Waveform level adversarial example generation for joint attacks against both automatic speaker verification and spoofing countermeasures
Adversarial examples crafted to deceive Automatic Speaker Verification (ASV) systems have attracted a lot of attention when studying the vulnerability of ASV. However, real-world ASV systems usually work together with spoofing countermeasures (CM) to exclude fake voices generated by text-to-speech (...
Ausführliche Beschreibung
Autor*in: |
Zhang, Xingyu [verfasserIn] Zhang, Xiongwei [verfasserIn] Liu, Wei [verfasserIn] Zou, Xia [verfasserIn] Sun, Meng [verfasserIn] Zhao, Jian [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Engineering applications of artificial intelligence - Amsterdam [u.a.] : Elsevier Science, 1988, 116 |
---|---|
Übergeordnetes Werk: |
volume:116 |
DOI / URN: |
10.1016/j.engappai.2022.105469 |
---|
Katalog-ID: |
ELV008696357 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV008696357 | ||
003 | DE-627 | ||
005 | 20230524152201.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230509s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.engappai.2022.105469 |2 doi | |
035 | |a (DE-627)ELV008696357 | ||
035 | |a (ELSEVIER)S0952-1976(22)00459-6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q DE-600 |
084 | |a 50.23 |2 bkl | ||
084 | |a 54.72 |2 bkl | ||
100 | 1 | |a Zhang, Xingyu |e verfasserin |0 (orcid)0000-0003-0783-684X |4 aut | |
245 | 1 | 0 | |a Waveform level adversarial example generation for joint attacks against both automatic speaker verification and spoofing countermeasures |
264 | 1 | |c 2022 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Adversarial examples crafted to deceive Automatic Speaker Verification (ASV) systems have attracted a lot of attention when studying the vulnerability of ASV. However, real-world ASV systems usually work together with spoofing countermeasures (CM) to exclude fake voices generated by text-to-speech (TTS) or voice conversion (VC). The deployment of CM would reduce the capability of the adversarial samples on deceiving ASV. Although additional perturbations against CM may be generated and put on the crafted adversarial examples against ASV to yield new adversarial examples against both ASV and CM, those additional perturbations would however hinder the examples’ adversarial effectiveness on ASV. In this paper, a novel joint approach is proposed to generate adversarial examples by considering attacking ASV and CM simultaneously. For any voice from TTS, VC or a real-world speaker, our crafted adversarial perturbations will turn its original labels on CM and speaker ID to bonafide and some target speaker ID, correspondingly. In our approach, a differentiable front-end is introduced to replace the conventional hand-crafted time–frequency feature extractor. Perturbations can thus be estimated by updating the gradients of the joint objective of ASV and CM on the waveform variables. The proposed method has demonstrated a 99.3% success rate on white-box logical access attacks to deceive ASV and CM simultaneously, which outperforms the baselines of 65.3% and 36.7%. Furthermore, transferability on black-box and physical settings has also been validated. | ||
650 | 4 | |a Automatic speaker verification | |
650 | 4 | |a Spoofing countermeasures | |
650 | 4 | |a Adversarial example | |
650 | 4 | |a Joint attack | |
650 | 4 | |a Waveform gradients | |
700 | 1 | |a Zhang, Xiongwei |e verfasserin |4 aut | |
700 | 1 | |a Liu, Wei |e verfasserin |4 aut | |
700 | 1 | |a Zou, Xia |e verfasserin |4 aut | |
700 | 1 | |a Sun, Meng |e verfasserin |4 aut | |
700 | 1 | |a Zhao, Jian |e verfasserin |0 (orcid)0000-0002-3508-756X |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Engineering applications of artificial intelligence |d Amsterdam [u.a.] : Elsevier Science, 1988 |g 116 |h Online-Ressource |w (DE-627)308447832 |w (DE-600)1502275-4 |w (DE-576)094752524 |x 0952-1976 |7 nnns |
773 | 1 | 8 | |g volume:116 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 50.23 |j Regelungstechnik |j Steuerungstechnik |
936 | b | k | |a 54.72 |j Künstliche Intelligenz |
951 | |a AR | ||
952 | |d 116 |
author_variant |
x z xz x z xz w l wl x z xz m s ms j z jz |
---|---|
matchkey_str |
article:09521976:2022----::aeomeeavrailxmlgnrtofronatcsgisbtatmtcpaevrfc |
hierarchy_sort_str |
2022 |
bklnumber |
50.23 54.72 |
publishDate |
2022 |
allfields |
