Inner-shell ionisation of Xe
The generation of collision-induced vacancies and their transfer within the electronic inner shells are the source of several unprecedented phenomena, which have been revealed in recent experimental studies conducted using state-of-the-art next-generation accelerators and detectors. Despite the mult...
Ausführliche Beschreibung
Autor*in: |
Ahmad, C.V. [verfasserIn] Gupta, R. [verfasserIn] Chakraborty, K. [verfasserIn] Swami, D.K. [verfasserIn] Verma, P. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Nuclear instruments & methods in physics research / B - Amsterdam [u.a.] : Elsevier, 1984, 531, Seite 9-23 |
---|---|
Übergeordnetes Werk: |
volume:531 ; pages:9-23 |
DOI / URN: |
10.1016/j.nimb.2022.08.010 |
---|
Katalog-ID: |
ELV008694796 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV008694796 | ||
003 | DE-627 | ||
005 | 20230524125829.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230509s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.nimb.2022.08.010 |2 doi | |
035 | |a (DE-627)ELV008694796 | ||
035 | |a (ELSEVIER)S0168-583X(22)00214-2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q DE-600 |
084 | |a 33.05 |2 bkl | ||
084 | |a 33.40 |2 bkl | ||
100 | 1 | |a Ahmad, C.V. |e verfasserin |0 (orcid)0000-0001-5130-6948 |4 aut | |
245 | 1 | 0 | |a Inner-shell ionisation of Xe |
264 | 1 | |c 2022 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The generation of collision-induced vacancies and their transfer within the electronic inner shells are the source of several unprecedented phenomena, which have been revealed in recent experimental studies conducted using state-of-the-art next-generation accelerators and detectors. Despite the multitude of studies conducted over the years, our understanding of the atomic vacancy transfer mechanisms remains exiguous. The detection and analysis of collision-induced X-rays is a widely-used powerful technique for analysing atomic-scale phenomena. However, both experimental and theoretical investigations on ion–atom collision-induced X-rays have remained mostly restricted to high-energy light-ion impact on heavy atoms. To date, only a few studies have been reported on the investigation of very-low-energy heavy-ion impact on heavy atoms using X-rays, especially M-shell X-rays of the heavy atom. This study was conducted to evaluate the inner-shell ionisation of Au (135 and 508 μ g / cm 2 ) and Pb (107, 157 and 390 μ g / cm 2 ) targets due to low-energy (2–5 MeV) 54Xe q + -ion impact. The collision-induced X-ray spectra of both the collision partners were examined, and the corresponding intensity ratios and cross-sections were compared with those calculated using two well-known ionisation theories, viz. PWBA and ECPSSR. The measured cross-sections were underestimated by these theories. Moreover, the cross-sections measured in this study were found to be several orders of magnitude higher than those obtained in other reported studies on low-energy lighter-ion-impact on Au and Pb. The significant discrepancies observed between the experimental and theoretical values have been explained qualitatively within the framework of quasi-molecular orbital formation using level correlations. The insights obtained from the results of this study can be applied to analyse the vacancy transfer mechanisms in very-heavy systems (combined atomic number > 100). | ||
650 | 4 | |a X-rays | |
650 | 4 | |a PWBA | |
650 | 4 | |a ECPSSR | |
650 | 4 | |a Heavy-ion impact | |
650 | 4 | |a Molecular orbital | |
700 | 1 | |a Gupta, R. |e verfasserin |0 (orcid)0000-0001-9592-1299 |4 aut | |
700 | 1 | |a Chakraborty, K. |e verfasserin |0 (orcid)0000-0003-0666-4572 |4 aut | |
700 | 1 | |a Swami, D.K. |e verfasserin |4 aut | |
700 | 1 | |a Verma, P. |e verfasserin |0 (orcid)0000-0001-7686-6829 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Nuclear instruments & methods in physics research / B |d Amsterdam [u.a.] : Elsevier, 1984 |g 531, Seite 9-23 |h Online-Ressource |w (DE-627)266014585 |w (DE-600)1466524-4 |w (DE-576)074959735 |7 nnns |
773 | 1 | 8 | |g volume:531 |g pages:9-23 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 33.05 |j Experimentalphysik |
936 | b | k | |a 33.40 |j Kernphysik |
951 | |a AR | ||
952 | |d 531 |h 9-23 |
author_variant |
c a ca r g rg k c kc d s ds p v pv |
---|---|
matchkey_str |
ahmadcvguptarchakrabortykswamidkvermap:2022----:neseloiai |
hierarchy_sort_str |
2022 |
bklnumber |
33.05 33.40 |
publishDate |
2022 |
allfields |
