Factors driving adoption of climatic risk mitigating technologies with special reference to goat farming in India: Evidence from meta-analysis
An attempt to comprehend the status of factors driving adoption of technologies with specific reference to goat farming in the changing climatic scenario was studied through narrative literature review and meta-analysis. Review of past studies suggests that the extension system suffers with limitati...
Ausführliche Beschreibung
Autor*in: |
Thirunavukkarasu, D. [verfasserIn] Jothilakshmi, M. [verfasserIn] Silpa, M.V. [verfasserIn] Sejian, V. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Small ruminant research - Amsterdam [u.a.] : Elsevier Science, 1988, 216 |
---|---|
Übergeordnetes Werk: |
volume:216 |
DOI / URN: |
10.1016/j.smallrumres.2022.106804 |
---|
Katalog-ID: |
ELV00868815X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV00868815X | ||
003 | DE-627 | ||
005 | 20240104093654.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230509s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.smallrumres.2022.106804 |2 doi | |
035 | |a (DE-627)ELV00868815X | ||
035 | |a (ELSEVIER)S0921-4488(22)00193-6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 630 |a 640 |q VZ |
100 | 1 | |a Thirunavukkarasu, D. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Factors driving adoption of climatic risk mitigating technologies with special reference to goat farming in India: Evidence from meta-analysis |
264 | 1 | |c 2022 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a An attempt to comprehend the status of factors driving adoption of technologies with specific reference to goat farming in the changing climatic scenario was studied through narrative literature review and meta-analysis. Review of past studies suggests that the extension system suffers with limitations of financial and man-power resources. Additionally, farmers have minimal access to the scientific advancement in the field of livestock production. Further, the meta-analysis revealed that the farmers had knowledge of 47 % on technologies that has potential to mitigate the effects of climate change on goats. The health, feeding, breeding and housing practices had an adoption level of 31 %, 40 %, 58 % and 70 % respectively. While the extent of adoption of specific practices such as ectoparasitic control, deworming and vaccination ranged from 24 % to 48 %. The high climatic risk prone areas had low overall adoption rate on comparing to low risk prone areas even though the knowledge on goat farming practices/technologies were vice versa. This study identified that knowledge of farmers, access to extension services and individuals’ economic motivation had larger effect on adoption with a population effect size of 0.69, 0.52 and 0.52, respectively. The climate risk proneness moderate the relationship of access to extension services and education with adoption. Thus, meta-analysis suggests that targeting farmers with better education and having contacts with extension agents with climate risk mitigating technologies may provide earlier benefits. Added the livestock extension system plays a significant role in technology transfer activities in goat farming, which needs to adapt with investments, human resources, research on climate resilient technology transfer activities and capacity building programs. Such an approach might help to deliver the technical know-how on climate resilient technologies and skills to farming community to mitigate the negative effects of climate change. | ||
650 | 4 | |a Climate change | |
650 | 4 | |a Goat farming | |
650 | 4 | |a Livestock Extension | |
650 | 4 | |a Meta-Analysis | |
650 | 4 | |a Technology Adoption | |
700 | 1 | |a Jothilakshmi, M. |e verfasserin |4 aut | |
700 | 1 | |a Silpa, M.V. |e verfasserin |4 aut | |
700 | 1 | |a Sejian, V. |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Small ruminant research |d Amsterdam [u.a.] : Elsevier Science, 1988 |g 216 |h Online-Ressource |w (DE-627)306591537 |w (DE-600)1498734-X |w (DE-576)090954483 |x 0921-4488 |7 nnns |
773 | 1 | 8 | |g volume:216 |
912 | |a GBV_USEFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
951 | |a AR | ||
952 | |d 216 |
author_variant |
d t dt m j mj m s ms v s vs |
---|---|
matchkey_str |
article:09214488:2022----::atrdiigdpinflmtcikiiaigehooisihpcarfrneootamn |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1016/j.smallrumres.2022.106804 doi (DE-627)ELV00868815X (ELSEVIER)S0921-4488(22)00193-6 DE-627 ger DE-627 rda eng 630 640 VZ Thirunavukkarasu, D. verfasserin aut Factors driving adoption of climatic risk mitigating technologies with special reference to goat farming in India: Evidence from meta-analysis 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier An attempt to comprehend the status of factors driving adoption of technologies with specific reference to goat farming in the changing climatic scenario was studied through narrative literature review and meta-analysis. Review of past studies suggests that the extension system suffers with limitations of financial and man-power resources. Additionally, farmers have minimal