CAOM: Change-aware online 3D mapping with heterogeneous multi-beam and push-broom LiDAR point clouds
A High-Definition (HD) map is an essential component not only for autonomous vehicles but also for surveyors in favor of city management. Moreover, the HD map must be up-to-date by reflecting environmental changes continuously. The development of LiDAR Simultaneous Localization And Mapping (SLAM) te...
Ausführliche Beschreibung
Autor*in: |
Cong, Yangzi [verfasserIn] Chen, Chi [verfasserIn] Yang, Bisheng [verfasserIn] Liang, Fuxun [verfasserIn] Ma, Ruiqi [verfasserIn] Zhang, Fei [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: ISPRS journal of photogrammetry and remote sensing - International Society for Photogrammetry and Remote Sensing ; ID: gnd/132008-7, Amsterdam [u.a.] : Elsevier, 1989, 195, Seite 204-219 |
---|---|
Übergeordnetes Werk: |
volume:195 ; pages:204-219 |
DOI / URN: |
10.1016/j.isprsjprs.2022.11.017 |
---|
Katalog-ID: |
ELV009071911 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV009071911 | ||
003 | DE-627 | ||
005 | 20230524160930.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230510s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.isprsjprs.2022.11.017 |2 doi | |
035 | |a (DE-627)ELV009071911 | ||
035 | |a (ELSEVIER)S0924-2716(22)00310-0 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q DE-600 |
084 | |a 38.73 |2 bkl | ||
084 | |a 74.41 |2 bkl | ||
100 | 1 | |a Cong, Yangzi |e verfasserin |4 aut | |
245 | 1 | 0 | |a CAOM: Change-aware online 3D mapping with heterogeneous multi-beam and push-broom LiDAR point clouds |
264 | 1 | |c 2022 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a A High-Definition (HD) map is an essential component not only for autonomous vehicles but also for surveyors in favor of city management. Moreover, the HD map must be up-to-date by reflecting environmental changes continuously. The development of LiDAR Simultaneous Localization And Mapping (SLAM) techniques has provided an effective way to collect precise point clouds for the construction of HD maps, while traditional methods are time-consuming and labor-intensive on account of the complex street scene. Furthermore, life-long 3D mapping is quite necessary and challenging nowadays. In this paper, we introduce a novel change-aware 3D online mapping framework CAOM, 1 1 Code at https://github.com/DCSI2022/CAOM. using point clouds collected by Multi-Beam LiDAR (MBL) and Push-Broom LiDAR (PBL) for rapid city map update and change detection. Concerning the prior map with higher precision, heterogenous fusion is performed to rectify the SLAM drift, based on the View-Traced Clouds (ViTC) derived according to their view in common. Meanwhile, corresponding virtual range images are integrated with distance images to detect the 3D changes between the current map and the historical reference map offline. The detection results are later fused in a probabilistic way along with the homogeneous fusion process where a resilient graph consisting of diverse factors is established to maintain the local and global consistency of the final point cloud map. Compared with 3D-CSTM, the real-world experiments have shown an average 0.5 m and max 1.5 m improvement in the ATE (Absolute Translation Error) of the trajectory generated by our system. Quantitative measurements on the individual point accuracy are also conducted to verify the performance of 3D mapping with up to 16% improvement in comparison with respect to the 3D-CSTM method. The effects of the disparity detection and probabilistic fusion can be revealed from the small objects distinguished in the point cloud map as well as > 95% overall accuracy. | ||
650 | 4 | |a Heterogeneous point clouds fusion | |
650 | 4 | |a Disparity detection | |
650 | 4 | |a 3D mapping | |
650 | 4 | |a Probabilistic propagation | |
650 | 4 | |a SLAM | |
650 | 4 | |a Mobile mapping system | |
700 | 1 | |a Chen, Chi |e verfasserin |4 aut | |
700 | 1 | |a Yang, Bisheng |e verfasserin |4 aut | |
700 | 1 | |a Liang, Fuxun |e verfasserin |4 aut | |
700 | 1 | |a Ma, Ruiqi |e verfasserin |4 aut | |
