Atomistic simulation and continuum modeling of the dynamic tensile fracture and damage evolution of solid single crystalline Al with He bubble
The dynamic tensile fracture mechanism and damage evolution characteristics of solid single crystalline Al with He bubble are investigated by molecular dynamics (MD) simulations and continuum modeling. The physical mechanism leading to fracture is found to be dominated by He bubble growth, in wide r...
Ausführliche Beschreibung
Autor*in: |
Zhou, Tingting [verfasserIn] Zhao, Fuqi [verfasserIn] Zhou, Hongqiang [verfasserIn] Zhang, Fengguo [verfasserIn] Wang, Pei [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: International journal of mechanical sciences - Amsterdam [u.a.] : Elsevier Science, 1960, 234 |
---|---|
Übergeordnetes Werk: |
volume:234 |
DOI / URN: |
10.1016/j.ijmecsci.2022.107681 |
---|
Katalog-ID: |
ELV008637385 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV008637385 | ||
003 | DE-627 | ||
005 | 20230524150336.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230509s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ijmecsci.2022.107681 |2 doi | |
035 | |a (DE-627)ELV008637385 | ||
035 | |a (ELSEVIER)S0020-7403(22)00563-X | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q DE-600 |
084 | |a 50.31 |2 bkl | ||
084 | |a 50.33 |2 bkl | ||
084 | |a 50.38 |2 bkl | ||
100 | 1 | |a Zhou, Tingting |e verfasserin |4 aut | |
245 | 1 | 0 | |a Atomistic simulation and continuum modeling of the dynamic tensile fracture and damage evolution of solid single crystalline Al with He bubble |
264 | 1 | |c 2022 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The dynamic tensile fracture mechanism and damage evolution characteristics of solid single crystalline Al with He bubble are investigated by molecular dynamics (MD) simulations and continuum modeling. The physical mechanism leading to fracture is found to be dominated by He bubble growth, in wide ranges of strain rate and initial bubble volume fraction. The bubble growth process can be divided into three stages and the microscopic mechanism is related to the plastic deformation of surrounding metallic material predominated by dislocation growth and movement. It is further revealed that the evolution characteristics of He bubble are independent on strain rate or initial bubble volume fraction, but the growth rate increases significantly with increasing strain rate or decreasing bubble fraction. Additionally, the critical stress for bubble growth and dynamic tensile strength at the strain rates from 106 /s to 1010 /s are obtained, showing strain rate hardening effect. Finally, a continuum model based on the understanding derived from MD simulations is proposed to describe the damage evolution of the metal with He bubble, including the new strength softening effect induced by bubble growth. The dynamic tensile processes at the strain rates from 104 /s to 1010 /s are calculated by this model, and the obtained pressure and bubble evolutions and dynamic tensile strength are in good agreement with available MD results. We suppose that the present study sheds some light on the dynamic fracture of solid metals containing He bubble. | ||
650 | 4 | |a Dynamic tensile fracture | |
650 | 4 | |a Damage evolution | |
650 | 4 | |a He bubble | |
650 | 4 | |a Void/bubble growth model | |
650 | 4 | |a MD simulation | |
700 | 1 | |a Zhao, Fuqi |e verfasserin |0 (orcid)0000-0002-9141-0608 |4 aut | |
700 | 1 | |a Zhou, Hongqiang |e verfasserin |4 aut | |
700 | 1 | |a Zhang, Fengguo |e verfasserin |4 aut | |
700 | 1 | |a Wang, Pei |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t International journal of mechanical sciences |d Amsterdam [u.a.] : Elsevier Science, 1960 |g 234 |h Online-Ressource |w (DE-627)306586223 |w (DE-600)1498168-3 |w (DE-576)259270954 |7 nnns |
773 | 1 | 8 | |g volume:234 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 50.31 |j Technische Mechanik |
936 | b | k | |a 50.33 |j Technische Strömungsmechanik |
936 | b | k | |a 50.38 |j Technische Thermodynamik |
951 | |a AR | ||
952 | |d 234 |
author_variant |
t z tz f z fz h z hz f z fz p w pw |
---|---|
matchkey_str |
zhoutingtingzhaofuqizhouhongqiangzhangfe:2022----:tmsismltoadotnumdlnoteyaitniercuendmgeouinfoi |
hierarchy_sort_str |
2022 |
bklnumber |
50.31 50.33 50.38 |
publishDate |
2022 |
allfields |