access to the scientific advancement in the field of livestock production. Further, the meta-analysis revealed that the farmers had knowledge of 47 % on technologies that has potential to mitigate the effects of climate change on goats. The health, feeding, breeding and housing practices had an adoption level of 31 %, 40 %, 58 % and 70 % respectively. While the extent of adoption of specific practices such as ectoparasitic control, deworming and vaccination ranged from 24 % to 48 %. The high climatic risk prone areas had low overall adoption rate on comparing to low risk prone areas even though the knowledge on goat farming practices/technologies were vice versa. This study identified that knowledge of farmers, access to extension services and individuals’ economic motivation had larger effect on adoption with a population effect size of 0.69, 0.52 and 0.52, respectively. The climate risk proneness moderate the relationship of access to extension services and education with adoption. Thus, meta-analysis suggests that targeting farmers with better education and having contacts with extension agents with climate risk mitigating technologies may provide earlier benefits. Added the livestock extension system plays a significant role in technology transfer activities in goat farming, which needs to adapt with investments, human resources, research on climate resilient technology transfer activities and capacity building programs. Such an approach might help to deliver the technical know-how on climate resilient technologies and skills to farming community to mitigate the negative effects of climate change. Climate change Goat farming Livestock Extension Meta-Analysis Technology Adoption Jothilakshmi, M. verfasserin aut Silpa, M.V. verfasserin aut Sejian, V. verfasserin aut Enthalten in Small ruminant research Amsterdam [u.a.] : Elsevier Science, 1988 216 Online-Ressource (DE-627)306591537 (DE-600)1498734-X (DE-576)090954483 0921-4488 nnns volume:216 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 AR 216 |
spelling |
10.1016/j.smallrumres.2022.106804 doi (DE-627)ELV00868815X (ELSEVIER)S0921-4488(22)00193-6 DE-627 ger DE-627 rda eng 630 640 VZ Thirunavukkarasu, D. verfasserin aut Factors driving adoption of climatic risk mitigating technologies with special reference to goat farming in India: Evidence from meta-analysis 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier An attempt to comprehend the status of factors driving adoption of technologies with specific reference to goat farming in the changing climatic scenario was studied through narrative literature review and meta-analysis. Review of past studies suggests that the extension system suffers with limitations of financial and man-power resources. Additionally, farmers have minimal access to the scientific advancement in the field of livestock production. Further, the meta-analysis revealed that the farmers had knowledge of 47 % on technologies that has potential to mitigate the effects of climate change on goats. The health, feeding, breeding and housing practices had an adoption level of 31 %, 40 %, 58 % and 70 % respectively. While the extent of adoption of specific practices such as ectoparasitic control, deworming and vaccination ranged from 24 % to 48 %. The high climatic risk prone areas had low overall adoption rate on comparing to low risk prone areas even though the knowledge on goat farming practices/technologies were vice versa. This study identified that knowledge of farmers, access to extension services and individuals’ economic motivation had larger effect on adoption with a population effect size of 0.69, 0.52 and 0.52, respectively. The climate risk proneness moderate the relationship of access to extension services and education with adoption. Thus, meta-analysis suggests that targeting farmers with better education and having contacts with extension agents with climate risk mitigating technologies may provide earlier benefits. Added the livestock extension system plays a significant role in technology transfer activities in goat farming, which needs to adapt with investments, human resources, research on climate resilient technology transfer activities and capacity building programs. Such an approach might help to deliver the technical know-how on climate resilient technologies and skills to farming community to mitigate the negative effects of climate change. Climate change Goat farming Livestock Extension Meta-Analysis Technology Adoption Jothilakshmi, M. verfasserin aut Silpa, M.V. verfasserin aut Sejian, V. verfasserin aut Enthalten in Small ruminant research Amsterdam [u.a.] : Elsevier Science, 1988 216 Online-Ressource (DE-627)306591537 (DE-600)1498734-X (DE-576)090954483 0921-4488 nnns volume:216 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 AR 216 |
allfields_unstemmed |
