Approximating a linear multiplicative objective in watershed management optimization
Implementing management practices in a cost-efficient manner is critical for regional efforts to reduce the amount of pollutants entering the Chesapeake Bay. We study the problem of selecting a subset of practices that minimizes pollutant load—subject to budgetary and environmental constraints—as si...
Ausführliche Beschreibung
Autor*in: |
Boddiford, Ashley N. [verfasserIn] Kaufman, Daniel E. [verfasserIn] Skipper, Daphne E. [verfasserIn] Uhan, Nelson A. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: | |
---|---|
Schlagwörter: |
Übergeordnetes Werk: |
Enthalten in: European journal of operational research - Amsterdam [u.a.] : Elsevier, 1977, 305, Seite 547-561 |
---|---|
Übergeordnetes Werk: |
volume:305 ; pages:547-561 |
DOI / URN: |
10.1016/j.ejor.2022.06.006 |
---|
Katalog-ID: |
ELV008695563 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV008695563 | ||
003 | DE-627 | ||
005 | 20230524154041.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230509s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ejor.2022.06.006 |2 doi | |
035 | |a (DE-627)ELV008695563 | ||
035 | |a (ELSEVIER)S0377-2217(22)00462-3 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
084 | |a 85.03 |2 bkl | ||
100 | 1 | |a Boddiford, Ashley N. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Approximating a linear multiplicative objective in watershed management optimization |
264 | 1 | |c 2022 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Implementing management practices in a cost-efficient manner is critical for regional efforts to reduce the amount of pollutants entering the Chesapeake Bay. We study the problem of selecting a subset of practices that minimizes pollutant load—subject to budgetary and environmental constraints—as simulated in a widely used regulatory watershed model. Mimicking the computation of pollutant load in the regulatory model, we formulate this problem as a continuous optimization model with a linear multiplicative objective function and linear constraints. To lay the groundwork for incorporating additional stakeholder requirements in the future, especially those that would require integer variables, we present and study a continuous linear optimization model that approximates the nonlinear model. The linear model, which requires an exponential number of variables, arises naturally as an alternative model for the same underlying physical process. We examine the theoretical behavior of these optimization models and investigate restrictions of the linear model to handle its large number of variables. Through extensive computational tests on real and randomly generated instances, we demonstrate that the linear model and its restrictions provide optimal solutions close to those of the nonlinear model in practice, despite poor approximation properties in the worst case. We conclude that the linear model—together with our approach to handling its large number of variables—provides a viable framework from which to extend the optimization model to better meet the needs of the Chesapeake Bay watershed management stakeholders. | ||
650 | 7 | |8 1.1\x |a Operations Research |0 (DE-2867)15483-0 |2 stw | |
650 | 4 | |a Nonlinear programming | |
650 | 4 | |a Linear programming | |
650 | 4 | |a OR in environment and climate change | |
650 | 4 | |a Watershed management | |
700 | 1 | |a Kaufman, Daniel E. |e verfasserin |0 (orcid)0000-0002-1487-7298 |4 aut | |
700 | 1 | |a Skipper, Daphne E. |e verfasserin |4 aut | |
700 | 1 | |a Uhan, Nelson A. |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t European journal of operational research |d Amsterdam [u.a.] : Elsevier, 1977 |g 305, Seite 547-561 |h Online-Ressource |w (DE-627)306713470 |w (DE-600)1501061-2 |w (DE-576)094058377 |x 0377-2217 |7 nnns |
773 | 1 | 8 | |g volume:305 |g pages:547-561 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 85.03 |j Methoden und Techniken der Betriebswirtschaft |
936 | s | n | |a BIZ-10001 |2 SKW |
951 | |a AR | ||
952 | |d 305 |h 547-561 |
author_variant |
a n b an anb d e k de dek d e s de des n a u na nau |
---|---|
matchkey_str |
article:03772217:2022----::prxmtnaierutpiaiebetviwtrhda |
hierarchy_sort_str |
2022 |
bklnumber |
85.03 |
publishDate |
2022 |
allfields |
10.1016/j.ejor.2022.06.006 doi (DE-627)ELV008695563 (ELSEVIER)S0377-2217(22)00462-3 DE-627 ger DE-627 rda eng 85.03 bkl Boddiford, Ashley N. verfasserin aut Approximating a linear multiplicative objective in watershed management optimization 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Implementing management practices in a cost-efficient manner is critical for regional efforts to reduce the amount of pollutants entering the Chesapeake Bay. We study the problem of selecting a subset of practices that minimizes pollutant load—subject to budgetary and environmental constraints—as simulated in a widely used regulatory watershed model. Mimicking the computation of pollutant load in the regulatory model, we formulate this problem as a continuous optimization model with a linear multiplicative objective function and linear constraints. To lay the groundwork for incorporating additional stakeholder requirements in the future, especially those that would require integer variables, we present and study a continuous linear optimization model that approximates the nonlinear model. The linear model, which requires an exponential number of variables, arises naturally as an alternative model for the same underlying physical process. We examine the theoretical behavior of these optimization models and investigate restrictions of the linear model to handle its large number of variables. Through extensive computational tests on real and randomly generated instances, we demonstrate that the linear model and its restrictions provide optimal solutions close to those of the nonlinear model in practice, despite poor approximation properties in the worst case. We conclude that the linear model—together with our approach to handling its large number of variables—provides a viable framework from which to extend the optimization model to better meet the needs of the Chesapeake Bay watershed management stakeholders. 