10.1016/j.ijmecsci.2022.107681 doi (DE-627)ELV008637385 (ELSEVIER)S0020-7403(22)00563-X DE-627 ger DE-627 rda eng 530 DE-600 50.31 bkl 50.33 bkl 50.38 bkl Zhou, Tingting verfasserin aut Atomistic simulation and continuum modeling of the dynamic tensile fracture and damage evolution of solid single crystalline Al with He bubble 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The dynamic tensile fracture mechanism and damage evolution characteristics of solid single crystalline Al with He bubble are investigated by molecular dynamics (MD) simulations and continuum modeling. The physical mechanism leading to fracture is found to be dominated by He bubble growth, in wide ranges of strain rate and initial bubble volume fraction. The bubble growth process can be divided into three stages and the microscopic mechanism is related to the plastic deformation of surrounding metallic material predominated by dislocation growth and movement. It is further revealed that the evolution characteristics of He bubble are independent on strain rate or initial bubble volume fraction, but the growth rate increases significantly with increasing strain rate or decreasing bubble fraction. Additionally, the critical stress for bubble growth and dynamic tensile strength at the strain rates from 106 /s to 1010 /s are obtained, showing strain rate hardening effect. Finally, a continuum model based on the understanding derived from MD simulations is proposed to describe the damage evolution of the metal with He bubble, including the new strength softening effect induced by bubble growth. The dynamic tensile processes at the strain rates from 104 /s to 1010 /s are calculated by this model, and the obtained pressure and bubble evolutions and dynamic tensile strength are in good agreement with available MD results. We suppose that the present study sheds some light on the dynamic fracture of solid metals containing He bubble. Dynamic tensile fracture Damage evolution He bubble Void/bubble growth model MD simulation Zhao, Fuqi verfasserin (orcid)0000-0002-9141-0608 aut Zhou, Hongqiang verfasserin aut Zhang, Fengguo verfasserin aut Wang, Pei verfasserin aut Enthalten in International journal of mechanical sciences Amsterdam [u.a.] : Elsevier Science, 1960 234 Online-Ressource (DE-627)306586223 (DE-600)1498168-3 (DE-576)259270954 nnns volume:234 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.31 Technische Mechanik 50.33 Technische Strömungsmechanik 50.38 Technische Thermodynamik AR 234 |
spelling |
10.1016/j.ijmecsci.2022.107681 doi (DE-627)ELV008637385 (ELSEVIER)S0020-7403(22)00563-X DE-627 ger DE-627 rda eng 530 DE-600 50.31 bkl 50.33 bkl 50.38 bkl Zhou, Tingting verfasserin aut Atomistic simulation and continuum modeling of the dynamic tensile fracture and damage evolution of solid single crystalline Al with He bubble 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The dynamic tensile fracture mechanism and damage evolution characteristics of solid single crystalline Al with He bubble are investigated by molecular dynamics (MD) simulations and continuum modeling. The physical mechanism leading to fracture is found to be dominated by He bubble growth, in wide ranges of strain rate and initial bubble volume fraction. The bubble growth process can be divided into three stages and the microscopic mechanism is related to the plastic deformation of surrounding metallic material predominated by dislocation growth and movement. It is further revealed that the evolution characteristics of He bubble are independent on strain rate or initial bubble volume fraction, but the growth rate increases significantly with increasing strain rate or decreasing bubble fraction. Additionally, the critical stress for bubble growth and dynamic tensile strength at the strain rates from 106 /s to 1010 /s are obtained, showing strain rate hardening effect. Finally, a continuum model based on the understanding derived from MD simulations is proposed to describe the damage evolution of the metal with He bubble, including the new strength softening effect induced by bubble growth. The dynamic tensile processes at the strain rates from 104 /s to 1010 /s are calculated by this model, and the obtained pressure and bubble evolutions and dynamic tensile strength are in good agreement with available MD results. We suppose that the present study sheds some light on the dynamic fracture of solid metals containing He bubble. Dynamic tensile fracture Damage evolution He bubble Void/bubble growth model MD simulation Zhao, Fuqi verfasserin (orcid)0000-0002-9141-0608 aut Zhou, Hongqiang verfasserin aut Zhang, Fengguo verfasserin aut Wang, Pei verfasserin aut Enthalten in International journal of mechanical sciences Amsterdam [u.a.] : Elsevier Science, 1960 234 Online-Ressource (DE-627)306586223 (DE-600)1498168-3 (DE-576)259270954 nnns volume:234 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.31 Technische Mechanik 50.33 Technische Strömungsmechanik 50.38 Technische Thermodynamik AR 234 |
allfields_unstemmed |