10.1016/j.nimb.2022.08.010 doi (DE-627)ELV008694796 (ELSEVIER)S0168-583X(22)00214-2 DE-627 ger DE-627 rda eng 530 DE-600 33.05 bkl 33.40 bkl Ahmad, C.V. verfasserin (orcid)0000-0001-5130-6948 aut Inner-shell ionisation of Xe 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The generation of collision-induced vacancies and their transfer within the electronic inner shells are the source of several unprecedented phenomena, which have been revealed in recent experimental studies conducted using state-of-the-art next-generation accelerators and detectors. Despite the multitude of studies conducted over the years, our understanding of the atomic vacancy transfer mechanisms remains exiguous. The detection and analysis of collision-induced X-rays is a widely-used powerful technique for analysing atomic-scale phenomena. However, both experimental and theoretical investigations on ion–atom collision-induced X-rays have remained mostly restricted to high-energy light-ion impact on heavy atoms. To date, only a few studies have been reported on the investigation of very-low-energy heavy-ion impact on heavy atoms using X-rays, especially M-shell X-rays of the heavy atom. This study was conducted to evaluate the inner-shell ionisation of Au (135 and 508 μ g / cm 2 ) and Pb (107, 157 and 390 μ g / cm 2 ) targets due to low-energy (2–5 MeV) 54Xe q + -ion impact. The collision-induced X-ray spectra of both the collision partners were examined, and the corresponding intensity ratios and cross-sections were compared with those calculated using two well-known ionisation theories, viz. PWBA and ECPSSR. The measured cross-sections were underestimated by these theories. Moreover, the cross-sections measured in this study were found to be several orders of magnitude higher than those obtained in other reported studies on low-energy lighter-ion-impact on Au and Pb. The significant discrepancies observed between the experimental and theoretical values have been explained qualitatively within the framework of quasi-molecular orbital formation using level correlations. The insights obtained from the results of this study can be applied to analyse the vacancy transfer mechanisms in very-heavy systems (combined atomic number > 100). X-rays PWBA ECPSSR Heavy-ion impact Molecular orbital Gupta, R. verfasserin (orcid)0000-0001-9592-1299 aut Chakraborty, K. verfasserin (orcid)0000-0003-0666-4572 aut Swami, D.K. verfasserin aut Verma, P. verfasserin (orcid)0000-0001-7686-6829 aut Enthalten in Nuclear instruments & methods in physics research / B Amsterdam [u.a.] : Elsevier, 1984 531, Seite 9-23 Online-Ressource (DE-627)266014585 (DE-600)1466524-4 (DE-576)074959735 nnns volume:531 pages:9-23 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 33.05 Experimentalphysik 33.40 Kernphysik AR 531 9-23 |
spelling |
10.1016/j.nimb.2022.08.010 doi (DE-627)ELV008694796 (ELSEVIER)S0168-583X(22)00214-2 DE-627 ger DE-627 rda eng 530 DE-600 33.05 bkl 33.40 bkl Ahmad, C.V. verfasserin (orcid)0000-0001-5130-6948 aut Inner-shell ionisation of Xe 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The generation of collision-induced vacancies and their transfer within the electronic inner shells are the source of several unprecedented phenomena, which have been revealed in recent experimental studies conducted using state-of-the-art next-generation accelerators and detectors. Despite the multitude of studies conducted over the years, our understanding of the atomic vacancy transfer mechanisms remains exiguous. The detection and analysis of collision-induced X-rays is a widely-used powerful technique for analysing atomic-scale phenomena. However, both experimental and theoretical investigations on ion–atom collision-induced X-rays have remained mostly restricted to high-energy light-ion impact on heavy atoms. To date, only a few studies have been reported on the investigation of very-low-energy heavy-ion impact on heavy atoms using X-rays, especially M-shell X-rays of the heavy atom. This study was conducted to evaluate the inner-shell ionisation of Au (135 and 508 μ g / cm 2 ) and Pb (107, 157 and 390 μ g / cm 2 ) targets due to low-energy (2–5 MeV) 54Xe q + -ion impact. The collision-induced X-ray spectra of both the collision partners were examined, and the corresponding intensity ratios and cross-sections were compared with those calculated using two well-known ionisation theories, viz. PWBA and ECPSSR. The measured cross-sections were underestimated by these theories. Moreover, the cross-sections measured in this study were found to be several orders of magnitude higher than those obtained in other reported studies on