Unraveling the hierarchical porous structure in natural pollen-derived Fe-containing carbon to address the shuttle effect and dead sulfur problems in lithium-sulfur batteries
Mesoporous carbon–metal composites with the merits of strong adsorption ability over soluble lithium polysulfides (LiPSs), excellent sulfur dispersion, high conductivity, low cost, and rapid catalytic conversion rate to suppress the shuttle effect are promising in lithium-sulfur batteries. However,...
Ausführliche Beschreibung
Autor*in: |
Hu, Hai [verfasserIn] Cui, Lifeng [verfasserIn] Gao, Weikang [verfasserIn] Zhang, Zhiyuan [verfasserIn] Kang, Shifei [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: The chemical engineering journal - Amsterdam : Elsevier, 1997, 453 |
---|---|
Übergeordnetes Werk: |
volume:453 |
DOI / URN: |
10.1016/j.cej.2022.139516 |
---|
Katalog-ID: |
ELV008770247 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV008770247 | ||
003 | DE-627 | ||
005 | 20230524131840.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230509s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.cej.2022.139516 |2 doi | |
035 | |a (DE-627)ELV008770247 | ||
035 | |a (ELSEVIER)S1385-8947(22)04995-6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | |a 660.05 |q DE-101 | |
082 | 0 | 4 | |a 660 |q DE-101 |
082 | 0 | 4 | |a 660 |q DE-600 |
084 | |a 58.10 |2 bkl | ||
100 | 1 | |a Hu, Hai |e verfasserin |4 aut | |
245 | 1 | 0 | |a Unraveling the hierarchical porous structure in natural pollen-derived Fe-containing carbon to address the shuttle effect and dead sulfur problems in lithium-sulfur batteries |
264 | 1 | |c 2022 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Mesoporous carbon–metal composites with the merits of strong adsorption ability over soluble lithium polysulfides (LiPSs), excellent sulfur dispersion, high conductivity, low cost, and rapid catalytic conversion rate to suppress the shuttle effect are promising in lithium-sulfur batteries. However, their application is usually limited by structural collapse and fast fading because of the poorly dispersed metal-based compounds in the mesoporous carbon host during high-temperature synthesis. Herein, a 3D rape pollen-derived carbon (RPDC) containing Fe-based compounds as the sulfur host is prepared through the solid-state reaction of simultaneous carbonization between natural rape pollen and ferrous oxalate. Characterizations confirm that Fe-RPDC composites have stronger physiochemical adsorption and catalytic ability than pure RPDC, Fe-doped commercial activated carbon, and pure Fe3O4. Then, soluble LiPSs are adsorbed, fixed on the surface of the Fe-RPDC composites and catalyzed by Fe-based compounds to reduce the “dead sulfur”. Finally, a mature natural structure-derived hollow carbon-iron compound system is developed. The lithium-sulfur battery assembled using Fe-RPDC as host showed excellent long-term stability and a high electron transport rate. The Fe-RPDCS composite with 69.6 wt% sulfur content exhibits the highest initial discharge capacity of 955.7 mA h g−1 at a rate of 1 C and can be maintained at 556.3 mA h g−1 even after 150 cycles. The decay rate is only 0.03 % per cycle, and the average Coulomb efficiency is approximately 98 %. Hence, the reasonable design of Fe-RPDC composites is of great significance for promoting the transformation of polysulfide intermediates and chemically anchoring soluble LiPSs to restrain “dead sulfur” and can be used to realize low-cost, green and large-scale production. | ||
650 | 4 | |a Shuttle effect | |
650 | 4 | |a Dead sulfur | |
650 | 4 | |a pollen-derived Fe/carbon | |
650 | 4 | |a Hierarchical porous structure | |
650 | 4 | |a Lithium-sulfur batteries | |
700 | 1 | |a Cui, Lifeng |e verfasserin |4 aut | |
700 | 1 | |a Gao, Weikang |e verfasserin |4 aut | |
700 | 1 | |a Zhang, Zhiyuan |e verfasserin |4 aut | |
700 | 1 | |a Kang, Shifei |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t The chemical engineering journal |d Amsterdam : Elsevier, 1997 |g 453 |h Online-Ressource |w (DE-627)320500322 |w (DE-600)2012137-4 |w (DE-576)098330152 |x 1873-3212 |7 nnns |
773 | 1 | 8 | |g volume:453 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 58.10 |j Verfahrenstechnik: Allgemeines |
951 | |a AR | ||
952 | |d 453 | ||
953 | |2 045F |a 660.05 |
author_variant |
h h hh l c lc w g wg z z zz s k sk |
---|---|
matchkey_str |
article:18733212:2022----::naeighheaciaprusrcuenauapledrvdeotiigabnodrstehtlefcade |
hierarchy_sort_str |
2022 |
bklnumber |
58.10 |
publishDate |
2022 |
allfields |