10.1016/j.ijmecsci.2022.107681 doi (DE-627)ELV008637385 (ELSEVIER)S0020-7403(22)00563-X DE-627 ger DE-627 rda eng 530 DE-600 50.31 bkl 50.33 bkl 50.38 bkl Zhou, Tingting verfasserin aut Atomistic simulation and continuum modeling of the dynamic tensile fracture and damage evolution of solid single crystalline Al with He bubble 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The dynamic tensile fracture mechanism and damage evolution characteristics of solid single crystalline Al with He bubble are investigated by molecular dynamics (MD) simulations and continuum modeling. The physical mechanism leading to fracture is found to be dominated by He bubble growth, in wide ranges of strain rate and initial bubble volume fraction. The bubble growth process can be divided into three stages and the microscopic mechanism is related to the plastic deformation of surrounding metallic material predominated by dislocation growth and movement. It is further revealed that the evolution characteristics of He bubble are independent on strain rate or initial bubble volume fraction, but the growth rate increases significantly with increasing strain rate or decreasing bubble fraction. Additionally, the critical stress for bubble growth and dynamic tensile strength at the strain rates from 106 /s to 1010 /s are obtained, showing strain rate hardening effect. Finally, a continuum model based on the understanding derived from MD simulations is proposed to describe the damage evolution of the metal with He bubble, including the new strength softening effect induced by bubble growth. The dynamic tensile processes at the strain rates from 104 /s to 1010 /s are calculated by this model, and the obtained pressure and bubble evolutions and dynamic tensile strength are in good agreement with available MD results. We suppose that the present study sheds some light on the dynamic fracture of solid metals containing He bubble. Dynamic tensile fracture Damage evolution He bubble Void/bubble growth model MD simulation Zhao, Fuqi verfasserin (orcid)0000-0002-9141-0608 aut Zhou, Hongqiang verfasserin aut Zhang, Fengguo verfasserin aut Wang, Pei verfasserin aut Enthalten in International journal of mechanical sciences Amsterdam [u.a.] : Elsevier Science, 1960 234 Online-Ressource (DE-627)306586223 (DE-600)1498168-3 (DE-576)259270954 nnns volume:234 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.31 Technische Mechanik 50.33 Technische Strömungsmechanik 50.38 Technische Thermodynamik AR 234 |
allfieldsGer |
10.1016/j.ijmecsci.2022.107681 doi (DE-627)ELV008637385 (ELSEVIER)S0020-7403(22)00563-X DE-627 ger DE-627 rda eng 530 DE-600 50.31 bkl 50.33 bkl 50.38 bkl Zhou, Tingting verfasserin aut Atomistic simulation and continuum modeling of the dynamic tensile fracture and damage evolution of solid single crystalline Al with He bubble 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The dynamic tensile fracture mechanism and damage evolution characteristics of solid single crystalline Al with He bubble are investigated by molecular dynamics (MD) simulations and continuum modeling. The physical mechanism leading to fracture is found to be dominated by He bubble growth, in wide ranges of strain rate and initial bubble volume fraction. The bubble growth process can be divided into three stages and the microscopic mechanism is related to the plastic deformation of surrounding metallic material predominated by dislocation growth and movement. It is further revealed that the evolution characteristics of He bubble are independent on strain rate or initial bubble volume fraction, but the growth rate increases significantly with increasing strain rate or decreasing bubble fraction. Additionally, the critical stress for bubble growth and dynamic tensile strength at the strain rates from 106 /s to 1010 /s are obtained, showing strain rate hardening effect. Finally, a continuum model based on the understanding derived from MD simulations is proposed to describe the damage evolution of the metal with He bubble, including the new strength softening effect induced by bubble growth. The dynamic tensile processes at the strain rates from 104 /s to 1010 /s are calculated by this model, and the obtained pressure and bubble evolutions and dynamic tensile strength are in good agreement with available MD results. We suppose that the present study sheds some light on the dynamic fracture of solid metals containing He bubble. Dynamic tensile fracture Damage evolution He bubble Void/bubble growth model MD simulation Zhao, Fuqi verfasserin (orcid)0000-0002-9141-0608 aut Zhou, Hongqiang verfasserin aut Zhang, Fengguo verfasserin aut Wang, Pei verfasserin aut Enthalten in International journal of mechanical sciences Amsterdam [u.a.] : Elsevier Science, 1960 234 Online-Ressource (DE-627)306586223 (DE-600)1498168-3 (DE-576)259270954 nnns volume:234 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.31 Technische Mechanik 50.33 Technische Strömungsmechanik 50.38 Technische Thermodynamik AR 234 |