1.1\x Operations Research (DE-2867)15483-0 stw Nonlinear programming Linear programming OR in environment and climate change Watershed management Kaufman, Daniel E. verfasserin (orcid)0000-0002-1487-7298 aut Skipper, Daphne E. verfasserin aut Uhan, Nelson A. verfasserin aut Enthalten in European journal of operational research Amsterdam [u.a.] : Elsevier, 1977 305, Seite 547-561 Online-Ressource (DE-627)306713470 (DE-600)1501061-2 (DE-576)094058377 0377-2217 nnns volume:305 pages:547-561 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 85.03 Methoden und Techniken der Betriebswirtschaft BIZ-10001 SKW AR 305 547-561 |
spelling |
10.1016/j.ejor.2022.06.006 doi (DE-627)ELV008695563 (ELSEVIER)S0377-2217(22)00462-3 DE-627 ger DE-627 rda eng 85.03 bkl Boddiford, Ashley N. verfasserin aut Approximating a linear multiplicative objective in watershed management optimization 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Implementing management practices in a cost-efficient manner is critical for regional efforts to reduce the amount of pollutants entering the Chesapeake Bay. We study the problem of selecting a subset of practices that minimizes pollutant load—subject to budgetary and environmental constraints—as simulated in a widely used regulatory watershed model. Mimicking the computation of pollutant load in the regulatory model, we formulate this problem as a continuous optimization model with a linear multiplicative objective function and linear constraints. To lay the groundwork for incorporating additional stakeholder requirements in the future, especially those that would require integer variables, we present and study a continuous linear optimization model that approximates the nonlinear model. The linear model, which requires an exponential number of variables, arises naturally as an alternative model for the same underlying physical process. We examine the theoretical behavior of these optimization models and investigate restrictions of the linear model to handle its large number of variables. Through extensive computational tests on real and randomly generated instances, we demonstrate that the linear model and its restrictions provide optimal solutions close to those of the nonlinear model in practice, despite poor approximation properties in the worst case. We conclude that the linear model—together with our approach to handling its large number of variables—provides a viable framework from which to extend the optimization model to better meet the needs of the Chesapeake Bay watershed management stakeholders. 1.1\x Operations Research (DE-2867)15483-0 stw Nonlinear programming Linear programming OR in environment and climate change Watershed management Kaufman, Daniel E. verfasserin (orcid)0000-0002-1487-7298 aut Skipper, Daphne E. verfasserin aut Uhan, Nelson A. verfasserin aut Enthalten in European journal of operational research Amsterdam [u.a.] : Elsevier, 1977 305, Seite 547-561 Online-Ressource (DE-627)306713470 (DE-600)1501061-2 (DE-576)094058377 0377-2217 nnns volume:305 pages:547-561 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 85.03 Methoden und Techniken der Betriebswirtschaft BIZ-10001 SKW AR 305 547-561 |
allfields_unstemmed |
10.1016/j.ejor.2022.06.006 doi (DE-627)ELV008695563 (ELSEVIER)S0377-2217(22)00462-3 DE-627 ger DE-627 rda eng 85.03 bkl Boddiford, Ashley N. verfasserin aut Approximating a linear multiplicative objective in watershed management optimization 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Implementing management practices in a cost-efficient manner is critical for regional efforts to reduce the amount of pollutants entering the Chesapeake Bay. We study the problem of selecting a subset of practices that minimizes pollutant load—subject to budgetary and environmental constraints—as simulated in a widely used regulatory watershed model. Mimicking the computation of pollutant load in the regulatory model, we formulate this problem as a continuous optimization model with a linear multiplicative objective function and linear constraints. To lay the groundwork for incorporating additional stakeholder requirements in the future, especially those that would require integer variables, we present and study a continuous linear optimization model that approximates the nonlinear model. The linear model, which requires an exponential number of variables, arises naturally as an alternative model for the same underlying physical process. We examine the theoretical behavior of these optimization models and investigate restrictions of the linear model to handle its large number of variables. Through extensive computational tests on real and randomly generated instances, we demonstrate that the linear model and its restrictions provide optimal solutions close to those of the nonlinear model in practice, despite poor approximation properties in the worst case. We conclude that the linear model—together with our approach to handling its large number of variables—provides a viable framework from which to extend the optimization model to better meet the needs of the Chesapeake Bay watershed management stakeholders. 1.1\x Operations Research (DE-2867)15483-0 stw Nonlinear programming Linear programming OR in environment and climate change Watershed management Kaufman, Daniel E. verfasserin (orcid)0000-0002-1487-7298 aut Skipper, Daphne E. verfasserin aut Uhan, Nelson A. verfasserin aut Enthalten in European journal of operational research Amsterdam [u.a.] : Elsevier, 1977 305, Seite 547-561 Online-Ressource (DE-627)306713470 (DE-600)1501061-2 (DE-576)094058377 0377-2217 nnns volume:305 pages:547-561 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 85.03 Methoden und Techniken der Betriebswirtschaft BIZ-10001 SKW AR 305 547-561 |