10.1016/j.cej.2022.139516 doi (DE-627)ELV008770247 (ELSEVIER)S1385-8947(22)04995-6 DE-627 ger DE-627 rda eng 660.05 DE-101 660 DE-101 660 DE-600 58.10 bkl Hu, Hai verfasserin aut Unraveling the hierarchical porous structure in natural pollen-derived Fe-containing carbon to address the shuttle effect and dead sulfur problems in lithium-sulfur batteries 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Mesoporous carbon–metal composites with the merits of strong adsorption ability over soluble lithium polysulfides (LiPSs), excellent sulfur dispersion, high conductivity, low cost, and rapid catalytic conversion rate to suppress the shuttle effect are promising in lithium-sulfur batteries. However, their application is usually limited by structural collapse and fast fading because of the poorly dispersed metal-based compounds in the mesoporous carbon host during high-temperature synthesis. Herein, a 3D rape pollen-derived carbon (RPDC) containing Fe-based compounds as the sulfur host is prepared through the solid-state reaction of simultaneous carbonization between natural rape pollen and ferrous oxalate. Characterizations confirm that Fe-RPDC composites have stronger physiochemical adsorption and catalytic ability than pure RPDC, Fe-doped commercial activated carbon, and pure Fe3O4. Then, soluble LiPSs are adsorbed, fixed on the surface of the Fe-RPDC composites and catalyzed by Fe-based compounds to reduce the “dead sulfur”. Finally, a mature natural structure-derived hollow carbon-iron compound system is developed. The lithium-sulfur battery assembled using Fe-RPDC as host showed excellent long-term stability and a high electron transport rate. The Fe-RPDCS composite with 69.6 wt% sulfur content exhibits the highest initial discharge capacity of 955.7 mA h g−1 at a rate of 1 C and can be maintained at 556.3 mA h g−1 even after 150 cycles. The decay rate is only 0.03 % per cycle, and the average Coulomb efficiency is approximately 98 %. Hence, the reasonable design of Fe-RPDC composites is of great significance for promoting the transformation of polysulfide intermediates and chemically anchoring soluble LiPSs to restrain “dead sulfur” and can be used to realize low-cost, green and large-scale production. Shuttle effect Dead sulfur pollen-derived Fe/carbon Hierarchical porous structure Lithium-sulfur batteries Cui, Lifeng verfasserin aut Gao, Weikang verfasserin aut Zhang, Zhiyuan verfasserin aut Kang, Shifei verfasserin aut Enthalten in The chemical engineering journal Amsterdam : Elsevier, 1997 453 Online-Ressource (DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 1873-3212 nnns volume:453 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 58.10 Verfahrenstechnik: Allgemeines AR 453 045F 660.05 |
spelling |
10.1016/j.cej.2022.139516 doi (DE-627)ELV008770247 (ELSEVIER)S1385-8947(22)04995-6 DE-627 ger DE-627 rda eng 660.05 DE-101 660 DE-101 660 DE-600 58.10 bkl Hu, Hai verfasserin aut Unraveling the hierarchical porous structure in natural pollen-derived Fe-containing carbon to address the shuttle effect and dead sulfur problems in lithium-sulfur batteries 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Mesoporous carbon–metal composites with the merits of strong adsorption ability over soluble lithium polysulfides (LiPSs), excellent sulfur dispersion, high conductivity, low cost, and rapid catalytic conversion rate to suppress the shuttle effect are promising in lithium-sulfur batteries. However, their application is usually limited by structural collapse and fast fading because of the poorly dispersed metal-based compounds in the mesoporous carbon host during high-temperature synthesis. Herein, a 3D rape pollen-derived carbon (RPDC) containing Fe-based compounds as the sulfur host is prepared through the solid-state reaction of simultaneous carbonization between natural rape pollen and ferrous oxalate. Characterizations confirm that Fe-RPDC composites have stronger physiochemical adsorption and catalytic ability than pure RPDC, Fe-doped commercial activated carbon, and pure Fe3O4. Then, soluble LiPSs are adsorbed, fixed on the surface of the Fe-RPDC composites and catalyzed by Fe-based compounds to reduce the “dead sulfur”. Finally, a mature natural structure-derived hollow carbon-iron compound system is developed. The lithium-sulfur battery assembled using Fe-RPDC as host showed excellent long-term stability and a high electron transport rate. The Fe-RPDCS composite with 69.6 wt% sulfur content exhibits the highest initial discharge capacity of 955.7 mA h g−1 at a rate of 1 C and can be maintained at 556.3 