allfieldsSound |
10.1016/j.ijmecsci.2022.107681 doi (DE-627)ELV008637385 (ELSEVIER)S0020-7403(22)00563-X DE-627 ger DE-627 rda eng 530 DE-600 50.31 bkl 50.33 bkl 50.38 bkl Zhou, Tingting verfasserin aut Atomistic simulation and continuum modeling of the dynamic tensile fracture and damage evolution of solid single crystalline Al with He bubble 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The dynamic tensile fracture mechanism and damage evolution characteristics of solid single crystalline Al with He bubble are investigated by molecular dynamics (MD) simulations and continuum modeling. The physical mechanism leading to fracture is found to be dominated by He bubble growth, in wide ranges of strain rate and initial bubble volume fraction. The bubble growth process can be divided into three stages and the microscopic mechanism is related to the plastic deformation of surrounding metallic material predominated by dislocation growth and movement. It is further revealed that the evolution characteristics of He bubble are independent on strain rate or initial bubble volume fraction, but the growth rate increases significantly with increasing strain rate or decreasing bubble fraction. Additionally, the critical stress for bubble growth and dynamic tensile strength at the strain rates from 106 /s to 1010 /s are obtained, showing strain rate hardening effect. Finally, a continuum model based on the understanding derived from MD simulations is proposed to describe the damage evolution of the metal with He bubble, including the new strength softening effect induced by bubble growth. The dynamic tensile processes at the strain rates from 104 /s to 1010 /s are calculated by this model, and the obtained pressure and bubble evolutions and dynamic tensile strength are in good agreement with available MD results. We suppose that the present study sheds some light on the dynamic fracture of solid metals containing He bubble. Dynamic tensile fracture Damage evolution He bubble Void/bubble growth model MD simulation Zhao, Fuqi verfasserin (orcid)0000-0002-9141-0608 aut Zhou, Hongqiang verfasserin aut Zhang, Fengguo verfasserin aut Wang, Pei verfasserin aut Enthalten in International journal of mechanical sciences Amsterdam [u.a.] : Elsevier Science, 1960 234 Online-Ressource (DE-627)306586223 (DE-600)1498168-3 (DE-576)259270954 nnns volume:234 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.31 Technische Mechanik 50.33 Technische Strömungsmechanik 50.38 Technische Thermodynamik AR 234 |
language |
English |
source |
Enthalten in International journal of mechanical sciences 234 volume:234 |
sourceStr |
Enthalten in International journal of mechanical sciences 234 volume:234 |
format_phy_str_mv |
Article |
bklname |
Technische Mechanik Technische Strömungsmechanik Technische Thermodynamik |
institution |
findex.gbv.de |
topic_facet |
Dynamic tensile fracture Damage evolution He bubble Void/bubble growth model MD simulation |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
International journal of mechanical sciences |
authorswithroles_txt_mv |
Zhou, Tingting @@aut@@ Zhao, Fuqi @@aut@@ Zhou, Hongqiang @@aut@@ Zhang, Fengguo @@aut@@ Wang, Pei @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
306586223 |
dewey-sort |
3530 |
id |
ELV008637385 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV008637385</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524150336.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230509s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijmecsci.2022.107681</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV008637385</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0020-7403(22)00563-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.31</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.33</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhou, Tingting</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Atomistic simulation and continuum modeling of the dynamic tensile fracture and damage evolution of solid single crystalline Al with He bubble</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The dynamic tensile fracture mechanism and damage evolution characteristics of solid single crystalline Al with He bubble are investigated by molecular dynamics (MD) simulations and continuum modeling. The physical mechanism leading to fracture is found to be dominated by He bubble growth, in wide ranges of strain rate and initial bubble volume fraction. The bubble growth process can be divided into three stages and the microscopic mechanism is related to the plastic deformation of surrounding metallic material predominated by dislocation growth and movement. It is further revealed that the evolution characteristics of He bubble are independent