low-energy lighter-ion-impact on Au and Pb. The significant discrepancies observed between the experimental and theoretical values have been explained qualitatively within the framework of quasi-molecular orbital formation using level correlations. The insights obtained from the results of this study can be applied to analyse the vacancy transfer mechanisms in very-heavy systems (combined atomic number > 100). X-rays PWBA ECPSSR Heavy-ion impact Molecular orbital Gupta, R. verfasserin (orcid)0000-0001-9592-1299 aut Chakraborty, K. verfasserin (orcid)0000-0003-0666-4572 aut Swami, D.K. verfasserin aut Verma, P. verfasserin (orcid)0000-0001-7686-6829 aut Enthalten in Nuclear instruments & methods in physics research / B Amsterdam [u.a.] : Elsevier, 1984 531, Seite 9-23 Online-Ressource (DE-627)266014585 (DE-600)1466524-4 (DE-576)074959735 nnns volume:531 pages:9-23 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 33.05 Experimentalphysik 33.40 Kernphysik AR 531 9-23 |
allfields_unstemmed |
10.1016/j.nimb.2022.08.010 doi (DE-627)ELV008694796 (ELSEVIER)S0168-583X(22)00214-2 DE-627 ger DE-627 rda eng 530 DE-600 33.05 bkl 33.40 bkl Ahmad, C.V. verfasserin (orcid)0000-0001-5130-6948 aut Inner-shell ionisation of Xe 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The generation of collision-induced vacancies and their transfer within the electronic inner shells are the source of several unprecedented phenomena, which have been revealed in recent experimental studies conducted using state-of-the-art next-generation accelerators and detectors. Despite the multitude of studies conducted over the years, our understanding of the atomic vacancy transfer mechanisms remains exiguous. The detection and analysis of collision-induced X-rays is a widely-used powerful technique for analysing atomic-scale phenomena. However, both experimental and theoretical investigations on ion–atom collision-induced X-rays have remained mostly restricted to high-energy light-ion impact on heavy atoms. To date, only a few studies have been reported on the investigation of very-low-energy heavy-ion impact on heavy atoms using X-rays, especially M-shell X-rays of the heavy atom. This study was conducted to evaluate the inner-shell ionisation of Au (135 and 508 μ g / cm 2 ) and Pb (107, 157 and 390 μ g / cm 2 ) targets due to low-energy (2–5 MeV) 54Xe q + -ion impact. The collision-induced X-ray spectra of both the collision partners were examined, and the corresponding intensity ratios and cross-sections were compared with those calculated using two well-known ionisation theories, viz. PWBA and ECPSSR. The measured cross-sections were underestimated by these theories. Moreover, the cross-sections measured in this study were found to be several orders of magnitude higher than those obtained in other reported studies on low-energy lighter-ion-impact on Au and Pb. The significant discrepancies observed between the experimental and theoretical values have been explained qualitatively within the framework of quasi-molecular orbital formation using level correlations. The insights obtained from the results of this study can be applied to analyse the vacancy transfer mechanisms in very-heavy systems (combined atomic number > 100). X-rays PWBA ECPSSR Heavy-ion impact Molecular orbital Gupta, R. verfasserin (orcid)0000-0001-9592-1299 aut Chakraborty, K. verfasserin (orcid)0000-0003-0666-4572 aut Swami, D.K. verfasserin aut Verma, P. verfasserin (orcid)0000-0001-7686-6829 aut Enthalten in Nuclear instruments & methods in physics research / B Amsterdam [u.a.] : Elsevier, 1984 531, Seite 9-23 Online-Ressource (DE-627)266014585 (DE-600)1466524-4 (DE-576)074959735 nnns volume:531 pages:9-23 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 33.05 Experimentalphysik 33.40 Kernphysik AR 531 9-23 |
allfieldsGer |
10.1016/j.nimb.2022.08.010 doi (DE-627)ELV008694796 (ELSEVIER)S0168-583X(22)00214-2 DE-627 ger DE-627 rda eng 530 DE-600 33.05 bkl 33.40 bkl Ahmad, C.V. verfasserin (orcid)0000-0001-5130-6948 aut Inner-shell ionisation of Xe 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The generation of collision-induced vacancies and their transfer within the electronic inner shells are the source of several unprecedented phenomena, which have been revealed in recent experimental studies conducted using state-of-the-art next-generation accelerators and detectors. Despite the multitude of studies conducted over the years, our understanding of the atomic vacancy transfer mechanisms remains exiguous. The detection and analysis of collision-induced