mA h g−1 even after 150 cycles. The decay rate is only 0.03 % per cycle, and the average Coulomb efficiency is approximately 98 %. Hence, the reasonable design of Fe-RPDC composites is of great significance for promoting the transformation of polysulfide intermediates and chemically anchoring soluble LiPSs to restrain “dead sulfur” and can be used to realize low-cost, green and large-scale production. Shuttle effect Dead sulfur pollen-derived Fe/carbon Hierarchical porous structure Lithium-sulfur batteries Cui, Lifeng verfasserin aut Gao, Weikang verfasserin aut Zhang, Zhiyuan verfasserin aut Kang, Shifei verfasserin aut Enthalten in The chemical engineering journal Amsterdam : Elsevier, 1997 453 Online-Ressource (DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 1873-3212 nnns volume:453 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 58.10 Verfahrenstechnik: Allgemeines AR 453 045F 660.05 |
allfields_unstemmed |
10.1016/j.cej.2022.139516 doi (DE-627)ELV008770247 (ELSEVIER)S1385-8947(22)04995-6 DE-627 ger DE-627 rda eng 660.05 DE-101 660 DE-101 660 DE-600 58.10 bkl Hu, Hai verfasserin aut Unraveling the hierarchical porous structure in natural pollen-derived Fe-containing carbon to address the shuttle effect and dead sulfur problems in lithium-sulfur batteries 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Mesoporous carbon–metal composites with the merits of strong adsorption ability over soluble lithium polysulfides (LiPSs), excellent sulfur dispersion, high conductivity, low cost, and rapid catalytic conversion rate to suppress the shuttle effect are promising in lithium-sulfur batteries. However, their application is usually limited by structural collapse and fast fading because of the poorly dispersed metal-based compounds in the mesoporous carbon host during high-temperature synthesis. Herein, a 3D rape pollen-derived carbon (RPDC) containing Fe-based compounds as the sulfur host is prepared through the solid-state reaction of simultaneous carbonization between natural rape pollen and ferrous oxalate. Characterizations confirm that Fe-RPDC composites have stronger physiochemical adsorption and catalytic ability than pure RPDC, Fe-doped commercial activated carbon, and pure Fe3O4. Then, soluble LiPSs are adsorbed, fixed on the surface of the Fe-RPDC composites and catalyzed by Fe-based compounds to reduce the “dead sulfur”. Finally, a mature natural structure-derived hollow carbon-iron compound system is developed. The lithium-sulfur battery assembled using Fe-RPDC as host showed excellent long-term stability and a high electron transport rate. The Fe-RPDCS composite with 69.6 wt% sulfur content exhibits the highest initial discharge capacity of 955.7 mA h g−1 at a rate of 1 C and can be maintained at 556.3 mA h g−1 even after 150 cycles. The decay rate is only 0.03 % per cycle, and the average Coulomb efficiency is approximately 98 %. Hence, the reasonable design of Fe-RPDC composites is of great significance for promoting the transformation of polysulfide intermediates and chemically anchoring soluble LiPSs to restrain “dead sulfur” and can be used to realize low-cost, green and large-scale production. Shuttle effect Dead sulfur pollen-derived Fe/carbon Hierarchical porous structure Lithium-sulfur batteries Cui, Lifeng verfasserin aut Gao, Weikang verfasserin aut Zhang, Zhiyuan verfasserin aut Kang, Shifei verfasserin aut Enthalten in The chemical engineering journal Amsterdam : Elsevier, 1997 453 Online-Ressource (DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 1873-3212 nnns volume:453 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 58.10 Verfahrenstechnik: Allgemeines AR 453 045F 660.05 |
allfieldsGer |
10.1016/j.cej.2022.139516 doi (DE-627)ELV008770247 (ELSEVIER)S1385-8947(22)04995-6 DE-627 ger DE-627 rda eng 660.05 DE-101 660 DE-101 660 DE-600 58.10 bkl Hu, Hai verfasserin aut Unraveling the hierarchical porous structure in natural pollen-derived Fe-containing carbon to address the shuttle effect and dead sulfur problems in lithium-sulfur batteries 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Mesoporous carbon–metal composites with the merits of strong adsorption ability over soluble lithium polysulfides (LiPSs), excellent sulfur dispersion, high conductivity, low cost, and rapid catalytic conversion rate to suppress the shuttle effect are promising in lithium-sulfur batteries. However, their application is usually limited by structural collapse and fast fading because of the poorly dispersed metal-based compounds in the mesoporous carbon host during