10.1016/j.engappai.2022.105469 doi (DE-627)ELV008696357 (ELSEVIER)S0952-1976(22)00459-6 DE-627 ger DE-627 rda eng 004 DE-600 50.23 bkl 54.72 bkl Zhang, Xingyu verfasserin (orcid)0000-0003-0783-684X aut Waveform level adversarial example generation for joint attacks against both automatic speaker verification and spoofing countermeasures 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Adversarial examples crafted to deceive Automatic Speaker Verification (ASV) systems have attracted a lot of attention when studying the vulnerability of ASV. However, real-world ASV systems usually work together with spoofing countermeasures (CM) to exclude fake voices generated by text-to-speech (TTS) or voice conversion (VC). The deployment of CM would reduce the capability of the adversarial samples on deceiving ASV. Although additional perturbations against CM may be generated and put on the crafted adversarial examples against ASV to yield new adversarial examples against both ASV and CM, those additional perturbations would however hinder the examples’ adversarial effectiveness on ASV. In this paper, a novel joint approach is proposed to generate adversarial examples by considering attacking ASV and CM simultaneously. For any voice from TTS, VC or a real-world speaker, our crafted adversarial perturbations will turn its original labels on CM and speaker ID to bonafide and some target speaker ID, correspondingly. In our approach, a differentiable front-end is introduced to replace the conventional hand-crafted time–frequency feature extractor. Perturbations can thus be estimated by updating the gradients of the joint objective of ASV and CM on the waveform variables. The proposed method has demonstrated a 99.3% success rate on white-box logical access attacks to deceive ASV and CM simultaneously, which outperforms the baselines of 65.3% and 36.7%. Furthermore, transferability on black-box and physical settings has also been validated. Automatic speaker verification Spoofing countermeasures Adversarial example Joint attack Waveform gradients Zhang, Xiongwei verfasserin aut Liu, Wei verfasserin aut Zou, Xia verfasserin aut Sun, Meng verfasserin aut Zhao, Jian verfasserin (orcid)0000-0002-3508-756X aut Enthalten in Engineering applications of artificial intelligence Amsterdam [u.a.] : Elsevier Science, 1988 116 Online-Ressource (DE-627)308447832 (DE-600)1502275-4 (DE-576)094752524 0952-1976 nnns volume:116 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.23 Regelungstechnik Steuerungstechnik 54.72 Künstliche Intelligenz AR 116 |
spelling |
10.1016/j.engappai.2022.105469 doi (DE-627)ELV008696357 (ELSEVIER)S0952-1976(22)00459-6 DE-627 ger DE-627 rda eng 004 DE-600 50.23 bkl 54.72 bkl Zhang, Xingyu verfasserin (orcid)0000-0003-0783-684X aut Waveform level adversarial example generation for joint attacks against both automatic speaker verification and spoofing countermeasures 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Adversarial examples crafted to deceive Automatic Speaker Verification (ASV) systems have attracted a lot of attention when studying the vulnerability of ASV. However, real-world ASV systems usually work together with spoofing countermeasures (CM) to exclude fake voices generated by text-to-speech (TTS) or voice conversion (VC). The deployment of CM would reduce the capability of the adversarial samples on deceiving ASV. Although additional perturbations against CM may be generated and put on the crafted adversarial examples against ASV to yield new adversarial examples against both ASV and CM, those additional perturbations would however hinder the examples’ adversarial effectiveness on ASV. In this paper, a novel joint approach is proposed to generate adversarial examples by considering attacking ASV and CM simultaneously. For any voice from TTS, VC or a real-world speaker, our crafted adversarial perturbations will turn its original labels on CM and speaker ID to bonafide and some target speaker ID, correspondingly. In our approach, a differentiable front-end is introduced to replace the conventional hand-crafted time–frequency feature extractor. Perturbations can thus be estimated by updating the gradients of the joint objective of ASV and CM on the waveform variables. The proposed method has demonstrated a 99.3% success rate on white-box logical access attacks to deceive ASV and CM simultaneously, which outperforms the baselines of 65.3% and 36.7%. Furthermore, transferability on black-box and physical settings has also been validated. Automatic speaker verification Spoofing countermeasures Adversarial example Joint attack Waveform gradients Zhang, Xiongwei verfasserin aut Liu, Wei verfasserin aut Zou, Xia verfasserin aut Sun, Meng verfasserin aut Zhao, Jian verfasserin (orcid)0000-0002-3508-756X aut Enthalten in Engineering applications of artificial intelligence Amsterdam [u.a.] : Elsevier Science, 1988 116 Online-Ressource (DE-627)308447832 (DE-600)1502275-4 (DE-576)094752524 0952-1976 nnns volume:116 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.23 Regelungstechnik Steuerungstechnik 54.72 Künstliche Intelligenz AR 116 |
allfields_unstemmed |