X-rays is a widely-used powerful technique for analysing atomic-scale phenomena. However, both experimental and theoretical investigations on ion–atom collision-induced X-rays have remained mostly restricted to high-energy light-ion impact on heavy atoms. To date, only a few studies have been reported on the investigation of very-low-energy heavy-ion impact on heavy atoms using X-rays, especially M-shell X-rays of the heavy atom. This study was conducted to evaluate the inner-shell ionisation of Au (135 and 508 μ g / cm 2 ) and Pb (107, 157 and 390 μ g / cm 2 ) targets due to low-energy (2–5 MeV) 54Xe q + -ion impact. The collision-induced X-ray spectra of both the collision partners were examined, and the corresponding intensity ratios and cross-sections were compared with those calculated using two well-known ionisation theories, viz. PWBA and ECPSSR. The measured cross-sections were underestimated by these theories. Moreover, the cross-sections measured in this study were found to be several orders of magnitude higher than those obtained in other reported studies on low-energy lighter-ion-impact on Au and Pb. The significant discrepancies observed between the experimental and theoretical values have been explained qualitatively within the framework of quasi-molecular orbital formation using level correlations. The insights obtained from the results of this study can be applied to analyse the vacancy transfer mechanisms in very-heavy systems (combined atomic number > 100). X-rays PWBA ECPSSR Heavy-ion impact Molecular orbital Gupta, R. verfasserin (orcid)0000-0001-9592-1299 aut Chakraborty, K. verfasserin (orcid)0000-0003-0666-4572 aut Swami, D.K. verfasserin aut Verma, P. verfasserin (orcid)0000-0001-7686-6829 aut Enthalten in Nuclear instruments & methods in physics research / B Amsterdam [u.a.] : Elsevier, 1984 531, Seite 9-23 Online-Ressource (DE-627)266014585 (DE-600)1466524-4 (DE-576)074959735 nnns volume:531 pages:9-23 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 33.05 Experimentalphysik 33.40 Kernphysik AR 531 9-23 |
allfieldsSound |
10.1016/j.nimb.2022.08.010 doi (DE-627)ELV008694796 (ELSEVIER)S0168-583X(22)00214-2 DE-627 ger DE-627 rda eng 530 DE-600 33.05 bkl 33.40 bkl Ahmad, C.V. verfasserin (orcid)0000-0001-5130-6948 aut Inner-shell ionisation of Xe 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The generation of collision-induced vacancies and their transfer within the electronic inner shells are the source of several unprecedented phenomena, which have been revealed in recent experimental studies conducted using state-of-the-art next-generation accelerators and detectors. Despite the multitude of studies conducted over the years, our understanding of the atomic vacancy transfer mechanisms remains exiguous. The detection and analysis of collision-induced X-rays is a widely-used powerful technique for analysing atomic-scale phenomena. However, both experimental and theoretical investigations on ion–atom collision-induced X-rays have remained mostly restricted to high-energy light-ion impact on heavy atoms. To date, only a few studies have been reported on the investigation of very-low-energy heavy-ion impact on heavy atoms using X-rays, especially M-shell X-rays of the heavy atom. This study was conducted to evaluate the inner-shell ionisation of Au (135 and 508 μ g / cm 2 ) and Pb (107, 157 and 390 μ g / cm 2 ) targets due to low-energy (2–5 MeV) 54Xe q + -ion impact. The collision-induced X-ray spectra of both the collision partners were examined, and the corresponding intensity ratios and cross-sections were compared with those calculated using two well-known ionisation theories, viz. PWBA and ECPSSR. The measured cross-sections were underestimated by these theories. Moreover, the cross-sections measured in this study were found to be several orders of magnitude higher than those obtained in other reported studies on low-energy lighter-ion-impact on Au and Pb. The significant discrepancies observed between the experimental and theoretical values have been explained qualitatively within the framework of quasi-molecular orbital formation using level correlations. The insights obtained from the results of this study can be applied to analyse the vacancy transfer mechanisms in very-heavy systems (combined atomic number > 100). X-rays PWBA ECPSSR Heavy-ion impact Molecular orbital Gupta, R. verfasserin (orcid)0000-0001-9592-1299 aut Chakraborty, K. verfasserin (orcid)0000-0003-0666-4572 aut Swami, D.K. verfasserin aut Verma, P. verfasserin (orcid)0000-0001-7686-6829 aut Enthalten in Nuclear instruments & methods in physics research / B Amsterdam [u.a.] : Elsevier, 1984 531, Seite 9-23 Online-Ressource (DE-627)266014585 (DE-600)1466524-4 (DE-576)074959735 nnns volume:531 pages:9-23 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 33.05 Experimentalphysik 33.40 Kernphysik AR 531 9-23 |