high-temperature synthesis. Herein, a 3D rape pollen-derived carbon (RPDC) containing Fe-based compounds as the sulfur host is prepared through the solid-state reaction of simultaneous carbonization between natural rape pollen and ferrous oxalate. Characterizations confirm that Fe-RPDC composites have stronger physiochemical adsorption and catalytic ability than pure RPDC, Fe-doped commercial activated carbon, and pure Fe3O4. Then, soluble LiPSs are adsorbed, fixed on the surface of the Fe-RPDC composites and catalyzed by Fe-based compounds to reduce the “dead sulfur”. Finally, a mature natural structure-derived hollow carbon-iron compound system is developed. The lithium-sulfur battery assembled using Fe-RPDC as host showed excellent long-term stability and a high electron transport rate. The Fe-RPDCS composite with 69.6 wt% sulfur content exhibits the highest initial discharge capacity of 955.7 mA h g−1 at a rate of 1 C and can be maintained at 556.3 mA h g−1 even after 150 cycles. The decay rate is only 0.03 % per cycle, and the average Coulomb efficiency is approximately 98 %. Hence, the reasonable design of Fe-RPDC composites is of great significance for promoting the transformation of polysulfide intermediates and chemically anchoring soluble LiPSs to restrain “dead sulfur” and can be used to realize low-cost, green and large-scale production. Shuttle effect Dead sulfur pollen-derived Fe/carbon Hierarchical porous structure Lithium-sulfur batteries Cui, Lifeng verfasserin aut Gao, Weikang verfasserin aut Zhang, Zhiyuan verfasserin aut Kang, Shifei verfasserin aut Enthalten in The chemical engineering journal Amsterdam : Elsevier, 1997 453 Online-Ressource (DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 1873-3212 nnns volume:453 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 58.10 Verfahrenstechnik: Allgemeines AR 453 045F 660.05 |
allfieldsSound |
10.1016/j.cej.2022.139516 doi (DE-627)ELV008770247 (ELSEVIER)S1385-8947(22)04995-6 DE-627 ger DE-627 rda eng 660.05 DE-101 660 DE-101 660 DE-600 58.10 bkl Hu, Hai verfasserin aut Unraveling the hierarchical porous structure in natural pollen-derived Fe-containing carbon to address the shuttle effect and dead sulfur problems in lithium-sulfur batteries 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Mesoporous carbon–metal composites with the merits of strong adsorption ability over soluble lithium polysulfides (LiPSs), excellent sulfur dispersion, high conductivity, low cost, and rapid catalytic conversion rate to suppress the shuttle effect are promising in lithium-sulfur batteries. However, their application is usually limited by structural collapse and fast fading because of the poorly dispersed metal-based compounds in the mesoporous carbon host during high-temperature synthesis. Herein, a 3D rape pollen-derived carbon (RPDC) containing Fe-based compounds as the sulfur host is prepared through the solid-state reaction of simultaneous carbonization between natural rape pollen and ferrous oxalate. Characterizations confirm that Fe-RPDC composites have stronger physiochemical adsorption and catalytic ability than pure RPDC, Fe-doped commercial activated carbon, and pure Fe3O4. Then, soluble LiPSs are adsorbed, fixed on the surface of the Fe-RPDC composites and catalyzed by Fe-based compounds to reduce the “dead sulfur”. Finally, a mature natural structure-derived hollow carbon-iron compound system is developed. The lithium-sulfur battery assembled using Fe-RPDC as host showed excellent long-term stability and a high electron transport rate. The Fe-RPDCS composite with 69.6 wt% sulfur content exhibits the highest initial discharge capacity of 955.7 mA h g−1 at a rate of 1 C and can be maintained at 556.3 mA h g−1 even after 150 cycles. The decay rate is only 0.03 % per cycle, and the average Coulomb efficiency is approximately 98 %. Hence, the reasonable design of Fe-RPDC composites is of great significance for promoting the transformation of polysulfide intermediates and chemically anchoring soluble LiPSs to restrain “dead sulfur” and can be used to realize low-cost, green and large-scale production. Shuttle effect Dead sulfur pollen-derived Fe/carbon Hierarchical porous structure Lithium-sulfur batteries Cui, Lifeng verfasserin aut Gao, Weikang verfasserin aut Zhang, Zhiyuan verfasserin aut Kang, Shifei verfasserin aut Enthalten in The chemical engineering journal Amsterdam : Elsevier, 1997 453 Online-Ressource (DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 1873-3212 nnns volume:453 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 58.10 Verfahrenstechnik: Allgemeines AR 453 045F 660.05 |