10.1016/j.smallrumres.2022.106804 doi (DE-627)ELV00868815X (ELSEVIER)S0921-4488(22)00193-6 DE-627 ger DE-627 rda eng 630 640 VZ Thirunavukkarasu, D. verfasserin aut Factors driving adoption of climatic risk mitigating technologies with special reference to goat farming in India: Evidence from meta-analysis 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier An attempt to comprehend the status of factors driving adoption of technologies with specific reference to goat farming in the changing climatic scenario was studied through narrative literature review and meta-analysis. Review of past studies suggests that the extension system suffers with limitations of financial and man-power resources. Additionally, farmers have minimal access to the scientific advancement in the field of livestock production. Further, the meta-analysis revealed that the farmers had knowledge of 47 % on technologies that has potential to mitigate the effects of climate change on goats. The health, feeding, breeding and housing practices had an adoption level of 31 %, 40 %, 58 % and 70 % respectively. While the extent of adoption of specific practices such as ectoparasitic control, deworming and vaccination ranged from 24 % to 48 %. The high climatic risk prone areas had low overall adoption rate on comparing to low risk prone areas even though the knowledge on goat farming practices/technologies were vice versa. This study identified that knowledge of farmers, access to extension services and individuals’ economic motivation had larger effect on adoption with a population effect size of 0.69, 0.52 and 0.52, respectively. The climate risk proneness moderate the relationship of access to extension services and education with adoption. Thus, meta-analysis suggests that targeting farmers with better education and having contacts with extension agents with climate risk mitigating technologies may provide earlier benefits. Added the livestock extension system plays a significant role in technology transfer activities in goat farming, which needs to adapt with investments, human resources, research on climate resilient technology transfer activities and capacity building programs. Such an approach might help to deliver the technical know-how on climate resilient technologies and skills to farming community to mitigate the negative effects of climate change. Climate change Goat farming Livestock Extension Meta-Analysis Technology Adoption Jothilakshmi, M. verfasserin aut Silpa, M.V. verfasserin aut Sejian, V. verfasserin aut Enthalten in Small ruminant research Amsterdam [u.a.] : Elsevier Science, 1988 216 Online-Ressource (DE-627)306591537 (DE-600)1498734-X (DE-576)090954483 0921-4488 nnns volume:216 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 AR 216 |
allfieldsGer |
10.1016/j.smallrumres.2022.106804 doi (DE-627)ELV00868815X (ELSEVIER)S0921-4488(22)00193-6 DE-627 ger DE-627 rda eng 630 640 VZ Thirunavukkarasu, D. verfasserin aut Factors driving adoption of climatic risk mitigating technologies with special reference to goat farming in India: Evidence from meta-analysis 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier An attempt to comprehend the status of factors driving adoption of technologies with specific reference to goat farming in the changing climatic scenario was studied through narrative literature review and meta-analysis. Review of past studies suggests that the extension system suffers with limitations of financial and man-power resources. Additionally, farmers have minimal access to the scientific advancement in the field of livestock production. Further, the meta-analysis revealed that the farmers had knowledge of 47 % on technologies that has potential to mitigate the effects of climate change on goats. The health, feeding, breeding and housing practices had an adoption level of 31 %, 40 %, 58 % and 70 % respectively. While the extent of adoption of specific practices such as ectoparasitic control, deworming and vaccination ranged from 24 % to 48 %. The high climatic risk prone areas had low overall adoption rate on comparing to low risk prone areas even though the knowledge on goat farming practices/technologies were vice versa. This study identified that knowledge of farmers, access to extension services and individuals’ economic motivation had larger effect on adoption with a population effect size of 0.69, 0.52 and 0.52, respectively. The climate risk proneness moderate the relationship of access to extension services and education with adoption. Thus, meta-analysis suggests that targeting farmers with better education and having contacts with extension agents with climate risk mitigating technologies may provide earlier benefits. Added the livestock extension system plays a significant role in technology transfer activities in goat farming, which needs to adapt with investments, human resources, research on climate resilient technology transfer activities and capacity building programs. Such an approach might help to deliver the technical know-how on climate resilient technologies and skills to farming community to mitigate the negative effects of climate change. Climate change Goat farming Livestock Extension Meta-Analysis Technology Adoption Jothilakshmi, M. verfasserin aut Silpa, M.V. verfasserin aut Sejian, V. verfasserin aut Enthalten in Small ruminant research Amsterdam [u.a.] : Elsevier Science, 1988 216 Online-Ressource (DE-627)306591537 (DE-600)1498734-X (DE-576)090954483 0921-4488 nnns volume:216 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 AR 216 |
