Stabilizing the surface of LiNi
Ni-rich layered LiNi0.815Co0.15Al0.035O2 cathode material is stabilized by a facile oxidation-coating strategy on the hydroxide precursor Ni0.815Co0.15Al0.035(OH)2. Potassium permanganate is employed as both oxidizing agent and manganese source for the Mn-containing coating layer on the precursor. X...
Ausführliche Beschreibung
Autor*in: |
Li, Xinze [verfasserIn] Cheng, Lei [verfasserIn] Chen, Liming [verfasserIn] Huang, Bin [verfasserIn] Yang, Jianwen [verfasserIn] Li, Yanwei [verfasserIn] Li, Wei [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Solid state ionics - Amsterdam [u.a.] : Elsevier Science, 1980, 386 |
---|---|
Übergeordnetes Werk: |
volume:386 |
DOI / URN: |
10.1016/j.ssi.2022.116028 |
---|
Katalog-ID: |
ELV008792860 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV008792860 | ||
003 | DE-627 | ||
005 | 20230524145932.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230509s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ssi.2022.116028 |2 doi | |
035 | |a (DE-627)ELV008792860 | ||
035 | |a (ELSEVIER)S0167-2738(22)00177-1 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q DE-600 |
084 | |a 33.61 |2 bkl | ||
100 | 1 | |a Li, Xinze |e verfasserin |4 aut | |
245 | 1 | 0 | |a Stabilizing the surface of LiNi |
264 | 1 | |c 2022 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Ni-rich layered LiNi0.815Co0.15Al0.035O2 cathode material is stabilized by a facile oxidation-coating strategy on the hydroxide precursor Ni0.815Co0.15Al0.035(OH)2. Potassium permanganate is employed as both oxidizing agent and manganese source for the Mn-containing coating layer on the precursor. X-ray diffraction and scanning electron microscopy reveal that the surface modification does not alter the crystallographic structure and particle morphology of the layered cathode. Energy dispersive spectrometry confirms the uniform distribution of manganese on the modified cathode materials. X-ray photoelectron spectroscopy demonstrates that the oxidation-coating strategy gives rise to a relatively higher content of Ni3+ in the cathode, thereby suppressing the cation mixing. Electrochemical characterizations reveal that the oxidation-coating strategy on the precursor improves the cycling performance at both room temperature and elevated temperature, as well as the moisture resistance in the air. | ||
650 | 4 | |a Precursor modification | |
650 | 4 | |a Pre-oxidation | |
650 | 4 | |a Surface modification | |
650 | 4 | |a Ni-rich cathode | |
650 | 4 | |a lithium-ion batteries | |
700 | 1 | |a Cheng, Lei |e verfasserin |4 aut | |
700 | 1 | |a Chen, Liming |e verfasserin |4 aut | |
700 | 1 | |a Huang, Bin |e verfasserin |4 aut | |
700 | 1 | |a Yang, Jianwen |e verfasserin |4 aut | |
700 | 1 | |a Li, Yanwei |e verfasserin |4 aut | |
700 | 1 | |a Li, Wei |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Solid state ionics |d Amsterdam [u.a.] : Elsevier Science, 1980 |g 386 |h Online-Ressource |w (DE-627)306710544 |w (DE-600)1500750-9 |w (DE-576)25193814X |x 0167-2738 |7 nnns |
773 | 1 | 8 | |g volume:386 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 33.61 |j Festkörperphysik |
951 | |a AR | ||
952 | |d 386 |
author_variant |
x l xl l c lc l c lc b h bh j y jy y l yl w l wl |
---|---|
matchkey_str |
article:01672738:2022----::tblznteuf |
hierarchy_sort_str |
2022 |
bklnumber |
33.61 |
publishDate |
2022 |
allfields |
10.1016/j.ssi.2022.116028 doi (DE-627)ELV008792860 (ELSEVIER)S0167-2738(22)00177-1 DE-627 ger DE-627 rda eng 530 DE-600 33.61 bkl Li, Xinze verfasserin aut Stabilizing the surface of LiNi 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Ni-rich layered LiNi0.815Co0.15Al0.035O2 cathode material is stabilized by a facile oxidation-coating strategy on the hydroxide precursor Ni0.815Co0.15Al0.035(OH)2. Potassium permanganate is employed as both oxidizing agent and manganese source for the Mn-containing coating layer on the precursor. X-ray diffraction and scanning electron microscopy reveal that the surface modification does not alter the crystallographic structure and particle morphology of the layered cathode. Energy dispersive spectrometry confirms the uniform distribution of manganese on the modified cathode materials. X-ray photoelectron spectroscopy demonstrates that the oxidation-coating strategy gives rise to a relatively higher content of Ni3+ in the cathode, thereby suppressing the cation mixing. Electrochemical characterizations reveal that the oxidation-coating strategy on the precursor improves the cycling performance at both room temperature and elevated temperature, as well as the moisture resistance in the air. Precursor modification Pre-oxidation Surface modification Ni-rich cathode lithium-ion batteries Cheng, Lei verfasserin aut Chen, Liming verfasserin aut Huang, Bin verfasserin aut Yang, Jianwen verfasserin aut Li, Yanwei verfasserin aut Li, Wei verfasserin aut Enthalten in Solid state ionics Amsterdam [u.a.] : Elsevier Science, 1980 386 Online-Ressource (DE-627)306710544 (DE-600)1500750-9 (DE-576)25193814X 0167-2738 nnns volume:386 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 33.61 Festkörperphysik AR 386 |