language |
English |
source |
Enthalten in Nuclear instruments & methods in physics research / B 531, Seite 9-23 volume:531 pages:9-23 |
sourceStr |
Enthalten in Nuclear instruments & methods in physics research / B 531, Seite 9-23 volume:531 pages:9-23 |
format_phy_str_mv |
Article |
bklname |
Experimentalphysik Kernphysik |
institution |
findex.gbv.de |
topic_facet |
X-rays PWBA ECPSSR Heavy-ion impact Molecular orbital |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Nuclear instruments & methods in physics research / B |
authorswithroles_txt_mv |
Ahmad, C.V. @@aut@@ Gupta, R. @@aut@@ Chakraborty, K. @@aut@@ Swami, D.K. @@aut@@ Verma, P. @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
266014585 |
dewey-sort |
3530 |
id |
ELV008694796 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV008694796</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524125829.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230509s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.nimb.2022.08.010</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV008694796</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0168-583X(22)00214-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.05</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.40</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ahmad, C.V.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-5130-6948</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Inner-shell ionisation of Xe</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The generation of collision-induced vacancies and their transfer within the electronic inner shells are the source of several unprecedented phenomena, which have been revealed in recent experimental studies conducted using state-of-the-art next-generation accelerators and detectors. Despite the multitude of studies conducted over the years, our understanding of the atomic vacancy transfer mechanisms remains exiguous. The detection and analysis of collision-induced X-rays is a widely-used powerful technique for analysing atomic-scale phenomena. However, both experimental and theoretical investigations on ion–atom collision-induced X-rays have remained mostly restricted to high-energy light-ion impact on heavy atoms. To date, only a few studies have been reported on the investigation of very-low-energy heavy-ion impact on heavy atoms using X-rays, especially M-shell X-rays of the heavy atom. This study was conducted to evaluate the inner-shell ionisation of Au (135 and 508 μ g / cm 2 ) and Pb (107, 157 and 390 μ g / cm 2 ) targets due to low-energy (2–5 MeV) 54Xe q + -ion impact. The collision-induced X-ray spectra of both the collision partners were examined, and the corresponding intensity ratios and cross-sections were compared with those calculated using two well-known ionisation theories, viz. PWBA and ECPSSR. The measured cross-sections were underestimated by these theories. Moreover, the cross-sections measured in this study were found to be several orders of magnitude higher than those obtained in other reported studies on low-energy lighter-ion-impact on Au and Pb. The significant discrepancies observed between the experimental and theoretical values have been explained qualitatively within the framework of quasi-molecular orbital formation using level correlations. The insights obtained from the results of this study can be applied to analyse the vacancy transfer mechanisms in very-heavy systems (combined atomic number > 100).</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">X-rays</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PWBA</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ECPSSR</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heavy-ion impact</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Molecular orbital</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gupta, R.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-9592-1299</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chakraborty, K.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-0666-4572</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Swami, D.K.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Verma, P.