allfieldsSound |
10.1016/j.smallrumres.2022.106804 doi (DE-627)ELV00868815X (ELSEVIER)S0921-4488(22)00193-6 DE-627 ger DE-627 rda eng 630 640 VZ Thirunavukkarasu, D. verfasserin aut Factors driving adoption of climatic risk mitigating technologies with special reference to goat farming in India: Evidence from meta-analysis 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier An attempt to comprehend the status of factors driving adoption of technologies with specific reference to goat farming in the changing climatic scenario was studied through narrative literature review and meta-analysis. Review of past studies suggests that the extension system suffers with limitations of financial and man-power resources. Additionally, farmers have minimal access to the scientific advancement in the field of livestock production. Further, the meta-analysis revealed that the farmers had knowledge of 47 % on technologies that has potential to mitigate the effects of climate change on goats. The health, feeding, breeding and housing practices had an adoption level of 31 %, 40 %, 58 % and 70 % respectively. While the extent of adoption of specific practices such as ectoparasitic control, deworming and vaccination ranged from 24 % to 48 %. The high climatic risk prone areas had low overall adoption rate on comparing to low risk prone areas even though the knowledge on goat farming practices/technologies were vice versa. This study identified that knowledge of farmers, access to extension services and individuals’ economic motivation had larger effect on adoption with a population effect size of 0.69, 0.52 and 0.52, respectively. The climate risk proneness moderate the relationship of access to extension services and education with adoption. Thus, meta-analysis suggests that targeting farmers with better education and having contacts with extension agents with climate risk mitigating technologies may provide earlier benefits. Added the livestock extension system plays a significant role in technology transfer activities in goat farming, which needs to adapt with investments, human resources, research on climate resilient technology transfer activities and capacity building programs. Such an approach might help to deliver the technical know-how on climate resilient technologies and skills to farming community to mitigate the negative effects of climate change. Climate change Goat farming Livestock Extension Meta-Analysis Technology Adoption Jothilakshmi, M. verfasserin aut Silpa, M.V. verfasserin aut Sejian, V. verfasserin aut Enthalten in Small ruminant research Amsterdam [u.a.] : Elsevier Science, 1988 216 Online-Ressource (DE-627)306591537 (DE-600)1498734-X (DE-576)090954483 0921-4488 nnns volume:216 GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 AR 216 |
language |
English |
source |
Enthalten in Small ruminant research 216 volume:216 |
sourceStr |
Enthalten in Small ruminant research 216 volume:216 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Climate change Goat farming Livestock Extension Meta-Analysis Technology Adoption |
dewey-raw |
630 |
isfreeaccess_bool |
false |
container_title |
Small ruminant research |
authorswithroles_txt_mv |
Thirunavukkarasu, D. @@aut@@ Jothilakshmi, M. @@aut@@ Silpa, M.V. @@aut@@ Sejian, V. @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
306591537 |
dewey-sort |
3630 |
id |
ELV00868815X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV00868815X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240104093654.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230509s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.smallrumres.2022.106804</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV00868815X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0921-4488(22)00193-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">630</subfield><subfield code="a">640</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Thirunavukkarasu, D.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Factors driving adoption of climatic risk mitigating technologies with special reference to goat farming in India: Evidence from meta-analysis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">An attempt to comprehend the status of factors driving adoption of technologies with specific reference to goat farming in the changing climatic scenario was studied through narrative literature review and meta-analysis. Review of past studies suggests that the extension system suffers with limitations of financial and man-power resources. Additionally, farmers have minimal access to the scientific advancement in the field of livestock production. Further, the meta-analysis revealed that the farmers had knowledge of 47 % on technologies that has potential to mitigate the effects of climate change on goats. The health, feeding, breeding and housing practices had an adoption level of 31 %, 40 %, 58 % and 70 % respectively. While the extent of adoption of specific practices such as ectoparasitic control, deworming and vaccination ranged