spelling |
10.1016/j.ssi.2022.116028 doi (DE-627)ELV008792860 (ELSEVIER)S0167-2738(22)00177-1 DE-627 ger DE-627 rda eng 530 DE-600 33.61 bkl Li, Xinze verfasserin aut Stabilizing the surface of LiNi 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Ni-rich layered LiNi0.815Co0.15Al0.035O2 cathode material is stabilized by a facile oxidation-coating strategy on the hydroxide precursor Ni0.815Co0.15Al0.035(OH)2. Potassium permanganate is employed as both oxidizing agent and manganese source for the Mn-containing coating layer on the precursor. X-ray diffraction and scanning electron microscopy reveal that the surface modification does not alter the crystallographic structure and particle morphology of the layered cathode. Energy dispersive spectrometry confirms the uniform distribution of manganese on the modified cathode materials. X-ray photoelectron spectroscopy demonstrates that the oxidation-coating strategy gives rise to a relatively higher content of Ni3+ in the cathode, thereby suppressing the cation mixing. Electrochemical characterizations reveal that the oxidation-coating strategy on the precursor improves the cycling performance at both room temperature and elevated temperature, as well as the moisture resistance in the air. Precursor modification Pre-oxidation Surface modification Ni-rich cathode lithium-ion batteries Cheng, Lei verfasserin aut Chen, Liming verfasserin aut Huang, Bin verfasserin aut Yang, Jianwen verfasserin aut Li, Yanwei verfasserin aut Li, Wei verfasserin aut Enthalten in Solid state ionics Amsterdam [u.a.] : Elsevier Science, 1980 386 Online-Ressource (DE-627)306710544 (DE-600)1500750-9 (DE-576)25193814X 0167-2738 nnns volume:386 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 33.61 Festkörperphysik AR 386 |
allfields_unstemmed |
10.1016/j.ssi.2022.116028 doi (DE-627)ELV008792860 (ELSEVIER)S0167-2738(22)00177-1 DE-627 ger DE-627 rda eng 530 DE-600 33.61 bkl Li, Xinze verfasserin aut Stabilizing the surface of LiNi 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Ni-rich layered LiNi0.815Co0.15Al0.035O2 cathode material is stabilized by a facile oxidation-coating strategy on the hydroxide precursor Ni0.815Co0.15Al0.035(OH)2. Potassium permanganate is employed as both oxidizing agent and manganese source for the Mn-containing coating layer on the precursor. X-ray diffraction and scanning electron microscopy reveal that the surface modification does not alter the crystallographic structure and particle morphology of the layered cathode. Energy dispersive spectrometry confirms the uniform distribution of manganese on the modified cathode materials. X-ray photoelectron spectroscopy demonstrates that the oxidation-coating strategy gives rise to a relatively higher content of Ni3+ in the cathode, thereby suppressing the cation mixing. Electrochemical characterizations reveal that the oxidation-coating strategy on the precursor improves the cycling performance at both room temperature and elevated temperature, as well as the moisture resistance in the air. Precursor modification Pre-oxidation Surface modification Ni-rich cathode lithium-ion batteries Cheng, Lei verfasserin aut Chen, Liming verfasserin aut Huang, Bin verfasserin aut Yang, Jianwen verfasserin aut Li, Yanwei verfasserin aut Li, Wei verfasserin aut Enthalten in Solid state ionics Amsterdam [u.a.] : Elsevier Science, 1980 386 Online-Ressource (DE-627)306710544 (DE-600)1500750-9 (DE-576)25193814X 0167-2738 nnns volume:386 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 33.61 Festkörperphysik AR 386 |
allfieldsGer |
10.1016/j.ssi.2022.116028 doi (DE-627)ELV008792860 (ELSEVIER)S0167-2738(22)00177-1 DE-627 ger DE-627 rda eng 530 DE-600 33.61 bkl Li, Xinze verfasserin aut Stabilizing the surface of LiNi 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Ni-rich layered LiNi0.815Co0.15Al0.035O2 cathode material is stabilized by a facile oxidation-coating strategy on the hydroxide precursor Ni0.815Co0.15Al0.035(OH)2. Potassium permanganate is employed as both oxidizing agent and manganese source for the Mn-containing coating layer on the precursor. X-ray diffraction and scanning electron microscopy reveal that the surface modification does not alter the crystallographic structure and particle morphology of the layered cathode. Energy dispersive spectrometry confirms the uniform distribution of manganese on the modified cathode materials. X-ray photoelectron spectroscopy demonstrates that the oxidation-coating strategy gives rise to a relatively higher content of Ni3+ in the cathode, thereby suppressing the cation mixing. Electrochemical characterizations reveal that the oxidation-coating strategy on the precursor improves the cycling performance at both room temperature and elevated temperature, as well as the moisture resistance in the air. Precursor modification Pre-oxidation Surface modification Ni-rich cathode lithium-ion batteries Cheng, Lei verfasserin aut Chen, Liming verfasserin aut Huang, Bin verfasserin aut Yang, Jianwen verfasserin aut Li, Yanwei verfasserin aut Li, Wei verfasserin aut Enthalten in Solid state ionics Amsterdam [u.a.] : Elsevier Science, 1980 386 Online-Ressource (DE-627)306710544 (DE-600)1500750-9 (DE-576)25193814X 0167-2738 nnns volume:386 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 33.61 Festkörperphysik AR 386 |