language |
English |
source |
Enthalten in The chemical engineering journal 453 volume:453 |
sourceStr |
Enthalten in The chemical engineering journal 453 volume:453 |
format_phy_str_mv |
Article |
bklname |
Verfahrenstechnik: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Shuttle effect Dead sulfur pollen-derived Fe/carbon Hierarchical porous structure Lithium-sulfur batteries |
dewey-raw |
660.05 |
isfreeaccess_bool |
false |
container_title |
The chemical engineering journal |
authorswithroles_txt_mv |
Hu, Hai @@aut@@ Cui, Lifeng @@aut@@ Gao, Weikang @@aut@@ Zhang, Zhiyuan @@aut@@ Kang, Shifei @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
320500322 |
dewey-sort |
3660.05 |
id |
ELV008770247 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV008770247</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524131840.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230509s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.cej.2022.139516</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV008770247</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1385-8947(22)04995-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">660.05</subfield><subfield code="q">DE-101</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">DE-101</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.10</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hu, Hai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Unraveling the hierarchical porous structure in natural pollen-derived Fe-containing carbon to address the shuttle effect and dead sulfur problems in lithium-sulfur batteries</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Mesoporous carbon–metal composites with the merits of strong adsorption ability over soluble lithium polysulfides (LiPSs), excellent sulfur dispersion, high conductivity, low cost, and rapid catalytic conversion rate to suppress the shuttle effect are promising in lithium-sulfur batteries. However, their application is usually limited by structural collapse and fast fading because of the poorly dispersed metal-based compounds in the mesoporous carbon host during high-temperature synthesis. Herein, a 3D rape pollen-derived carbon (RPDC) containing Fe-based compounds as the sulfur host is prepared through the solid-state reaction of simultaneous carbonization between natural rape pollen and ferrous oxalate. Characterizations confirm that Fe-RPDC composites have stronger physiochemical adsorption and catalytic ability than pure RPDC, Fe-doped commercial activated carbon, and pure Fe3O4. Then, soluble LiPSs are adsorbed, fixed on the surface of the Fe-RPDC composites and catalyzed by Fe-based compounds to reduce the “dead sulfur”. Finally, a mature natural structure-derived hollow carbon-iron compound system is developed. The lithium-sulfur battery assembled using Fe-RPDC as host showed excellent long-term stability and a high electron transport rate. The Fe-RPDCS composite with 69.6 wt% sulfur content exhibits the highest initial discharge capacity of 955.7 mA h g−1 at a rate of 1 C and can be maintained at 556.3 mA h g−1 even after 150 cycles. The decay rate is only 0.03 % per cycle, and the average Coulomb efficiency is approximately 98 %. Hence, the reasonable design of Fe-RPDC composites is of great significance for promoting the transformation of polysulfide intermediates and chemically anchoring soluble LiPSs to restrain “dead sulfur” and can be used to realize low-cost, green and large-scale production.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shuttle effect</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dead sulfur</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">pollen-derived Fe/carbon</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hierarchical porous structure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lithium-sulfur batteries</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cui, Lifeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gao, Weikang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Zhiyuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kang, Shifei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The chemical engineering journal</subfield><subfield code="d">Amsterdam : Elsevier, 1997</subfield><subfield code="g">453</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320500322</subfield><subfield code="w">(DE-600)2012137-4</subfield><subfield code="w">(DE-576)098330152</subfield><subfield code="x">1873-3212</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:453</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.10</subfield><subfield code="j">Verfahrenstechnik: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">453</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">660.05</subfield></datafield></record></collection>