from 24 % to 48 %. The high climatic risk prone areas had low overall adoption rate on comparing to low risk prone areas even though the knowledge on goat farming practices/technologies were vice versa. This study identified that knowledge of farmers, access to extension services and individuals’ economic motivation had larger effect on adoption with a population effect size of 0.69, 0.52 and 0.52, respectively. The climate risk proneness moderate the relationship of access to extension services and education with adoption. Thus, meta-analysis suggests that targeting farmers with better education and having contacts with extension agents with climate risk mitigating technologies may provide earlier benefits. Added the livestock extension system plays a significant role in technology transfer activities in goat farming, which needs to adapt with investments, human resources, research on climate resilient technology transfer activities and capacity building programs. Such an approach might help to deliver the technical know-how on climate resilient technologies and skills to farming community to mitigate the negative effects of climate change.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Climate change</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Goat farming</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Livestock Extension</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Meta-Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Technology Adoption</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jothilakshmi, M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Silpa, M.V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sejian, V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Small ruminant research</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1988</subfield><subfield code="g">216</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306591537</subfield><subfield code="w">(DE-600)1498734-X</subfield><subfield code="w">(DE-576)090954483</subfield><subfield code="x">0921-4488</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:216</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">216</subfield></datafield></record></collection>
|
author |
Thirunavukkarasu, D. |
spellingShingle |
Thirunavukkarasu, D. ddc 630 misc Climate change misc Goat farming misc Livestock Extension misc Meta-Analysis misc Technology Adoption Factors driving adoption of climatic risk mitigating technologies with special reference to goat farming in India: Evidence from meta-analysis |
authorStr |
Thirunavukkarasu, D. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)306591537 |
format |
electronic Article |
dewey-ones |
630 - Agriculture & related technologies 640 - Home & family management |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0921-4488 |
topic_title |
630 640 VZ Factors driving adoption of climatic risk mitigating technologies with special reference to goat farming in India: Evidence from meta-analysis Climate change Goat farming Livestock Extension Meta-Analysis Technology Adoption |
topic |
ddc 630 misc Climate change misc Goat farming misc Livestock Extension misc Meta-Analysis misc Technology Adoption |
topic_unstemmed |
ddc 630 misc Climate change misc Goat farming misc Livestock Extension misc Meta-Analysis misc Technology Adoption |
topic_browse |
ddc 630 misc Climate change misc Goat farming misc Livestock Extension misc Meta-Analysis misc Technology Adoption |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Small ruminant research |
hierarchy_parent_id |
306591537 |
dewey-tens |
630 - Agriculture 640 - Home & family management |
hierarchy_top_title |
Small ruminant research |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)306591537 (DE-600)1498734-X (DE-576)090954483 |
title |
Factors driving adoption of climatic risk mitigating technologies with special reference to goat farming in India: Evidence from meta-analysis |
ctrlnum |
(DE-627)ELV00868815X (ELSEVIER)S0921-4488(22)00193-6 |
title_full |
Factors driving adoption of climatic risk mitigating technologies with special reference to goat farming in India: Evidence from meta-analysis |
author_sort |
Thirunavukkarasu, D. |
journal |
Small ruminant research |
journalStr |
Small ruminant research |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
author_browse |
Thirunavukkarasu, D. Jothilakshmi, M. Silpa, M.V. Sejian, V. |
container_volume |
216 |
class |
630 640 VZ |
format_se |
Elektronische Aufsätze |
author-letter |
Thirunavukkarasu, D. |
doi_str_mv |
10.1016/j.smallrumres.2022.106804 |
dewey-full |
630 640 |
author2-role |
verfasserin |
title_sort |
factors driving adoption of climatic risk mitigating technologies with special reference to goat farming in india: evidence from meta-analysis |
title_auth |
Factors driving adoption of climatic risk mitigating technologies with special reference to goat farming in India: Evidence from meta-analysis |
abstract |