10.1016/j.engappai.2022.105469 doi (DE-627)ELV008696357 (ELSEVIER)S0952-1976(22)00459-6 DE-627 ger DE-627 rda eng 004 DE-600 50.23 bkl 54.72 bkl Zhang, Xingyu verfasserin (orcid)0000-0003-0783-684X aut Waveform level adversarial example generation for joint attacks against both automatic speaker verification and spoofing countermeasures 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Adversarial examples crafted to deceive Automatic Speaker Verification (ASV) systems have attracted a lot of attention when studying the vulnerability of ASV. However, real-world ASV systems usually work together with spoofing countermeasures (CM) to exclude fake voices generated by text-to-speech (TTS) or voice conversion (VC). The deployment of CM would reduce the capability of the adversarial samples on deceiving ASV. Although additional perturbations against CM may be generated and put on the crafted adversarial examples against ASV to yield new adversarial examples against both ASV and CM, those additional perturbations would however hinder the examples’ adversarial effectiveness on ASV. In this paper, a novel joint approach is proposed to generate adversarial examples by considering attacking ASV and CM simultaneously. For any voice from TTS, VC or a real-world speaker, our crafted adversarial perturbations will turn its original labels on CM and speaker ID to bonafide and some target speaker ID, correspondingly. In our approach, a differentiable front-end is introduced to replace the conventional hand-crafted time–frequency feature extractor. Perturbations can thus be estimated by updating the gradients of the joint objective of ASV and CM on the waveform variables. The proposed method has demonstrated a 99.3% success rate on white-box logical access attacks to deceive ASV and CM simultaneously, which outperforms the baselines of 65.3% and 36.7%. Furthermore, transferability on black-box and physical settings has also been validated. Automatic speaker verification Spoofing countermeasures Adversarial example Joint attack Waveform gradients Zhang, Xiongwei verfasserin aut Liu, Wei verfasserin aut Zou, Xia verfasserin aut Sun, Meng verfasserin aut Zhao, Jian verfasserin (orcid)0000-0002-3508-756X aut Enthalten in Engineering applications of artificial intelligence Amsterdam [u.a.] : Elsevier Science, 1988 116 Online-Ressource (DE-627)308447832 (DE-600)1502275-4 (DE-576)094752524 0952-1976 nnns volume:116 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.23 Regelungstechnik Steuerungstechnik 54.72 Künstliche Intelligenz AR 116 |
allfieldsGer |
10.1016/j.engappai.2022.105469 doi (DE-627)ELV008696357 (ELSEVIER)S0952-1976(22)00459-6 DE-627 ger DE-627 rda eng 004 DE-600 50.23 bkl 54.72 bkl Zhang, Xingyu verfasserin (orcid)0000-0003-0783-684X aut Waveform level adversarial example generation for joint attacks against both automatic speaker verification and spoofing countermeasures 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Adversarial examples crafted to deceive Automatic Speaker Verification (ASV) systems have attracted a lot of attention when studying the vulnerability of ASV. However, real-world ASV systems usually work together with spoofing countermeasures (CM) to exclude fake voices generated by text-to-speech (TTS) or voice conversion (VC). The deployment of CM would reduce the capability of the adversarial samples on deceiving ASV. Although additional perturbations against CM may be generated and put on the crafted adversarial examples against ASV to yield new adversarial examples against both ASV and CM, those additional perturbations would however hinder the examples’ adversarial effectiveness on ASV. In this paper, a novel joint approach is proposed to generate adversarial examples by considering attacking ASV and CM simultaneously. For any voice from TTS, VC or a real-world speaker, our crafted adversarial perturbations will turn its original labels on CM and speaker ID to bonafide and some target speaker ID, correspondingly. In our approach, a differentiable front-end is introduced to replace the conventional hand-crafted time–frequency feature extractor. Perturbations can thus be estimated by updating the gradients of the joint objective of ASV and CM on the waveform variables. The proposed method has demonstrated a 99.3% success rate on white-box logical access attacks to deceive ASV and CM simultaneously, which outperforms the baselines of 65.3% and 36.7%. Furthermore, transferability on black-box and physical settings has also been validated. Automatic speaker verification Spoofing countermeasures Adversarial example Joint attack Waveform gradients Zhang, Xiongwei verfasserin aut Liu, Wei verfasserin aut Zou, Xia verfasserin aut Sun, Meng verfasserin aut Zhao, Jian verfasserin (orcid)0000-0002-3508-756X aut Enthalten in Engineering applications of artificial intelligence Amsterdam [u.a.] : Elsevier Science, 1988 116 Online-Ressource (DE-627)308447832 (DE-600)1502275-4 (DE-576)094752524 0952-1976 nnns volume:116 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.23 Regelungstechnik Steuerungstechnik 54.72 Künstliche Intelligenz AR 116 |