allfieldsGer |
10.1016/j.ejor.2022.06.006 doi (DE-627)ELV008695563 (ELSEVIER)S0377-2217(22)00462-3 DE-627 ger DE-627 rda eng 85.03 bkl Boddiford, Ashley N. verfasserin aut Approximating a linear multiplicative objective in watershed management optimization 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Implementing management practices in a cost-efficient manner is critical for regional efforts to reduce the amount of pollutants entering the Chesapeake Bay. We study the problem of selecting a subset of practices that minimizes pollutant load—subject to budgetary and environmental constraints—as simulated in a widely used regulatory watershed model. Mimicking the computation of pollutant load in the regulatory model, we formulate this problem as a continuous optimization model with a linear multiplicative objective function and linear constraints. To lay the groundwork for incorporating additional stakeholder requirements in the future, especially those that would require integer variables, we present and study a continuous linear optimization model that approximates the nonlinear model. The linear model, which requires an exponential number of variables, arises naturally as an alternative model for the same underlying physical process. We examine the theoretical behavior of these optimization models and investigate restrictions of the linear model to handle its large number of variables. Through extensive computational tests on real and randomly generated instances, we demonstrate that the linear model and its restrictions provide optimal solutions close to those of the nonlinear model in practice, despite poor approximation properties in the worst case. We conclude that the linear model—together with our approach to handling its large number of variables—provides a viable framework from which to extend the optimization model to better meet the needs of the Chesapeake Bay watershed management stakeholders. 1.1\x Operations Research (DE-2867)15483-0 stw Nonlinear programming Linear programming OR in environment and climate change Watershed management Kaufman, Daniel E. verfasserin (orcid)0000-0002-1487-7298 aut Skipper, Daphne E. verfasserin aut Uhan, Nelson A. verfasserin aut Enthalten in European journal of operational research Amsterdam [u.a.] : Elsevier, 1977 305, Seite 547-561 Online-Ressource (DE-627)306713470 (DE-600)1501061-2 (DE-576)094058377 0377-2217 nnns volume:305 pages:547-561 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 85.03 Methoden und Techniken der Betriebswirtschaft BIZ-10001 SKW AR 305 547-561 |
allfieldsSound |
10.1016/j.ejor.2022.06.006 doi (DE-627)ELV008695563 (ELSEVIER)S0377-2217(22)00462-3 DE-627 ger DE-627 rda eng 85.03 bkl Boddiford, Ashley N. verfasserin aut Approximating a linear multiplicative objective in watershed management optimization 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Implementing management practices in a cost-efficient manner is critical for regional efforts to reduce the amount of pollutants entering the Chesapeake Bay. We study the problem of selecting a subset of practices that minimizes pollutant load—subject to budgetary and environmental constraints—as simulated in a widely used regulatory watershed model. Mimicking the computation of pollutant load in the regulatory model, we formulate this problem as a continuous optimization model with a linear multiplicative objective function and linear constraints. To lay the groundwork for incorporating additional stakeholder requirements in the future, especially those that would require integer variables, we present and study a continuous linear optimization model that approximates the nonlinear model. The linear model, which requires an exponential number of variables, arises naturally as an alternative model for the same underlying physical process. We examine the theoretical behavior of these optimization models and investigate restrictions of the linear model to handle its large number of variables. Through extensive computational tests on real and randomly generated instances, we demonstrate that the linear model and its restrictions provide optimal solutions close to those of the nonlinear model in practice, despite poor approximation properties in the worst case. We conclude that the linear model—together with our approach to handling its large number of variables—provides a viable framework from which to extend the optimization model to better meet the needs of the Chesapeake Bay watershed management stakeholders. 1.1\x Operations Research (DE-2867)15483-0 stw Nonlinear programming Linear programming OR in environment and climate change Watershed management Kaufman, Daniel E. verfasserin (orcid)0000-0002-1487-7298 aut Skipper, Daphne E. verfasserin aut Uhan, Nelson A. verfasserin aut Enthalten in European journal of operational research Amsterdam [u.a.] : Elsevier, 1977 305, Seite 547-561 Online-Ressource (DE-627)306713470 (DE-600)1501061-2 (DE-576)094058377 0377-2217 nnns volume:305 pages:547-561 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 85.03 Methoden und Techniken der Betriebswirtschaft BIZ-10001 SKW AR 305 547-561 |