An attempt to comprehend the status of factors driving adoption of technologies with specific reference to goat farming in the changing climatic scenario was studied through narrative literature review and meta-analysis. Review of past studies suggests that the extension system suffers with limitations of financial and man-power resources. Additionally, farmers have minimal access to the scientific advancement in the field of livestock production. Further, the meta-analysis revealed that the farmers had knowledge of 47 % on technologies that has potential to mitigate the effects of climate change on goats. The health, feeding, breeding and housing practices had an adoption level of 31 %, 40 %, 58 % and 70 % respectively. While the extent of adoption of specific practices such as ectoparasitic control, deworming and vaccination ranged from 24 % to 48 %. The high climatic risk prone areas had low overall adoption rate on comparing to low risk prone areas even though the knowledge on goat farming practices/technologies were vice versa. This study identified that knowledge of farmers, access to extension services and individuals’ economic motivation had larger effect on adoption with a population effect size of 0.69, 0.52 and 0.52, respectively. The climate risk proneness moderate the relationship of access to extension services and education with adoption. Thus, meta-analysis suggests that targeting farmers with better education and having contacts with extension agents with climate risk mitigating technologies may provide earlier benefits. Added the livestock extension system plays a significant role in technology transfer activities in goat farming, which needs to adapt with investments, human resources, research on climate resilient technology transfer activities and capacity building programs. Such an approach might help to deliver the technical know-how on climate resilient technologies and skills to farming community to mitigate the negative effects of climate change. |
abstractGer |
An attempt to comprehend the status of factors driving adoption of technologies with specific reference to goat farming in the changing climatic scenario was studied through narrative literature review and meta-analysis. Review of past studies suggests that the extension system suffers with limitations of financial and man-power resources. Additionally, farmers have minimal access to the scientific advancement in the field of livestock production. Further, the meta-analysis revealed that the farmers had knowledge of 47 % on technologies that has potential to mitigate the effects of climate change on goats. The health, feeding, breeding and housing practices had an adoption level of 31 %, 40 %, 58 % and 70 % respectively. While the extent of adoption of specific practices such as ectoparasitic control, deworming and vaccination ranged from 24 % to 48 %. The high climatic risk prone areas had low overall adoption rate on comparing to low risk prone areas even though the knowledge on goat farming practices/technologies were vice versa. This study identified that knowledge of farmers, access to extension services and individuals’ economic motivation had larger effect on adoption with a population effect size of 0.69, 0.52 and 0.52, respectively. The climate risk proneness moderate the relationship of access to extension services and education with adoption. Thus, meta-analysis suggests that targeting farmers with better education and having contacts with extension agents with climate risk mitigating technologies may provide earlier benefits. Added the livestock extension system plays a significant role in technology transfer activities in goat farming, which needs to adapt with investments, human resources, research on climate resilient technology transfer activities and capacity building programs. Such an approach might help to deliver the technical know-how on climate resilient technologies and skills to farming community to mitigate the negative effects of climate change. |
abstract_unstemmed |
An attempt to comprehend the status of factors driving adoption of technologies with specific reference to goat farming in the changing climatic scenario was studied through narrative literature review and meta-analysis. Review of past studies suggests that the extension system suffers with limitations of financial and man-power resources. Additionally, farmers have minimal access to the scientific advancement in the field of livestock production. Further, the meta-analysis revealed that the farmers had knowledge of 47 % on technologies that has potential to mitigate the effects of climate change on goats. The health, feeding, breeding and housing practices had an adoption level of 31 %, 40 %, 58 % and 70 % respectively. While the extent of adoption of specific practices such as ectoparasitic control, deworming and vaccination ranged from 24 % to 48 %. The high climatic risk prone areas had low overall adoption rate on comparing to low risk prone areas even though the knowledge on goat farming practices/technologies were vice versa. This study identified that knowledge of farmers, access to extension services and individuals’ economic motivation had larger effect on adoption with a population effect size of 0.69, 0.52 and 0.52, respectively. The climate risk proneness moderate the relationship of access to extension services and education with adoption. Thus, meta-analysis suggests that targeting farmers with better education and having contacts with extension agents with climate risk mitigating technologies may provide earlier benefits. Added the livestock extension system plays a significant role in technology transfer activities in goat farming, which needs to adapt with investments, human resources, research on climate resilient technology transfer activities and capacity building programs. Such an approach might help to deliver the technical know-how on climate resilient technologies and skills to farming community to mitigate the negative effects of climate change. |