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-7686-6829</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Nuclear instruments & methods in physics research / B</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1984</subfield><subfield code="g">531, Seite 9-23</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)266014585</subfield><subfield code="w">(DE-600)1466524-4</subfield><subfield code="w">(DE-576)074959735</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:531</subfield><subfield code="g">pages:9-23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.05</subfield><subfield code="j">Experimentalphysik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.40</subfield><subfield code="j">Kernphysik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">531</subfield><subfield code="h">9-23</subfield></datafield></record></collection>
|
author |
Ahmad, C.V. |
spellingShingle |
Ahmad, C.V. ddc 530 bkl 33.05 bkl 33.40 misc X-rays misc PWBA misc ECPSSR misc Heavy-ion impact misc Molecular orbital Inner-shell ionisation of Xe |
authorStr |
Ahmad, C.V. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)266014585 |
format |
electronic Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
530 DE-600 33.05 bkl 33.40 bkl Inner-shell ionisation of Xe X-rays PWBA ECPSSR Heavy-ion impact Molecular orbital |
topic |
ddc 530 bkl 33.05 bkl 33.40 misc X-rays misc PWBA misc ECPSSR misc Heavy-ion impact misc Molecular orbital |
topic_unstemmed |
ddc 530 bkl 33.05 bkl 33.40 misc X-rays misc PWBA misc ECPSSR misc Heavy-ion impact misc Molecular orbital |
topic_browse |
ddc 530 bkl 33.05 bkl 33.40 misc X-rays misc PWBA misc ECPSSR misc Heavy-ion impact misc Molecular orbital |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Nuclear instruments & methods in physics research / B |
hierarchy_parent_id |
266014585 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Nuclear instruments & methods in physics research / B |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)266014585 (DE-600)1466524-4 (DE-576)074959735 |
title |
Inner-shell ionisation of Xe |
ctrlnum |
(DE-627)ELV008694796 (ELSEVIER)S0168-583X(22)00214-2 |
title_full |
Inner-shell ionisation of Xe |
author_sort |
Ahmad, C.V. |
journal |
Nuclear instruments & methods in physics research / B |
journalStr |
Nuclear instruments & methods in physics research / B |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
container_start_page |
9 |
author_browse |
Ahmad, C.V. Gupta, R. Chakraborty, K. Swami, D.K. Verma, P. |
container_volume |
531 |
class |
530 DE-600 33.05 bkl 33.40 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Ahmad, C.V. |
doi_str_mv |
10.1016/j.nimb.2022.08.010 |
normlink |
(ORCID)0000-0001-5130-6948 (ORCID)0000-0001-9592-1299 (ORCID)0000-0003-0666-4572 (ORCID)0000-0001-7686-6829 |
normlink_prefix_str_mv |
(orcid)0000-0001-5130-6948 (orcid)0000-0001-9592-1299 (orcid)0000-0003-0666-4572 (orcid)0000-0001-7686-6829 |
dewey-full |
530 |
author2-role |
verfasserin |
title_sort |
inner-shell ionisation of xe |
title_auth |
Inner-shell ionisation of Xe |
abstract |
The generation of collision-induced vacancies and their transfer within the electronic inner shells are the source of several unprecedented phenomena, which have been revealed in recent experimental studies conducted using state-of-the-art next-generation accelerators and detectors. Despite the multitude of studies conducted over the years, our understanding of the atomic vacancy transfer mechanisms remains exiguous. The detection and analysis of collision-induced X-rays is a widely-used powerful technique for analysing atomic-scale phenomena. However, both experimental and theoretical investigations on ion–atom collision-induced X-rays have remained mostly restricted to high-energy light-ion impact on heavy atoms. To date, only a few studies have been reported on the investigation of very-low-energy heavy-ion impact on heavy atoms using X-rays, especially M-shell X-rays of the heavy atom. This study was conducted to evaluate the inner-shell ionisation of Au (135 and 508 μ g / cm 2 ) and Pb (107, 157 and 390 μ g / cm 2 ) targets due to low-energy (2–5 MeV) 54Xe q + -ion impact. The collision-induced X-ray spectra of both the collision partners were examined, and the corresponding intensity ratios and cross-sections were compared with those calculated using two well-known ionisation theories, viz. PWBA and ECPSSR. The measured cross-sections were underestimated by these theories. Moreover, the cross-sections measured in this study were found to be several orders of magnitude higher than those obtained in other reported studies on low-energy lighter-ion-impact on Au and Pb. The significant discrepancies observed between the experimental and theoretical values have been explained qualitatively within the framework of quasi-molecular orbital formation using level correlations. The insights obtained from the results of this study can be applied to analyse the vacancy transfer mechanisms in very-heavy systems (combined atomic number > 100). |