allfieldsSound |
10.1016/j.engappai.2022.105469 doi (DE-627)ELV008696357 (ELSEVIER)S0952-1976(22)00459-6 DE-627 ger DE-627 rda eng 004 DE-600 50.23 bkl 54.72 bkl Zhang, Xingyu verfasserin (orcid)0000-0003-0783-684X aut Waveform level adversarial example generation for joint attacks against both automatic speaker verification and spoofing countermeasures 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Adversarial examples crafted to deceive Automatic Speaker Verification (ASV) systems have attracted a lot of attention when studying the vulnerability of ASV. However, real-world ASV systems usually work together with spoofing countermeasures (CM) to exclude fake voices generated by text-to-speech (TTS) or voice conversion (VC). The deployment of CM would reduce the capability of the adversarial samples on deceiving ASV. Although additional perturbations against CM may be generated and put on the crafted adversarial examples against ASV to yield new adversarial examples against both ASV and CM, those additional perturbations would however hinder the examples’ adversarial effectiveness on ASV. In this paper, a novel joint approach is proposed to generate adversarial examples by considering attacking ASV and CM simultaneously. For any voice from TTS, VC or a real-world speaker, our crafted adversarial perturbations will turn its original labels on CM and speaker ID to bonafide and some target speaker ID, correspondingly. In our approach, a differentiable front-end is introduced to replace the conventional hand-crafted time–frequency feature extractor. Perturbations can thus be estimated by updating the gradients of the joint objective of ASV and CM on the waveform variables. The proposed method has demonstrated a 99.3% success rate on white-box logical access attacks to deceive ASV and CM simultaneously, which outperforms the baselines of 65.3% and 36.7%. Furthermore, transferability on black-box and physical settings has also been validated. Automatic speaker verification Spoofing countermeasures Adversarial example Joint attack Waveform gradients Zhang, Xiongwei verfasserin aut Liu, Wei verfasserin aut Zou, Xia verfasserin aut Sun, Meng verfasserin aut Zhao, Jian verfasserin (orcid)0000-0002-3508-756X aut Enthalten in Engineering applications of artificial intelligence Amsterdam [u.a.] : Elsevier Science, 1988 116 Online-Ressource (DE-627)308447832 (DE-600)1502275-4 (DE-576)094752524 0952-1976 nnns volume:116 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.23 Regelungstechnik Steuerungstechnik 54.72 Künstliche Intelligenz AR 116 |
language |
English |
source |
Enthalten in Engineering applications of artificial intelligence 116 volume:116 |
sourceStr |
Enthalten in Engineering applications of artificial intelligence 116 volume:116 |
format_phy_str_mv |
Article |
bklname |
Regelungstechnik Steuerungstechnik Künstliche Intelligenz |
institution |
findex.gbv.de |
topic_facet |
Automatic speaker verification Spoofing countermeasures Adversarial example Joint attack Waveform gradients |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Engineering applications of artificial intelligence |
authorswithroles_txt_mv |
Zhang, Xingyu @@aut@@ Zhang, Xiongwei @@aut@@ Liu, Wei @@aut@@ Zou, Xia @@aut@@ Sun, Meng @@aut@@ Zhao, Jian @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
308447832 |
dewey-sort |
14 |
id |
ELV008696357 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV008696357</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524152201.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230509s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.engappai.2022.105469</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV008696357</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0952-1976(22)00459-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.23</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.72</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Xingyu</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-0783-684X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Waveform level adversarial example generation for joint attacks against both automatic speaker verification and spoofing countermeasures</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Adversarial examples crafted to deceive Automatic Speaker Verification (ASV) systems have attracted a lot of attention when studying the vulnerability of ASV. However, real-world ASV systems usually work together with spoofing countermeasures (CM) to exclude fake voices generated by text-to-speech (TTS) or voice conversion (VC). The deployment of CM would reduce the capability of the adversarial samples on deceiving ASV. Although additional perturbations against CM may be generated and put on the crafted adversarial examples against ASV to yield new adversarial examples against both ASV and CM, those additional