language |
English |
source |
Enthalten in European journal of operational research 305, Seite 547-561 volume:305 pages:547-561 |
sourceStr |
Enthalten in European journal of operational research 305, Seite 547-561 volume:305 pages:547-561 |
format_phy_str_mv |
Article |
bklname |
Methoden und Techniken der Betriebswirtschaft |
institution |
findex.gbv.de |
topic_facet |
Operations Research Nonlinear programming Linear programming OR in environment and climate change Watershed management |
isfreeaccess_bool |
false |
container_title |
European journal of operational research |
authorswithroles_txt_mv |
Boddiford, Ashley N. @@aut@@ Kaufman, Daniel E. @@aut@@ Skipper, Daphne E. @@aut@@ Uhan, Nelson A. @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
306713470 |
id |
ELV008695563 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV008695563</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524154041.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230509s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ejor.2022.06.006</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV008695563</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0377-2217(22)00462-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">85.03</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Boddiford, Ashley N.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Approximating a linear multiplicative objective in watershed management optimization</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Implementing management practices in a cost-efficient manner is critical for regional efforts to reduce the amount of pollutants entering the Chesapeake Bay. We study the problem of selecting a subset of practices that minimizes pollutant load—subject to budgetary and environmental constraints—as simulated in a widely used regulatory watershed model. Mimicking the computation of pollutant load in the regulatory model, we formulate this problem as a continuous optimization model with a linear multiplicative objective function and linear constraints. To lay the groundwork for incorporating additional stakeholder requirements in the future, especially those that would require integer variables, we present and study a continuous linear optimization model that approximates the nonlinear model. The linear model, which requires an exponential number of variables, arises naturally as an alternative model for the same underlying physical process. We examine the theoretical behavior of these optimization models and investigate restrictions of the linear model to handle its large number of variables. Through extensive computational tests on real and randomly generated instances, we demonstrate that the linear model and its restrictions provide optimal solutions close to those of the nonlinear model in practice, despite poor approximation properties in the worst case. We conclude that the linear model—together with our approach to handling its large number of variables—provides a viable framework from which to extend the optimization model to better meet the needs of the Chesapeake Bay watershed management stakeholders.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="8">1.1\x</subfield><subfield code="a">Operations Research</subfield><subfield code="0">(DE-2867)15483-0</subfield><subfield code="2">stw</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear programming</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear programming</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">OR in environment and climate change</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Watershed management</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kaufman, Daniel E.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-1487-7298</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Skipper, Daphne E.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Uhan, Nelson A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">European journal of operational research</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1977</subfield><subfield code="g">305, Seite 547-561</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306713470</subfield><subfield code="w">(DE-600)1501061-2</subfield><subfield code="w">(DE-576)094058377</subfield><subfield code="x">0377-2217</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:305</subfield><subfield code="g">pages:547-561</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">85.03</subfield><subfield code="j">Methoden und Techniken der Betriebswirtschaft</subfield></datafield><datafield tag="936" ind1="s" ind2="n"><subfield code="a">BIZ-10001</subfield><subfield code="2">SKW</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">305</subfield><subfield code="h">547-561</subfield></datafield></record></collection>
|
author |
Boddiford, Ashley N. |
spellingShingle |
Boddiford, Ashley N. bkl 85.03 stw Operations Research misc Nonlinear programming misc Linear programming misc OR in environment and climate change misc Watershed management Approximating a linear multiplicative objective in watershed management optimization |
authorStr |
Boddiford, Ashley N. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)306713470 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0377-2217 |
topic_title |
85.03 bkl Approximating a linear multiplicative objective in watershed management optimization 1.1\x Operations Research (DE-2867)15483-0 stw Nonlinear programming Linear programming OR in environment and climate change Watershed management |
topic |