abstractGer |
The generation of collision-induced vacancies and their transfer within the electronic inner shells are the source of several unprecedented phenomena, which have been revealed in recent experimental studies conducted using state-of-the-art next-generation accelerators and detectors. Despite the multitude of studies conducted over the years, our understanding of the atomic vacancy transfer mechanisms remains exiguous. The detection and analysis of collision-induced X-rays is a widely-used powerful technique for analysing atomic-scale phenomena. However, both experimental and theoretical investigations on ion–atom collision-induced X-rays have remained mostly restricted to high-energy light-ion impact on heavy atoms. To date, only a few studies have been reported on the investigation of very-low-energy heavy-ion impact on heavy atoms using X-rays, especially M-shell X-rays of the heavy atom. This study was conducted to evaluate the inner-shell ionisation of Au (135 and 508 μ g / cm 2 ) and Pb (107, 157 and 390 μ g / cm 2 ) targets due to low-energy (2–5 MeV) 54Xe q + -ion impact. The collision-induced X-ray spectra of both the collision partners were examined, and the corresponding intensity ratios and cross-sections were compared with those calculated using two well-known ionisation theories, viz. PWBA and ECPSSR. The measured cross-sections were underestimated by these theories. Moreover, the cross-sections measured in this study were found to be several orders of magnitude higher than those obtained in other reported studies on low-energy lighter-ion-impact on Au and Pb. The significant discrepancies observed between the experimental and theoretical values have been explained qualitatively within the framework of quasi-molecular orbital formation using level correlations. The insights obtained from the results of this study can be applied to analyse the vacancy transfer mechanisms in very-heavy systems (combined atomic number > 100). |
abstract_unstemmed |
The generation of collision-induced vacancies and their transfer within the electronic inner shells are the source of several unprecedented phenomena, which have been revealed in recent experimental studies conducted using state-of-the-art next-generation accelerators and detectors. Despite the multitude of studies conducted over the years, our understanding of the atomic vacancy transfer mechanisms remains exiguous. The detection and analysis of collision-induced X-rays is a widely-used powerful technique for analysing atomic-scale phenomena. However, both experimental and theoretical investigations on ion–atom collision-induced X-rays have remained mostly restricted to high-energy light-ion impact on heavy atoms. To date, only a few studies have been reported on the investigation of very-low-energy heavy-ion impact on heavy atoms using X-rays, especially M-shell X-rays of the heavy atom. This study was conducted to evaluate the inner-shell ionisation of Au (135 and 508 μ g / cm 2 ) and Pb (107, 157 and 390 μ g / cm 2 ) targets due to low-energy (2–5 MeV) 54Xe q + -ion impact. The collision-induced X-ray spectra of both the collision partners were examined, and the corresponding intensity ratios and cross-sections were compared with those calculated using two well-known ionisation theories, viz. PWBA and ECPSSR. The measured cross-sections were underestimated by these theories. Moreover, the cross-sections measured in this study were found to be several orders of magnitude higher than those obtained in other reported studies on low-energy lighter-ion-impact on Au and Pb. The significant discrepancies observed between the experimental and theoretical values have been explained qualitatively within the framework of quasi-molecular orbital formation using level correlations. The insights obtained from the results of this study can be applied to analyse the vacancy transfer mechanisms in very-heavy systems (combined atomic number > 100). |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Inner-shell ionisation of Xe |
remote_bool |
true |
author2 |
Gupta, R. Chakraborty, K. Swami, D.K. Verma, P. |
