mv |
Su, Xiang @@aut@@ Lin, Fuchang @@aut@@ Zhang, Qin @@aut@@ Wang, Yan @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
302722386 |
dewey-sort |
3620 |
id |
ELV008486972 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV008486972</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230612073035.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230509s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.fusengdes.2022.113253</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV008486972</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0920-3796(22)00247-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.81</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Su, Xiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Structure optimization of the protection inductor for the high energy density pulse pump power supply</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">High energy density pulse pump power supply is an important part of a large laser fusion facility. When a short-circuit fault occurs, massive energy injection will cause the capacitor and switch to damage or even explode. Therefore, it is of great significance to set a series protection inductor. In this paper, the structure of the widely used solenoid inductor is optimized. The geometric mean distance principle is introduced, and Neumann’s formula is extended to calculate the inductance of the solenoid. The electromagnetic force on each turn is solved by the virtual displacement method. The analytical expression of the electromagnetic stress in the current-carrying solenoid is deduced by combining the force balance equation, constitutive equation and geometric constraint equation. The electromagnetic-structure coupling simulation verifies the accuracy of the expression. Based on the Taguchi method, the structure parameters of the solenoid are optimized. The results show that the solenoid’s wire radius and layer count are the two most important influencing factors. As the wire radius increases and the layer count increases, the maximum carrying energy per unit volume increases. The influence of insulation encapsulation on the stress distribution in the inductor is studied based on electromagnetic-structure coupling simulation. It can be known that insulation encapsulation can effectively reduce stress and restrain deformation. On this basis, a novel type of double-layer solenoid inductor is designed and processed. Several pulse discharge tests verify its large current-carrying capacity and high reliability. The above results are useful for structure design and application of the protection inductor.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solenoid inductor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electromagnetic stress</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Taguchi method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite element simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Structure optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pulse discharge test</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lin, Fuchang</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-4786-5282</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Qin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Yan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Fusion engineering and design</subfield><subfield code="d">New York, NY [u.a.] : Elsevier, 1987</subfield><subfield code="g">183</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)302722386</subfield><subfield code="w">(DE-600)1492280-0</subfield><subfield code="w">(DE-576)120883481</subfield><subfield code="x">0920-3796</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:183</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.81</subfield><subfield code="j">Kernfusion</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">183</subfield></datafield></record></collection>
|
author |
Su, Xiang |
spellingShingle |
Su, Xiang ddc 620 bkl 33.81 misc Solenoid inductor misc Electromagnetic stress misc Taguchi method misc Finite element simulation misc Structure optimization misc Pulse discharge test Structure optimization of the protection inductor for the high energy density pulse pump power supply |
authorStr |
Su, Xiang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)302722386 |
format |
electronic Article |
dewey-ones |
620 - Engineering & allied operations 530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0920-3796 |
topic_title |
620 530 VZ 33.81 bkl Structure optimization of the protection inductor for the high energy density pulse pump power supply Solenoid inductor Electromagnetic stress Taguchi method Finite element simulation Structure optimization Pulse discharge test |
topic |
ddc 620 bkl 33.81 misc Solenoid inductor misc Electromagnetic stress misc Taguchi method misc Finite element simulation misc Structure optimization misc Pulse discharge test |
topic_unstemmed |
ddc 620 bkl 33.81 misc Solenoid inductor misc Electromagnetic stress misc Taguchi method misc Finite element simulation misc Structure optimization misc Pulse discharge test |
topic_browse |
ddc 620 bkl 33.81 misc Solenoid inductor misc Electromagnetic stress misc Taguchi method misc Finite element simulation misc Structure optimization misc Pulse discharge test |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Fusion engineering and design |
hierarchy_parent_id |
302722386 |
dewey-tens |
620 - Engineering 530 - Physics |
hierarchy_top_title |
Fusion engineering and design |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)302722386 (DE-600)1492280-0 (DE-576)120883481 |
title |
Structure optimization of the protection inductor for the high energy density pulse pump power supply |
ctrlnum |
(DE-627)ELV008486972 (ELSEVIER)S0920-3796(22)00247-2 |
title_full |
Structure optimization of the protection inductor for the high energy density pulse pump power supply |
author_sort |
Su, Xiang |
journal |
Fusion engineering and design |
journalStr |
Fusion engineering and design |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 500 - Science |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
author_browse |
Su, Xiang Lin, Fuchang Zhang, Qin Wang, Yan |
container_volume |
183 |
class |
620 530 VZ 33.81 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Su, Xiang |
doi_str_mv |
10.1016/j.fusengdes.2022.113253 |
normlink |
(ORCID)0000-0003-4786-5282 |
normlink_prefix_str_mv |
(orcid)0000-0003-4786-5282 |
dewey-full |
620 530 |
author2-role |
verfasserin |
title_sort |
structure optimization of the protection inductor for the high energy density pulse pump power supply |
title_auth |
Structure optimization of the protection inductor for the high energy density pulse pump power supply |
abstract |
High energy density pulse pump power supply is an important part of a large laser fusion facility. When a short-circuit fault occurs, massive energy injection will cause the capacitor and switch to damage or even explode. Therefore, it is of great significance to set a series protection inductor. In this paper, the structure of the widely used solenoid inductor is optimized. The geometric mean distance principle is introduced, and Neumann’s formula is extended to calculate the inductance of the solenoid. The electromagnetic force on each turn is solved by the virtual displacement method. The analytical expression of the electromagnetic stress in the current-carrying solenoid is deduced by combining the force balance equation, constitutive equation and geometric constraint equation. The electromagnetic-structure coupling simulation verifies the accuracy of the expression. Based on the Taguchi method, the structure parameters of the solenoid are optimized. The results show that the solenoid’s wire radius and layer count are the two most important influencing factors. As the wire radius increases and the layer count increases, the maximum carrying energy per unit volume increases. The influence of insulation encapsulation on the stress distribution in the inductor is studied based on electromagnetic-structure coupling simulation. It can be known that insulation encapsulation can effectively reduce stress and restrain deformation. On this basis, a novel type of double-layer solenoid inductor is designed and processed. Several pulse discharge tests verify its large current-carrying capacity and high reliability. The above results are useful for structure design and application of the protection inductor. |