allfieldsSound |
10.1016/j.ssi.2022.116028 doi (DE-627)ELV008792860 (ELSEVIER)S0167-2738(22)00177-1 DE-627 ger DE-627 rda eng 530 DE-600 33.61 bkl Li, Xinze verfasserin aut Stabilizing the surface of LiNi 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Ni-rich layered LiNi0.815Co0.15Al0.035O2 cathode material is stabilized by a facile oxidation-coating strategy on the hydroxide precursor Ni0.815Co0.15Al0.035(OH)2. Potassium permanganate is employed as both oxidizing agent and manganese source for the Mn-containing coating layer on the precursor. X-ray diffraction and scanning electron microscopy reveal that the surface modification does not alter the crystallographic structure and particle morphology of the layered cathode. Energy dispersive spectrometry confirms the uniform distribution of manganese on the modified cathode materials. X-ray photoelectron spectroscopy demonstrates that the oxidation-coating strategy gives rise to a relatively higher content of Ni3+ in the cathode, thereby suppressing the cation mixing. Electrochemical characterizations reveal that the oxidation-coating strategy on the precursor improves the cycling performance at both room temperature and elevated temperature, as well as the moisture resistance in the air. Precursor modification Pre-oxidation Surface modification Ni-rich cathode lithium-ion batteries Cheng, Lei verfasserin aut Chen, Liming verfasserin aut Huang, Bin verfasserin aut Yang, Jianwen verfasserin aut Li, Yanwei verfasserin aut Li, Wei verfasserin aut Enthalten in Solid state ionics Amsterdam [u.a.] : Elsevier Science, 1980 386 Online-Ressource (DE-627)306710544 (DE-600)1500750-9 (DE-576)25193814X 0167-2738 nnns volume:386 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 33.61 Festkörperphysik AR 386 |
language |
English |
source |
Enthalten in Solid state ionics 386 volume:386 |
sourceStr |
Enthalten in Solid state ionics 386 volume:386 |
format_phy_str_mv |
Article |
bklname |
Festkörperphysik |
institution |
findex.gbv.de |
topic_facet |
Precursor modification Pre-oxidation Surface modification Ni-rich cathode lithium-ion batteries |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Solid state ionics |
authorswithroles_txt_mv |
Li, Xinze @@aut@@ Cheng, Lei @@aut@@ Chen, Liming @@aut@@ Huang, Bin @@aut@@ Yang, Jianwen @@aut@@ Li, Yanwei @@aut@@ Li, Wei @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
306710544 |
dewey-sort |
3530 |
id |
ELV008792860 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV008792860</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524145932.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230509s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ssi.2022.116028</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV008792860</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0167-2738(22)00177-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.61</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Xinze</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stabilizing the surface of LiNi</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Ni-rich layered LiNi0.815Co0.15Al0.035O2 cathode material is stabilized by a facile oxidation-coating strategy on the hydroxide precursor Ni0.815Co0.15Al0.035(OH)2. Potassium permanganate is employed as both oxidizing agent and manganese source for the Mn-containing coating layer on the precursor. X-ray diffraction and scanning electron microscopy reveal that the surface modification does not alter the crystallographic structure and particle morphology of the layered cathode. Energy dispersive spectrometry confirms the uniform distribution of manganese on the modified cathode materials. X-ray photoelectron spectroscopy demonstrates that the oxidation-coating strategy gives rise to a relatively higher content of Ni3+ in the cathode, thereby suppressing the cation mixing. Electrochemical characterizations reveal that the oxidation-coating strategy on the precursor improves the cycling performance at both room temperature and elevated temperature, as well as the moisture resistance in the air.