collection_details |
GBV_USEFLAG_U GBV_ELV SYSFLAG_U GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Factors driving adoption of climatic risk mitigating technologies with special reference to goat farming in India: Evidence from meta-analysis |
remote_bool |
true |
author2 |
Jothilakshmi, M. Silpa, M.V. Sejian, V. |
author2Str |
Jothilakshmi, M. Silpa, M.V. Sejian, V. |
ppnlink |
306591537 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.smallrumres.2022.106804 |
up_date |
2024-07-06T20:33:41.452Z |
_version_ |
1803863218144149504 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV00868815X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240104093654.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230509s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.smallrumres.2022.106804</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV00868815X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0921-4488(22)00193-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">630</subfield><subfield code="a">640</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Thirunavukkarasu, D.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Factors driving adoption of climatic risk mitigating technologies with special reference to goat farming in India: Evidence from meta-analysis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">An attempt to comprehend the status of factors driving adoption of technologies with specific reference to goat farming in the changing climatic scenario was studied through narrative literature review and meta-analysis. Review of past studies suggests that the extension system suffers with limitations of financial and man-power resources. Additionally, farmers have minimal access to the scientific advancement in the field of livestock production. Further, the meta-analysis revealed that the farmers had knowledge of 47 % on technologies that has potential to mitigate the effects of climate change on goats. The health, feeding, breeding and housing practices had an adoption level of 31 %, 40 %, 58 % and 70 % respectively. While the extent of adoption of specific practices such as ectoparasitic control, deworming and vaccination ranged from 24 % to 48 %. The high climatic risk prone areas had low overall adoption rate on comparing to low risk prone areas even though the knowledge on goat farming practices/technologies were vice versa. This study identified that knowledge of farmers, access to extension services and individuals’ economic motivation had larger effect on adoption with a population effect size of 0.69, 0.52 and 0.52, respectively. The climate risk proneness moderate the relationship of access to extension services and education with adoption. Thus, meta-analysis suggests that targeting farmers with better education and having contacts with extension agents with climate risk mitigating technologies may provide earlier benefits. Added the livestock extension system plays a significant role in technology transfer activities in goat farming, which needs to adapt with investments, human resources, research on climate resilient technology transfer activities and capacity building programs. Such an approach might help to deliver the technical know-how on climate resilient technologies and skills to farming community to mitigate the negative effects of climate change.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Climate change</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Goat farming</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Livestock Extension</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Meta-Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Technology Adoption</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jothilakshmi, M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Silpa, M.V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sejian, V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Small ruminant research</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1988</subfield><subfield code="g">216</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306591537</subfield><subfield code="w">(DE-600)1498734-X</subfield><subfield code="w">(DE-576)090954483</subfield><subfield code="x">0921-4488</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:216</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">216</subfield></datafield></record></collection>
|
score |
7.398694 |