abstractGer |
High energy density pulse pump power supply is an important part of a large laser fusion facility. When a short-circuit fault occurs, massive energy injection will cause the capacitor and switch to damage or even explode. Therefore, it is of great significance to set a series protection inductor. In this paper, the structure of the widely used solenoid inductor is optimized. The geometric mean distance principle is introduced, and Neumann’s formula is extended to calculate the inductance of the solenoid. The electromagnetic force on each turn is solved by the virtual displacement method. The analytical expression of the electromagnetic stress in the current-carrying solenoid is deduced by combining the force balance equation, constitutive equation and geometric constraint equation. The electromagnetic-structure coupling simulation verifies the accuracy of the expression. Based on the Taguchi method, the structure parameters of the solenoid are optimized. The results show that the solenoid’s wire radius and layer count are the two most important influencing factors. As the wire radius increases and the layer count increases, the maximum carrying energy per unit volume increases. The influence of insulation encapsulation on the stress distribution in the inductor is studied based on electromagnetic-structure coupling simulation. It can be known that insulation encapsulation can effectively reduce stress and restrain deformation. On this basis, a novel type of double-layer solenoid inductor is designed and processed. Several pulse discharge tests verify its large current-carrying capacity and high reliability. The above results are useful for structure design and application of the protection inductor. |
abstract_unstemmed |
High energy density pulse pump power supply is an important part of a large laser fusion facility. When a short-circuit fault occurs, massive energy injection will cause the capacitor and switch to damage or even explode. Therefore, it is of great significance to set a series protection inductor. In this paper, the structure of the widely used solenoid inductor is optimized. The geometric mean distance principle is introduced, and Neumann’s formula is extended to calculate the inductance of the solenoid. The electromagnetic force on each turn is solved by the virtual displacement method. The analytical expression of the electromagnetic stress in the current-carrying solenoid is deduced by combining the force balance equation, constitutive equation and geometric constraint equation. The electromagnetic-structure coupling simulation verifies the accuracy of the expression. Based on the Taguchi method, the structure parameters of the solenoid are optimized. The results show that the solenoid’s wire radius and layer count are the two most important influencing factors. As the wire radius increases and the layer count increases, the maximum carrying energy per unit volume increases. The influence of insulation encapsulation on the stress distribution in the inductor is studied based on electromagnetic-structure coupling simulation. It can be known that insulation encapsulation can effectively reduce stress and restrain deformation. On this basis, a novel type of double-layer solenoid inductor is designed and processed. Several pulse discharge tests verify its large current-carrying capacity and high reliability. The above results are useful for structure design and application of the protection inductor. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Structure optimization of the protection inductor for the high energy density pulse pump power supply |
remote_bool |
true |
author2 |
Lin, Fuchang Zhang, Qin Wang, Yan |
author2Str |
Lin, Fuchang Zhang, Qin Wang, Yan |
ppnlink |
302722386 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.fusengdes.2022.113253 |
up_date |
2024-07-06T19:52:03.455Z |
_version_ |
1803860598804447232 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV008486972</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230612073035.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230509s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.fusengdes.2022.113253</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV008486972</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0920-3796(22)00247-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.81</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Su, Xiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Structure optimization of the protection inductor for the high energy density pulse pump power supply</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">High energy density pulse pump power supply is an important part of a large laser fusion facility. When a short-circuit fault occurs, massive energy injection will cause the capacitor and switch to damage or even explode. Therefore, it is of great significance to set a series protection inductor. In this paper, the structure of the widely used solenoid inductor is optimized. The geometric mean distance principle is introduced, and Neumann’s formula is extended to calculate the inductance of the solenoid. The electromagnetic force on each turn is solved by the virtual displacement method. The analytical expression of the electromagnetic stress in the current-carrying solenoid is deduced by combining the force balance equation, constitutive equation and geometric constraint equation. The electromagnetic-structure coupling simulation verifies the accuracy of the expression. Based on the Taguchi method, the structure parameters of the solenoid are optimized. The results show that the solenoid’s wire radius and layer count are the two most important influencing factors. As the wire radius increases and the layer count increases, the maximum carrying energy per unit volume increases. The influence of insulation encapsulation on the stress distribution in the inductor is studied based on electromagnetic-structure coupling simulation. It can be known that insulation encapsulation can effectively reduce stress and restrain deformation. On this basis, a novel type of double-layer solenoid inductor is designed and processed. Several pulse discharge tests verify its large current-carrying capacity and high reliability. The above results are useful for structure design and application of the protection inductor.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solenoid inductor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electromagnetic stress</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Taguchi method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite element simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Structure optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pulse discharge test</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lin, Fuchang</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-4786-5282</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Qin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Yan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Fusion engineering and design</subfield><subfield code="d">New York, NY [u.a.] : Elsevier, 1987</subfield><subfield code="g">183</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)302722386</subfield><subfield code="w">(DE-600)1492280-0</subfield><subfield code="w">(DE-576)120883481</subfield><subfield code="x">0920-3796</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:183</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.81</subfield><subfield code="j">Kernfusion</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">183</subfield></datafield></record></collection>
|
score |
7.3996716 |