|
author |
Hu, Hai |
spellingShingle |
Hu, Hai ddc 660.05 ddc 660 bkl 58.10 misc Shuttle effect misc Dead sulfur misc pollen-derived Fe/carbon misc Hierarchical porous structure misc Lithium-sulfur batteries Unraveling the hierarchical porous structure in natural pollen-derived Fe-containing carbon to address the shuttle effect and dead sulfur problems in lithium-sulfur batteries |
authorStr |
Hu, Hai |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320500322 |
format |
electronic Article |
dewey-ones |
660 - Chemical engineering |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1873-3212 |
topic_title |
660.05 DE-101 660 DE-101 660 DE-600 58.10 bkl Unraveling the hierarchical porous structure in natural pollen-derived Fe-containing carbon to address the shuttle effect and dead sulfur problems in lithium-sulfur batteries Shuttle effect Dead sulfur pollen-derived Fe/carbon Hierarchical porous structure Lithium-sulfur batteries |
topic |
ddc 660.05 ddc 660 bkl 58.10 misc Shuttle effect misc Dead sulfur misc pollen-derived Fe/carbon misc Hierarchical porous structure misc Lithium-sulfur batteries |
topic_unstemmed |
ddc 660.05 ddc 660 bkl 58.10 misc Shuttle effect misc Dead sulfur misc pollen-derived Fe/carbon misc Hierarchical porous structure misc Lithium-sulfur batteries |
topic_browse |
ddc 660.05 ddc 660 bkl 58.10 misc Shuttle effect misc Dead sulfur misc pollen-derived Fe/carbon misc Hierarchical porous structure misc Lithium-sulfur batteries |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
The chemical engineering journal |
hierarchy_parent_id |
320500322 |
dewey-tens |
660 - Chemical engineering |
hierarchy_top_title |
The chemical engineering journal |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320500322 (DE-600)2012137-4 (DE-576)098330152 |
title |
Unraveling the hierarchical porous structure in natural pollen-derived Fe-containing carbon to address the shuttle effect and dead sulfur problems in lithium-sulfur batteries |
ctrlnum |
(DE-627)ELV008770247 (ELSEVIER)S1385-8947(22)04995-6 |
title_full |
Unraveling the hierarchical porous structure in natural pollen-derived Fe-containing carbon to address the shuttle effect and dead sulfur problems in lithium-sulfur batteries |
author_sort |
Hu, Hai |
journal |
The chemical engineering journal |
journalStr |
The chemical engineering journal |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
author_browse |
Hu, Hai Cui, Lifeng Gao, Weikang Zhang, Zhiyuan Kang, Shifei |
container_volume |
453 |
class |
660.05 DE-101 660 DE-101 660 DE-600 58.10 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Hu, Hai |
doi_str_mv |
10.1016/j.cej.2022.139516 |
dewey-full |
660.05 660 |
author2-role |
verfasserin |
title_sort |
unraveling the hierarchical porous structure in natural pollen-derived fe-containing carbon to address the shuttle effect and dead sulfur problems in lithium-sulfur batteries |
title_auth |
Unraveling the hierarchical porous structure in natural pollen-derived Fe-containing carbon to address the shuttle effect and dead sulfur problems in lithium-sulfur batteries |
abstract |
Mesoporous carbon–metal composites with the merits of strong adsorption ability over soluble lithium polysulfides (LiPSs), excellent sulfur dispersion, high conductivity, low cost, and rapid catalytic conversion rate to suppress the shuttle effect are promising in lithium-sulfur batteries. However, their application is usually limited by structural collapse and fast fading because of the poorly dispersed metal-based compounds in the mesoporous carbon host during high-temperature synthesis. Herein, a 3D rape pollen-derived carbon (RPDC) containing Fe-based compounds as the sulfur host is prepared through the solid-state reaction of simultaneous carbonization between natural rape pollen and ferrous oxalate. Characterizations confirm that Fe-RPDC composites have stronger physiochemical adsorption and catalytic ability than pure RPDC, Fe-doped commercial activated carbon, and pure Fe3O4. Then, soluble LiPSs are adsorbed, fixed on the surface of the Fe-RPDC composites and catalyzed by Fe-based compounds to reduce the “dead sulfur”. Finally, a mature natural structure-derived hollow carbon-iron compound system is developed. The