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Precursor modification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pre-oxidation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surface modification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ni-rich cathode</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">lithium-ion batteries</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cheng, Lei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Liming</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Bin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Jianwen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Yanwei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Wei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Solid state ionics</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1980</subfield><subfield code="g">386</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306710544</subfield><subfield code="w">(DE-600)1500750-9</subfield><subfield code="w">(DE-576)25193814X</subfield><subfield code="x">0167-2738</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:386</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.61</subfield><subfield code="j">Festkörperphysik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">386</subfield></datafield></record></collection>
|
author |
Li, Xinze |
spellingShingle |
Li, Xinze ddc 530 bkl 33.61 misc Precursor modification misc Pre-oxidation misc Surface modification misc Ni-rich cathode misc lithium-ion batteries Stabilizing the surface of LiNi |
authorStr |
Li, Xinze |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)306710544 |
format |
electronic Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0167-2738 |
topic_title |
530 DE-600 33.61 bkl Stabilizing the surface of LiNi Precursor modification Pre-oxidation Surface modification Ni-rich cathode lithium-ion batteries |
topic |
ddc 530 bkl 33.61 misc Precursor modification misc Pre-oxidation misc Surface modification misc Ni-rich cathode misc lithium-ion batteries |
topic_unstemmed |
ddc 530 bkl 33.61 misc Precursor modification misc Pre-oxidation misc Surface modification misc Ni-rich cathode misc lithium-ion batteries |
topic_browse |
ddc 530 bkl 33.61 misc Precursor modification misc Pre-oxidation misc Surface modification misc Ni-rich cathode misc lithium-ion batteries |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Solid state ionics |
hierarchy_parent_id |
306710544 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Solid state ionics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)306710544 (DE-600)1500750-9 (DE-576)25193814X |
title |
Stabilizing the surface of LiNi |
ctrlnum |
(DE-627)ELV008792860 (ELSEVIER)S0167-2738(22)00177-1 |
title_full |
Stabilizing the surface of LiNi |
author_sort |
Li, Xinze |
journal |
Solid state ionics |
journalStr |
Solid state ionics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
author_browse |
Li, Xinze Cheng, Lei Chen, Liming Huang, Bin Yang, Jianwen Li, Yanwei Li, Wei |
container_volume |
386 |
class |
530 DE-600 33.61 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Li, Xinze |
doi_str_mv |
10.1016/j.ssi.2022.116028 |
dewey-full |
530 |
author2-role |
verfasserin |
title_sort |
stabilizing the surface of lini |
title_auth |
Stabilizing the surface of LiNi |
abstract |
Ni-rich layered LiNi0.815Co0.15Al0.035O2 cathode material is stabilized by a facile oxidation-coating strategy on the hydroxide precursor Ni0.815Co0.15Al0.035(OH)2. Potassium permanganate is employed as both oxidizing agent and manganese source for the Mn-containing coating layer on the precursor. X-ray diffraction and scanning electron microscopy reveal that the surface modification does not alter the crystallographic structure and particle morphology of the layered cathode. Energy dispersive spectrometry confirms the uniform distribution of manganese on the modified cathode materials. X-ray photoelectron spectroscopy demonstrates that the oxidation-coating strategy gives rise to a relatively higher content of Ni3+ in the cathode, thereby suppressing the cation mixing. Electrochemical characterizations reveal that the oxidation-coating strategy on the precursor improves the cycling performance at both room temperature and elevated temperature, as well as the moisture resistance in the air. |
abstractGer |
Ni-rich layered LiNi0.815Co0.15Al0.035O2 cathode material is stabilized by a facile oxidation-coating strategy on the hydroxide precursor Ni0.815Co0.15Al0.035(OH)2. Potassium permanganate is employed as both oxidizing agent and manganese source for the Mn-containing coating layer on the precursor. X-ray diffraction and scanning electron microscopy reveal that the surface modification does not alter the crystallographic structure and particle morphology of the layered cathode. Energy dispersive spectrometry confirms the uniform distribution of manganese on the modified cathode materials. X-ray photoelectron spectroscopy demonstrates that the oxidation-coating strategy gives rise to a relatively higher content of Ni3+ in the cathode, thereby suppressing the cation mixing. Electrochemical characterizations reveal that the oxidation-coating strategy on the precursor improves the cycling performance at both room temperature and elevated temperature, as well as the moisture resistance in the air. |