on strain rate or initial bubble volume fraction, but the growth rate increases significantly with increasing strain rate or decreasing bubble fraction. Additionally, the critical stress for bubble growth and dynamic tensile strength at the strain rates from 106 /s to 1010 /s are obtained, showing strain rate hardening effect. Finally, a continuum model based on the understanding derived from MD simulations is proposed to describe the damage evolution of the metal with He bubble, including the new strength softening effect induced by bubble growth. The dynamic tensile processes at the strain rates from 104 /s to 1010 /s are calculated by this model, and the obtained pressure and bubble evolutions and dynamic tensile strength are in good agreement with available MD results. We suppose that the present study sheds some light on the dynamic fracture of solid metals containing He bubble.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamic tensile fracture</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Damage evolution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">He bubble</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Void/bubble growth model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MD simulation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Fuqi</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-9141-0608</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Hongqiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Fengguo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Pei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of mechanical sciences</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1960</subfield><subfield code="g">234</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306586223</subfield><subfield code="w">(DE-600)1498168-3</subfield><subfield code="w">(DE-576)259270954</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:234</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.31</subfield><subfield code="j">Technische Mechanik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.33</subfield><subfield code="j">Technische Strömungsmechanik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.38</subfield><subfield code="j">Technische Thermodynamik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">234</subfield></datafield></record></collection>
|
author |
Zhou, Tingting |
spellingShingle |
Zhou, Tingting ddc 530 bkl 50.31 bkl 50.33 bkl 50.38 misc Dynamic tensile fracture misc Damage evolution misc He bubble misc Void/bubble growth model misc MD simulation Atomistic simulation and continuum modeling of the dynamic tensile fracture and damage evolution of solid single crystalline Al with He bubble |
authorStr |
Zhou, Tingting |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)306586223 |
format |
electronic Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
530 DE-600 50.31 bkl 50.33 bkl 50.38 bkl Atomistic simulation and continuum modeling of the dynamic tensile fracture and damage evolution of solid single crystalline Al with He bubble Dynamic tensile fracture Damage evolution He bubble Void/bubble growth model MD simulation |
topic |
ddc 530 bkl 50.31 bkl 50.33 bkl 50.38 misc Dynamic tensile fracture misc Damage evolution misc He bubble misc Void/bubble growth model misc MD simulation |
topic_unstemmed |
ddc 530 bkl 50.31 bkl 50.33 bkl 50.38 misc Dynamic tensile fracture misc Damage evolution misc He bubble misc Void/bubble growth model misc MD simulation |
topic_browse |
ddc 530 bkl 50.31 bkl 50.33 bkl 50.38 misc Dynamic tensile fracture misc Damage evolution misc He bubble misc Void/bubble growth model misc MD simulation |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International journal of mechanical sciences |
hierarchy_parent_id |
306586223 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
International journal of mechanical sciences |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)306586223 (DE-600)1498168-3 (DE-576)259270954 |
title |
Atomistic simulation and continuum modeling of the dynamic tensile fracture and damage evolution of solid single crystalline Al with He bubble |
ctrlnum |
(DE-627)ELV008637385 (ELSEVIER)S0020-7403(22)00563-X |
title_full |
Atomistic simulation and continuum modeling of the dynamic tensile fracture and damage evolution of solid single crystalline Al with He bubble |
author_sort |
Zhou, Tingting |
journal |
International journal of mechanical sciences |
journalStr |
International journal of mechanical sciences |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
author_browse |
Zhou, Tingting Zhao, Fuqi Zhou, Hongqiang Zhang, Fengguo Wang, Pei |
container_volume |
234 |
class |
530 DE-600 50.31 bkl 50.33 bkl 50.38 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Zhou, Tingting |