author2Str |
Gupta, R. Chakraborty, K. Swami, D.K. Verma, P. |
ppnlink |
266014585 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.nimb.2022.08.010 |
up_date |
2024-07-06T20:35:05.403Z |
_version_ |
1803863306172104704 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV008694796</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524125829.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230509s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.nimb.2022.08.010</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV008694796</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0168-583X(22)00214-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.05</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.40</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ahmad, C.V.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-5130-6948</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Inner-shell ionisation of Xe</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The generation of collision-induced vacancies and their transfer within the electronic inner shells are the source of several unprecedented phenomena, which have been revealed in recent experimental studies conducted using state-of-the-art next-generation accelerators and detectors. Despite the multitude of studies conducted over the years, our understanding of the atomic vacancy transfer mechanisms remains exiguous. The detection and analysis of collision-induced X-rays is a widely-used powerful technique for analysing atomic-scale phenomena. However, both experimental and theoretical investigations on ion–atom collision-induced X-rays have remained mostly restricted to high-energy light-ion impact on heavy atoms. To date, only a few studies have been reported on the investigation of very-low-energy heavy-ion impact on heavy atoms using X-rays, especially M-shell X-rays of the heavy atom. This study was conducted to evaluate the inner-shell ionisation of Au (135 and 508 μ g / cm 2 ) and Pb (107, 157 and 390 μ g / cm 2 ) targets due to low-energy (2–5 MeV) 54Xe q + -ion impact. The collision-induced X-ray spectra of both the collision partners were examined, and the corresponding intensity ratios and cross-sections were compared with those calculated using two well-known ionisation theories, viz. PWBA and ECPSSR. The measured cross-sections were underestimated by these theories. Moreover, the cross-sections measured in this study were found to be several orders of magnitude higher than those obtained in other reported studies on low-energy lighter-ion-impact on Au and Pb. The significant discrepancies observed between the experimental and theoretical values have been explained qualitatively within the framework of quasi-molecular orbital formation using level correlations. The insights obtained from the results of this study can be applied to analyse the vacancy transfer mechanisms in very-heavy systems (combined atomic number > 100).</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">X-rays</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PWBA</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ECPSSR</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heavy-ion impact</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Molecular orbital</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gupta, R.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-9592-1299</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chakraborty, K.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-0666-4572</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Swami, D.K.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Verma, P.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-7686-6829</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Nuclear instruments & methods in physics research / B</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1984</subfield><subfield code="g">531, Seite 9-23</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)266014585</subfield><subfield code="w">(DE-600)1466524-4</subfield><subfield code="w">(DE-576)074959735</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:531</subfield><subfield code="g">pages:9-23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.05</subfield><subfield code="j">Experimentalphysik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.40</subfield><subfield code="j">Kernphysik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">531</subfield><subfield code="h">9-23</subfield></datafield></record></collection>
|
score |
7.4028063 |