perturbations would however hinder the examples’ adversarial effectiveness on ASV. In this paper, a novel joint approach is proposed to generate adversarial examples by considering attacking ASV and CM simultaneously. For any voice from TTS, VC or a real-world speaker, our crafted adversarial perturbations will turn its original labels on CM and speaker ID to bonafide and some target speaker ID, correspondingly. In our approach, a differentiable front-end is introduced to replace the conventional hand-crafted time–frequency feature extractor. Perturbations can thus be estimated by updating the gradients of the joint objective of ASV and CM on the waveform variables. The proposed method has demonstrated a 99.3% success rate on white-box logical access attacks to deceive ASV and CM simultaneously, which outperforms the baselines of 65.3% and 36.7%. Furthermore, transferability on black-box and physical settings has also been validated.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Automatic speaker verification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spoofing countermeasures</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adversarial example</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Joint attack</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Waveform gradients</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Xiongwei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Wei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zou, Xia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Meng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Jian</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-3508-756X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Engineering applications of artificial intelligence</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1988</subfield><subfield code="g">116</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)308447832</subfield><subfield code="w">(DE-600)1502275-4</subfield><subfield code="w">(DE-576)094752524</subfield><subfield code="x">0952-1976</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.23</subfield><subfield code="j">Regelungstechnik</subfield><subfield code="j">Steuerungstechnik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.72</subfield><subfield code="j">Künstliche Intelligenz</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">116</subfield></datafield></record></collection>
|
author |
Zhang, Xingyu |
spellingShingle |
Zhang, Xingyu ddc 004 bkl 50.23 bkl 54.72 misc Automatic speaker verification misc Spoofing countermeasures misc Adversarial example misc Joint attack misc Waveform gradients Waveform level adversarial example generation for joint attacks against both automatic speaker verification and spoofing countermeasures |
authorStr |
Zhang, Xingyu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)308447832 |
format |
electronic Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0952-1976 |
topic_title |
004 DE-600 50.23 bkl 54.72 bkl Waveform level adversarial example generation for joint attacks against both automatic speaker verification and spoofing countermeasures Automatic speaker verification Spoofing countermeasures Adversarial example Joint attack Waveform gradients |
topic |
ddc 004 bkl 50.23 bkl 54.72 misc Automatic speaker verification misc Spoofing countermeasures misc Adversarial example misc Joint attack misc Waveform gradients |
topic_unstemmed |
ddc 004 bkl 50.23 bkl 54.72 misc Automatic speaker verification misc Spoofing countermeasures misc Adversarial example misc Joint attack misc Waveform gradients |
topic_browse |
ddc 004 bkl 50.23 bkl 54.72 misc Automatic speaker verification misc Spoofing countermeasures misc Adversarial example misc Joint attack misc Waveform gradients |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Engineering applications of artificial intelligence |
hierarchy_parent_id |
308447832 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Engineering applications of artificial intelligence |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)308447832 (DE-600)1502275-4 (DE-576)094752524 |
title |
Waveform level adversarial example generation for joint attacks against both automatic speaker verification and spoofing countermeasures |
ctrlnum |
(DE-627)ELV008696357 (ELSEVIER)S0952-1976(22)00459-6 |
title_full |
Waveform level adversarial example generation for joint attacks against both automatic speaker verification and spoofing countermeasures |
author_sort |
Zhang, Xingyu |
journal |
Engineering applications of artificial intelligence |
journalStr |
Engineering applications of artificial intelligence |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
author_browse |
Zhang, Xingyu Zhang, Xiongwei Liu, Wei Zou, Xia Sun, Meng Zhao, Jian |
container_volume |
116 |
class |
004 DE-600 50.23 bkl 54.72 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Zhang, Xingyu |