doi_str_mv |
10.1016/j.ijmecsci.2022.107681 |
normlink |
(ORCID)0000-0002-9141-0608 |
normlink_prefix_str_mv |
(orcid)0000-0002-9141-0608 |
dewey-full |
530 |
author2-role |
verfasserin |
title_sort |
atomistic simulation and continuum modeling of the dynamic tensile fracture and damage evolution of solid single crystalline al with he bubble |
title_auth |
Atomistic simulation and continuum modeling of the dynamic tensile fracture and damage evolution of solid single crystalline Al with He bubble |
abstract |
The dynamic tensile fracture mechanism and damage evolution characteristics of solid single crystalline Al with He bubble are investigated by molecular dynamics (MD) simulations and continuum modeling. The physical mechanism leading to fracture is found to be dominated by He bubble growth, in wide ranges of strain rate and initial bubble volume fraction. The bubble growth process can be divided into three stages and the microscopic mechanism is related to the plastic deformation of surrounding metallic material predominated by dislocation growth and movement. It is further revealed that the evolution characteristics of He bubble are independent on strain rate or initial bubble volume fraction, but the growth rate increases significantly with increasing strain rate or decreasing bubble fraction. Additionally, the critical stress for bubble growth and dynamic tensile strength at the strain rates from 106 /s to 1010 /s are obtained, showing strain rate hardening effect. Finally, a continuum model based on the understanding derived from MD simulations is proposed to describe the damage evolution of the metal with He bubble, including the new strength softening effect induced by bubble growth. The dynamic tensile processes at the strain rates from 104 /s to 1010 /s are calculated by this model, and the obtained pressure and bubble evolutions and dynamic tensile strength are in good agreement with available MD results. We suppose that the present study sheds some light on the dynamic fracture of solid metals containing He bubble. |
abstractGer |
The dynamic tensile fracture mechanism and damage evolution characteristics of solid single crystalline Al with He bubble are investigated by molecular dynamics (MD) simulations and continuum modeling. The physical mechanism leading to fracture is found to be dominated by He bubble growth, in wide ranges of strain rate and initial bubble volume fraction. The bubble growth process can be divided into three stages and the microscopic mechanism is related to the plastic deformation of surrounding metallic material predominated by dislocation growth and movement. It is further revealed that the evolution characteristics of He bubble are independent on strain rate or initial bubble volume fraction, but the growth rate increases significantly with increasing strain rate or decreasing bubble fraction. Additionally, the critical stress for bubble growth and dynamic tensile strength at the strain rates from 106 /s to 1010 /s are obtained, showing strain rate hardening effect. Finally, a continuum model based on the understanding derived from MD simulations is proposed to describe the damage evolution of the metal with He bubble, including the new strength softening effect induced by bubble growth. The dynamic tensile processes at the strain rates from 104 /s to 1010 /s are calculated by this model, and the obtained pressure and bubble evolutions and dynamic tensile strength are in good agreement with available MD results. We suppose that the present study sheds some light on the dynamic fracture of solid metals containing He bubble. |
abstract_unstemmed |
The dynamic tensile fracture mechanism and damage evolution characteristics of solid single crystalline Al with He bubble are investigated by molecular dynamics (MD) simulations and continuum modeling. The physical mechanism leading to fracture is found to be dominated by He bubble growth, in wide ranges of strain rate and initial bubble volume fraction. The bubble growth process can be divided into three stages and the microscopic mechanism is related to the plastic deformation of surrounding metallic material predominated by dislocation growth and movement. It is further revealed that the evolution characteristics of He bubble are independent on strain rate or initial bubble volume fraction, but the growth rate increases significantly with increasing strain rate or decreasing bubble fraction. Additionally, the critical stress for bubble growth and dynamic tensile strength at the strain rates from 106 /s to 1010 /s are obtained, showing strain rate hardening effect. Finally, a continuum model based on the understanding derived from MD simulations is proposed to describe the damage evolution of the metal with He bubble, including the new strength softening effect induced by bubble growth. The dynamic tensile processes at the strain rates from 104 /s to 1010 /s are calculated by this model, and the obtained pressure and bubble evolutions and dynamic tensile strength are in good agreement with available MD results. We suppose that the present study sheds some light on the dynamic fracture of solid metals containing He bubble. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Atomistic simulation and continuum modeling of the dynamic tensile fracture and damage evolution of solid single crystalline Al with He bubble |