abstract_unstemmed |
Ni-rich layered LiNi0.815Co0.15Al0.035O2 cathode material is stabilized by a facile oxidation-coating strategy on the hydroxide precursor Ni0.815Co0.15Al0.035(OH)2. Potassium permanganate is employed as both oxidizing agent and manganese source for the Mn-containing coating layer on the precursor. X-ray diffraction and scanning electron microscopy reveal that the surface modification does not alter the crystallographic structure and particle morphology of the layered cathode. Energy dispersive spectrometry confirms the uniform distribution of manganese on the modified cathode materials. X-ray photoelectron spectroscopy demonstrates that the oxidation-coating strategy gives rise to a relatively higher content of Ni3+ in the cathode, thereby suppressing the cation mixing. Electrochemical characterizations reveal that the oxidation-coating strategy on the precursor improves the cycling performance at both room temperature and elevated temperature, as well as the moisture resistance in the air. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Stabilizing the surface of LiNi |
remote_bool |
true |
author2 |
Cheng, Lei Chen, Liming Huang, Bin Yang, Jianwen Li, Yanwei Li, Wei |
author2Str |
Cheng, Lei Chen, Liming Huang, Bin Yang, Jianwen Li, Yanwei Li, Wei |
ppnlink |
306710544 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.ssi.2022.116028 |
up_date |
2024-07-06T20:55:16.404Z |
_version_ |
1803864575998689280 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV008792860</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524145932.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230509s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ssi.2022.116028</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV008792860</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0167-2738(22)00177-1</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.61</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Xinze</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stabilizing the surface of LiNi</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Ni-rich layered LiNi0.815Co0.15Al0.035O2 cathode material is stabilized by a facile oxidation-coating strategy on the hydroxide precursor Ni0.815Co0.15Al0.035(OH)2. Potassium permanganate is employed as both oxidizing agent and manganese source for the Mn-containing coating layer on the precursor. X-ray diffraction and scanning electron microscopy reveal that the surface modification does not alter the crystallographic structure and particle morphology of the layered cathode. Energy dispersive spectrometry confirms the uniform distribution of manganese on the modified cathode materials. X-ray photoelectron spectroscopy demonstrates that the oxidation-coating strategy gives rise to a relatively higher content of Ni3+ in the cathode, thereby suppressing the cation mixing. Electrochemical characterizations reveal that the oxidation-coating strategy on the precursor improves the cycling performance at both room temperature and elevated temperature, as well as the moisture resistance in the air.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Precursor modification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pre-oxidation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surface modification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ni-rich cathode</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">lithium-ion batteries</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cheng, Lei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Liming</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Bin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Jianwen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Yanwei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Wei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Solid state ionics</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1980</subfield><subfield code="g">386</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)306710544</subfield><subfield code="w">(DE-600)1500750-9</subfield><subfield code="w">(DE-576)25193814X</subfield><subfield code="x">0167-2738</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:386</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.61</subfield><subfield code="j">Festkörperphysik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">386</subfield></datafield></record></collection>
|
score |
7.402297 |