doi_str_mv |
10.1016/j.engappai.2022.105469 |
normlink |
(ORCID)0000-0003-0783-684X (ORCID)0000-0002-3508-756X |
normlink_prefix_str_mv |
(orcid)0000-0003-0783-684X (orcid)0000-0002-3508-756X |
dewey-full |
004 |
author2-role |
verfasserin |
title_sort |
waveform level adversarial example generation for joint attacks against both automatic speaker verification and spoofing countermeasures |
title_auth |
Waveform level adversarial example generation for joint attacks against both automatic speaker verification and spoofing countermeasures |
abstract |
Adversarial examples crafted to deceive Automatic Speaker Verification (ASV) systems have attracted a lot of attention when studying the vulnerability of ASV. However, real-world ASV systems usually work together with spoofing countermeasures (CM) to exclude fake voices generated by text-to-speech (TTS) or voice conversion (VC). The deployment of CM would reduce the capability of the adversarial samples on deceiving ASV. Although additional perturbations against CM may be generated and put on the crafted adversarial examples against ASV to yield new adversarial examples against both ASV and CM, those additional perturbations would however hinder the examples’ adversarial effectiveness on ASV. In this paper, a novel joint approach is proposed to generate adversarial examples by considering attacking ASV and CM simultaneously. For any voice from TTS, VC or a real-world speaker, our crafted adversarial perturbations will turn its original labels on CM and speaker ID to bonafide and some target speaker ID, correspondingly. In our approach, a differentiable front-end is introduced to replace the conventional hand-crafted time–frequency feature extractor. Perturbations can thus be estimated by updating the gradients of the joint objective of ASV and CM on the waveform variables. The proposed method has demonstrated a 99.3% success rate on white-box logical access attacks to deceive ASV and CM simultaneously, which outperforms the baselines of 65.3% and 36.7%. Furthermore, transferability on black-box and physical settings has also been validated. |
abstractGer |
Adversarial examples crafted to deceive Automatic Speaker Verification (ASV) systems have attracted a lot of attention when studying the vulnerability of ASV. However, real-world ASV systems usually work together with spoofing countermeasures (CM) to exclude fake voices generated by text-to-speech (TTS) or voice conversion (VC). The deployment of CM would reduce the capability of the adversarial samples on deceiving ASV. Although additional perturbations against CM may be generated and put on the crafted adversarial examples against ASV to yield new adversarial examples against both ASV and CM, those additional perturbations would however hinder the examples’ adversarial effectiveness on ASV. In this paper, a novel joint approach is proposed to generate adversarial examples by considering attacking ASV and CM simultaneously. For any voice from TTS, VC or a real-world speaker, our crafted adversarial perturbations will turn its original labels on CM and speaker ID to bonafide and some target speaker ID, correspondingly. In our approach, a differentiable front-end is introduced to replace the conventional hand-crafted time–frequency feature extractor. Perturbations can thus be estimated by updating the gradients of the joint objective of ASV and CM on the waveform variables. The proposed method has demonstrated a 99.3% success rate on white-box logical access attacks to deceive ASV and CM simultaneously, which outperforms the baselines of 65.3% and 36.7%. Furthermore, transferability on black-box and physical settings has also been validated. |
abstract_unstemmed |
Adversarial examples crafted to deceive Automatic Speaker Verification (ASV) systems have attracted a lot of attention when studying the vulnerability of ASV. However, real-world ASV systems usually work together with spoofing countermeasures (CM) to exclude fake voices generated by text-to-speech (TTS) or voice conversion (VC). The deployment of CM would reduce the capability of the adversarial samples on deceiving ASV. Although additional perturbations against CM may be generated and put on the crafted adversarial examples against ASV to yield new adversarial examples against both ASV and CM, those additional perturbations would however hinder the examples’ adversarial effectiveness on ASV. In this paper, a novel joint approach is proposed to generate adversarial examples by considering attacking ASV and CM simultaneously. For any voice from TTS, VC or a real-world speaker, our crafted adversarial perturbations will turn its original labels on CM and speaker ID to bonafide and some target speaker ID, correspondingly. In our approach, a differentiable front-end is introduced to replace the conventional hand-crafted time–frequency feature extractor. Perturbations can thus be estimated by updating the gradients of the joint objective of ASV and CM on the waveform variables. The proposed method has demonstrated a 99.3% success rate on white-box logical access attacks to deceive ASV and CM simultaneously, which outperforms the baselines of 65.3% and 36.7%. Furthermore, transferability on black-box and physical settings has also been validated. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Waveform level adversarial example generation for joint attacks against both automatic speaker verification and spoofing countermeasures |