lithium-sulfur battery assembled using Fe-RPDC as host showed excellent long-term stability and a high electron transport rate. The Fe-RPDCS composite with 69.6 wt% sulfur content exhibits the highest initial discharge capacity of 955.7 mA h g−1 at a rate of 1 C and can be maintained at 556.3 mA h g−1 even after 150 cycles. The decay rate is only 0.03 % per cycle, and the average Coulomb efficiency is approximately 98 %. Hence, the reasonable design of Fe-RPDC composites is of great significance for promoting the transformation of polysulfide intermediates and chemically anchoring soluble LiPSs to restrain “dead sulfur” and can be used to realize low-cost, green and large-scale production. |
abstractGer |
Mesoporous carbon–metal composites with the merits of strong adsorption ability over soluble lithium polysulfides (LiPSs), excellent sulfur dispersion, high conductivity, low cost, and rapid catalytic conversion rate to suppress the shuttle effect are promising in lithium-sulfur batteries. However, their application is usually limited by structural collapse and fast fading because of the poorly dispersed metal-based compounds in the mesoporous carbon host during high-temperature synthesis. Herein, a 3D rape pollen-derived carbon (RPDC) containing Fe-based compounds as the sulfur host is prepared through the solid-state reaction of simultaneous carbonization between natural rape pollen and ferrous oxalate. Characterizations confirm that Fe-RPDC composites have stronger physiochemical adsorption and catalytic ability than pure RPDC, Fe-doped commercial activated carbon, and pure Fe3O4. Then, soluble LiPSs are adsorbed, fixed on the surface of the Fe-RPDC composites and catalyzed by Fe-based compounds to reduce the “dead sulfur”. Finally, a mature natural structure-derived hollow carbon-iron compound system is developed. The lithium-sulfur battery assembled using Fe-RPDC as host showed excellent long-term stability and a high electron transport rate. The Fe-RPDCS composite with 69.6 wt% sulfur content exhibits the highest initial discharge capacity of 955.7 mA h g−1 at a rate of 1 C and can be maintained at 556.3 mA h g−1 even after 150 cycles. The decay rate is only 0.03 % per cycle, and the average Coulomb efficiency is approximately 98 %. Hence, the reasonable design of Fe-RPDC composites is of great significance for promoting the transformation of polysulfide intermediates and chemically anchoring soluble LiPSs to restrain “dead sulfur” and can be used to realize low-cost, green and large-scale production. |
abstract_unstemmed |
Mesoporous carbon–metal composites with the merits of strong adsorption ability over soluble lithium polysulfides (LiPSs), excellent sulfur dispersion, high conductivity, low cost, and rapid catalytic conversion rate to suppress the shuttle effect are promising in lithium-sulfur batteries. However, their application is usually limited by structural collapse and fast fading because of the poorly dispersed metal-based compounds in the mesoporous carbon host during high-temperature synthesis. Herein, a 3D rape pollen-derived carbon (RPDC) containing Fe-based compounds as the sulfur host is prepared through the solid-state reaction of simultaneous carbonization between natural rape pollen and ferrous oxalate. Characterizations confirm that Fe-RPDC composites have stronger physiochemical adsorption and catalytic ability than pure RPDC, Fe-doped commercial activated carbon, and pure Fe3O4. Then, soluble LiPSs are adsorbed, fixed on the surface of the Fe-RPDC composites and catalyzed by Fe-based compounds to reduce the “dead sulfur”. Finally, a mature natural structure-derived hollow carbon-iron compound system is developed. The lithium-sulfur battery assembled using Fe-RPDC as host showed excellent long-term stability and a high electron transport rate. The Fe-RPDCS composite with 69.6 wt% sulfur content exhibits the highest initial discharge capacity of 955.7 mA h g−1 at a rate of 1 C and can be maintained at 556.3 mA h g−1 even after 150 cycles. The decay rate is only 0.03 % per cycle, and the average Coulomb efficiency is approximately 98 %. Hence, the reasonable design of Fe-RPDC composites is of great significance for promoting the transformation of polysulfide intermediates and chemically anchoring soluble LiPSs to restrain “dead sulfur” and can be used to realize low-cost, green and large-scale production. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Unraveling the hierarchical porous structure in natural pollen-derived Fe-containing carbon to address the shuttle effect and dead sulfur problems in lithium-sulfur batteries |