bkl 85.03 stw Operations Research misc Nonlinear programming misc Linear programming misc OR in environment and climate change misc Watershed management |
topic_unstemmed |
bkl 85.03 stw Operations Research misc Nonlinear programming misc Linear programming misc OR in environment and climate change misc Watershed management |
topic_browse |
bkl 85.03 stw Operations Research misc Nonlinear programming misc Linear programming misc OR in environment and climate change misc Watershed management |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
European journal of operational research |
hierarchy_parent_id |
306713470 |
hierarchy_top_title |
European journal of operational research |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)306713470 (DE-600)1501061-2 (DE-576)094058377 |
title |
Approximating a linear multiplicative objective in watershed management optimization |
ctrlnum |
(DE-627)ELV008695563 (ELSEVIER)S0377-2217(22)00462-3 |
title_full |
Approximating a linear multiplicative objective in watershed management optimization |
author_sort |
Boddiford, Ashley N. |
journal |
European journal of operational research |
journalStr |
European journal of operational research |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
container_start_page |
547 |
class_local_iln |
SKW:BIZ-10001 |
author_browse |
Boddiford, Ashley N. Kaufman, Daniel E. Skipper, Daphne E. Uhan, Nelson A. |
container_volume |
305 |
class |
85.03 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Boddiford, Ashley N. |
doi_str_mv |
10.1016/j.ejor.2022.06.006 |
normlink |
(DE-2867)15483-0 (ORCID)0000-0002-1487-7298 |
normlink_prefix_str_mv |
(DE-2867)15483-0 (orcid)0000-0002-1487-7298 |
author2-role |
verfasserin |
title_sort |
approximating a linear multiplicative objective in watershed management optimization |
title_auth |
Approximating a linear multiplicative objective in watershed management optimization |
abstract |
Implementing management practices in a cost-efficient manner is critical for regional efforts to reduce the amount of pollutants entering the Chesapeake Bay. We study the problem of selecting a subset of practices that minimizes pollutant load—subject to budgetary and environmental constraints—as simulated in a widely used regulatory watershed model. Mimicking the computation of pollutant load in the regulatory model, we formulate this problem as a continuous optimization model with a linear multiplicative objective function and linear constraints. To lay the groundwork for incorporating additional stakeholder requirements in the future, especially those that would require integer variables, we present and study a continuous linear optimization model that approximates the nonlinear model. The linear model, which requires an exponential number of variables, arises naturally as an alternative model for the same underlying physical process. We examine the theoretical behavior of these optimization models and investigate restrictions of the linear model to handle its large number of variables. Through extensive computational tests on real and randomly generated instances, we demonstrate that the linear model and its restrictions provide optimal solutions close to those of the nonlinear model in practice, despite poor approximation properties in the worst case. We conclude that the linear model—together with our approach to handling its large number of variables—provides a viable framework from which to extend the optimization model to better meet the needs of the Chesapeake Bay watershed management stakeholders. |
abstractGer |
Implementing management practices in a cost-efficient manner is critical for regional efforts to reduce the amount of pollutants entering the Chesapeake Bay. We study the problem of selecting a subset of practices that minimizes pollutant load—subject to budgetary and environmental constraints—as simulated in a widely used regulatory watershed model. Mimicking the computation of pollutant load in the regulatory model, we formulate this problem as a continuous optimization model with a linear multiplicative objective function and linear constraints. To lay the groundwork for incorporating additional stakeholder requirements in the future, especially those that would require integer variables, we present and study a continuous linear optimization model that approximates the nonlinear model. The linear model, which requires an exponential number of variables, arises naturally as an alternative model for the same underlying physical process. We examine the theoretical behavior of these optimization models and investigate restrictions of the linear model to handle its large number of variables. Through extensive computational tests on real and randomly generated instances, we demonstrate that the linear model and its restrictions provide optimal solutions close to those of the nonlinear model in practice, despite poor approximation properties in the worst case. We conclude that the linear model—together with our approach to handling its large number of variables—provides a viable framework from which to extend the optimization model to better meet the needs of the Chesapeake Bay watershed management stakeholders. |
abstract_unstemmed |