remote_bool |
true |
author2 |
Zhang, Xiongwei Liu, Wei Zou, Xia Sun, Meng Zhao, Jian |
author2Str |
Zhang, Xiongwei Liu, Wei Zou, Xia Sun, Meng Zhao, Jian |
ppnlink |
308447832 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.engappai.2022.105469 |
up_date |
2024-07-06T20:35:24.887Z |
_version_ |
1803863326604656640 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV008696357</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524152201.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230509s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.engappai.2022.105469</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV008696357</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0952-1976(22)00459-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.23</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.72</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Xingyu</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-0783-684X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Waveform level adversarial example generation for joint attacks against both automatic speaker verification and spoofing countermeasures</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Adversarial examples crafted to deceive Automatic Speaker Verification (ASV) systems have attracted a lot of attention when studying the vulnerability of ASV. However, real-world ASV systems usually work together with spoofing countermeasures (CM) to exclude fake voices generated by text-to-speech (TTS) or voice conversion (VC). The deployment of CM would reduce the capability of the adversarial samples on deceiving ASV. Although additional perturbations against CM may be generated and put on the crafted adversarial examples against ASV to yield new adversarial examples against both ASV and CM, those additional perturbations would however hinder the examples’ adversarial effectiveness on ASV. In this paper, a novel joint approach is proposed to generate adversarial examples by considering attacking ASV and CM simultaneously. For any voice from TTS, VC or a real-world speaker, our crafted adversarial perturbations will turn its original labels on CM and speaker ID to bonafide and some target speaker ID, correspondingly. In our approach, a differentiable front-end is introduced to replace the conventional hand-crafted time–frequency feature extractor. Perturbations can thus be estimated by updating the gradients of the joint objective of ASV and CM on the waveform variables. The proposed method has demonstrated a 99.3% success rate on white-box logical access attacks to deceive ASV and CM simultaneously, which outperforms the baselines of 65.3% and 36.7%. Furthermore, transferability on black-box and physical settings has also been validated.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Automatic speaker verification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spoofing countermeasures</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Adversarial example</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Joint attack</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Waveform gradients</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Xiongwei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Wei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zou, Xia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Meng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Jian</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-3508-756X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Engineering applications of artificial intelligence</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1988</subfield><subfield code="g">116</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)308447832</subfield><subfield code="w">(DE-600)1502275-4</subfield><subfield code="w">(DE-576)094752524</subfield><subfield code="x">0952-1976</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.23</subfield><subfield code="j">Regelungstechnik</subfield><subfield code="j">Steuerungstechnik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.72</subfield><subfield code="j">Künstliche Intelligenz</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">116</subfield></datafield></record></collection>
|
score |
7.399617 |