remote_bool |
true |
author2 |
Cui, Lifeng Gao, Weikang Zhang, Zhiyuan Kang, Shifei |
author2Str |
Cui, Lifeng Gao, Weikang Zhang, Zhiyuan Kang, Shifei |
ppnlink |
320500322 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.cej.2022.139516 |
up_date |
2024-07-06T20:50:43.752Z |
_version_ |
1803864290102345728 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV008770247</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524131840.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230509s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.cej.2022.139516</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV008770247</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1385-8947(22)04995-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">660.05</subfield><subfield code="q">DE-101</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">DE-101</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.10</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hu, Hai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Unraveling the hierarchical porous structure in natural pollen-derived Fe-containing carbon to address the shuttle effect and dead sulfur problems in lithium-sulfur batteries</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Mesoporous carbon–metal composites with the merits of strong adsorption ability over soluble lithium polysulfides (LiPSs), excellent sulfur dispersion, high conductivity, low cost, and rapid catalytic conversion rate to suppress the shuttle effect are promising in lithium-sulfur batteries. However, their application is usually limited by structural collapse and fast fading because of the poorly dispersed metal-based compounds in the mesoporous carbon host during high-temperature synthesis. Herein, a 3D rape pollen-derived carbon (RPDC) containing Fe-based compounds as the sulfur host is prepared through the solid-state reaction of simultaneous carbonization between natural rape pollen and ferrous oxalate. Characterizations confirm that Fe-RPDC composites have stronger physiochemical adsorption and catalytic ability than pure RPDC, Fe-doped commercial activated carbon, and pure Fe3O4. Then, soluble LiPSs are adsorbed, fixed on the surface of the Fe-RPDC composites and catalyzed by Fe-based compounds to reduce the “dead sulfur”. Finally, a mature natural structure-derived hollow carbon-iron compound system is developed. The lithium-sulfur battery assembled using Fe-RPDC as host showed excellent long-term stability and a high electron transport rate. The Fe-RPDCS composite with 69.6 wt% sulfur content exhibits the highest initial discharge capacity of 955.7 mA h g−1 at a rate of 1 C and can be maintained at 556.3 mA h g−1 even after 150 cycles. The decay rate is only 0.03 % per cycle, and the average Coulomb efficiency is approximately 98 %. Hence, the reasonable design of Fe-RPDC composites is of great significance for promoting the transformation of polysulfide intermediates and chemically anchoring soluble LiPSs to restrain “dead sulfur” and can be used to realize low-cost, green and large-scale production.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shuttle effect</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dead sulfur</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">pollen-derived Fe/carbon</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hierarchical porous structure</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lithium-sulfur batteries</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cui, Lifeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gao, Weikang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Zhiyuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kang, Shifei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The chemical engineering journal</subfield><subfield code="d">Amsterdam : Elsevier, 1997</subfield><subfield code="g">453</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320500322</subfield><subfield code="w">(DE-600)2012137-4</subfield><subfield code="w">(DE-576)098330152</subfield><subfield code="x">1873-3212</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:453</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.10</subfield><subfield code="j">Verfahrenstechnik: Allgemeines</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">453</subfield></datafield><datafield tag="953" ind1=" " ind2=" "><subfield code="2">045F</subfield><subfield code="a">660.05</subfield></datafield></record></collection>
|
score |
7.401636 |