remote_bool |
true |
author2 |
Zhao, Fuqi Zhou, Hongqiang Zhang, Fengguo Wang, Pei |
author2Str |
Zhao, Fuqi Zhou, Hongqiang Zhang, Fengguo Wang, Pei |
ppnlink |
306586223 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.ijmecsci.2022.107681 |
up_date |
2024-07-06T20:23:24.424Z |
_version_ |
1803862571142348800 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV008637385</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524150336.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230509s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijmecsci.2022.107681</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV008637385</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0020-7403(22)00563-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.31</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.33</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhou, Tingting</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Atomistic simulation and continuum modeling of the dynamic tensile fracture and damage evolution of solid single crystalline Al with He bubble</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The dynamic tensile fracture mechanism and damage evolution characteristics of solid single crystalline Al with He bubble are investigated by molecular dynamics (MD) simulations and continuum modeling. The physical mechanism leading to fracture is found to be dominated by He bubble growth, in wide ranges of strain rate and initial bubble volume fraction. The bubble growth process can be divided into three stages and the microscopic mechanism is related to the plastic deformation of surrounding metallic material predominated by dislocation growth and movement. It is further revealed that the evolution characteristics of He bubble are independent on strain rate or initial bubble volume fraction, but the growth rate increases significantly with increasing strain rate or decreasing bubble fraction. Additionally, the critical stress for bubble growth and dynamic tensile strength at the strain rates from 106 /s to 1010 /s are obtained, showing strain rate hardening effect. Finally, a continuum model based on the understanding derived from MD simulations is proposed to describe the damage evolution of the metal with He bubble, including the new strength softening effect induced by bubble growth. The dynamic tensile processes at the strain rates from 104 /s to 1010 /s are calculated by this model, and the obtained pressure and bubble evolutions and dynamic tensile strength are in good agreement with available MD results. We suppose that the present study sheds some light on the dynamic fracture of solid metals containing He bubble.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamic tensile fracture</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Damage evolution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">He bubble</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Void/bubble growth model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MD simulation</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Fuqi</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-9141-0608</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Hongqiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Fengguo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Pei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of mechanical sciences</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1960</subfield><subfield code="g">234</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306586223</subfield><subfield code="w">(DE-600)1498168-3</subfield><subfield code="w">(DE-576)259270954</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:234</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.31</subfield><subfield code="j">Technische Mechanik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.33</subfield><subfield code="j">Technische Strömungsmechanik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.38</subfield><subfield code="j">Technische Thermodynamik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">234</subfield></datafield></record></collection>
|
score |
7.4014397 |