Implementing management practices in a cost-efficient manner is critical for regional efforts to reduce the amount of pollutants entering the Chesapeake Bay. We study the problem of selecting a subset of practices that minimizes pollutant load—subject to budgetary and environmental constraints—as simulated in a widely used regulatory watershed model. Mimicking the computation of pollutant load in the regulatory model, we formulate this problem as a continuous optimization model with a linear multiplicative objective function and linear constraints. To lay the groundwork for incorporating additional stakeholder requirements in the future, especially those that would require integer variables, we present and study a continuous linear optimization model that approximates the nonlinear model. The linear model, which requires an exponential number of variables, arises naturally as an alternative model for the same underlying physical process. We examine the theoretical behavior of these optimization models and investigate restrictions of the linear model to handle its large number of variables. Through extensive computational tests on real and randomly generated instances, we demonstrate that the linear model and its restrictions provide optimal solutions close to those of the nonlinear model in practice, despite poor approximation properties in the worst case. We conclude that the linear model—together with our approach to handling its large number of variables—provides a viable framework from which to extend the optimization model to better meet the needs of the Chesapeake Bay watershed management stakeholders. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Approximating a linear multiplicative objective in watershed management optimization |
remote_bool |
true |
author2 |
Kaufman, Daniel E. Skipper, Daphne E. Uhan, Nelson A. |
author2Str |
Kaufman, Daniel E. Skipper, Daphne E. Uhan, Nelson A. |
ppnlink |
306713470 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.ejor.2022.06.006 |
up_date |
2024-07-06T20:35:14.498Z |
_version_ |
1803863315709952000 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV008695563</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524154041.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230509s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ejor.2022.06.006</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV008695563</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0377-2217(22)00462-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">85.03</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Boddiford, Ashley N.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Approximating a linear multiplicative objective in watershed management optimization</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Implementing management practices in a cost-efficient manner is critical for regional efforts to reduce the amount of pollutants entering the Chesapeake Bay. We study the problem of selecting a subset of practices that minimizes pollutant load—subject to budgetary and environmental constraints—as simulated in a widely used regulatory watershed model. Mimicking the computation of pollutant load in the regulatory model, we formulate this problem as a continuous optimization model with a linear multiplicative objective function and linear constraints. To lay the groundwork for incorporating additional stakeholder requirements in the future, especially those that would require integer variables, we present and study a continuous linear optimization model that approximates the nonlinear model. The linear model, which requires an exponential number of variables, arises naturally as an alternative model for the same underlying physical process. We examine the theoretical behavior of these optimization models and investigate restrictions of the linear model to handle its large number of variables. Through extensive computational tests on real and randomly generated instances, we demonstrate that the linear model and its restrictions provide optimal solutions close to those of the nonlinear model in practice, despite poor approximation properties in the worst case. We conclude that the linear model—together with our approach to handling its large number of variables—provides a viable framework from which to extend the optimization model to better meet the needs of the Chesapeake Bay watershed management stakeholders.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="8">1.1\x</subfield><subfield code="a">Operations Research</subfield><subfield code="0">(DE-2867)15483-0</subfield><subfield code="2">stw</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear programming</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear programming</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">OR in environment and climate change</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Watershed management</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kaufman, Daniel E.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-1487-7298</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Skipper, Daphne E.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Uhan, Nelson A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">European journal of operational research</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1977</subfield><subfield code="g">305, Seite 547-561</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306713470</subfield><subfield code="w">(DE-600)1501061-2</subfield><subfield code="w">(DE-576)094058377</subfield><subfield code="x">0377-2217</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:305</subfield><subfield code="g">pages:547-561</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">85.03</subfield><subfield code="j">Methoden und Techniken der Betriebswirtschaft</subfield></datafield><datafield tag="936" ind1="s" ind2="n"><subfield code="a">BIZ-10001</subfield><subfield code="2">SKW</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">305</subfield><subfield code="h">547-561</subfield></datafield></record></collection>
|
score |
7.39849 |