700 | 1 | |a Zhang, Fei |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |a International Society for Photogrammetry and Remote Sensing ; ID: gnd/132008-7 |t ISPRS journal of photogrammetry and remote sensing |d Amsterdam [u.a.] : Elsevier, 1989 |g 195, Seite 204-219 |h Online-Ressource |w (DE-627)320504557 |w (DE-600)2012663-3 |w (DE-576)096806567 |x 0924-2716 |7 nnns |
773 | 1 | 8 | |g volume:195 |g pages:204-219 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OPC-GGO | ||
912 | |a SSG-OPC-GEO | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 38.73 |j Geodäsie |
936 | b | k | |a 74.41 |j Luftaufnahmen |j Photogrammetrie |
951 | |a AR | ||
952 | |d 195 |h 204-219 |
author_variant |
y c yc c c cc b y by f l fl r m rm f z fz |
---|---|
matchkey_str |
article:09242716:2022----::amhnewroln3mpigiheeoeeumliemnps |
hierarchy_sort_str |
2022 |
bklnumber |
38.73 74.41 |
publishDate |
2022 |
allfields |
10.1016/j.isprsjprs.2022.11.017 doi (DE-627)ELV009071911 (ELSEVIER)S0924-2716(22)00310-0 DE-627 ger DE-627 rda eng 550 DE-600 38.73 bkl 74.41 bkl Cong, Yangzi verfasserin aut CAOM: Change-aware online 3D mapping with heterogeneous multi-beam and push-broom LiDAR point clouds 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A High-Definition (HD) map is an essential component not only for autonomous vehicles but also for surveyors in favor of city management. Moreover, the HD map must be up-to-date by reflecting environmental changes continuously. The development of LiDAR Simultaneous Localization And Mapping (SLAM) techniques has provided an effective way to collect precise point clouds for the construction of HD maps, while traditional methods are time-consuming and labor-intensive on account of the complex street scene. Furthermore, life-long 3D mapping is quite necessary and challenging nowadays. In this paper, we introduce a novel change-aware 3D online mapping framework CAOM, 1 1 Code at https://github.com/DCSI2022/CAOM. using point clouds collected by Multi-Beam LiDAR (MBL) and Push-Broom LiDAR (PBL) for rapid city map update and change detection. Concerning the prior map with higher precision, heterogenous fusion is performed to rectify the SLAM drift, based on the View-Traced Clouds (ViTC) derived according to their view in common. Meanwhile, corresponding virtual range images are integrated with distance images to detect the 3D changes between the current map and the historical reference map offline. The detection results are later fused in a probabilistic way along with the homogeneous fusion process where a resilient graph consisting of diverse factors is established to maintain the local and global consistency of the final point cloud map. Compared with 3D-CSTM, the real-world experiments have shown an average 0.5 m and max 1.5 m improvement in the ATE (Absolute Translation Error) of the trajectory generated by our system. Quantitative measurements on the individual point accuracy are also conducted to verify the performance of 3D mapping with up to 16% improvement in comparison with respect to the 3D-CSTM method. The effects of the disparity detection and probabilistic fusion can be revealed from the small objects distinguished in the point cloud map as well as > 95% overall accuracy. Heterogeneous point clouds fusion Disparity detection 3D mapping Probabilistic propagation SLAM Mobile mapping system Chen, Chi verfasserin aut Yang, Bisheng verfasserin aut Liang, Fuxun verfasserin aut Ma, Ruiqi verfasserin aut Zhang, Fei verfasserin aut Enthalten in International Society for Photogrammetry and Remote Sensing ; ID: gnd/132008-7 ISPRS journal of photogrammetry and remote sensing Amsterdam [u.a.] : Elsevier, 1989 195, Seite 204-219 Online-Ressource (DE-627)320504557 (DE-600)2012663-3 (DE-576)096806567 0924-2716 nnns volume:195 pages:204-219 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.73 Geodäsie 74.41 Luftaufnahmen Photogrammetrie AR 195 204-219 |
spelling |
10.1016/j.isprsjprs.2022.11.017 doi (DE-627)ELV009071911 (ELSEVIER)S0924-2716(22)00310-0 DE-627 ger DE-627 rda eng 550 DE-600 38.73 bkl 74.41 bkl Cong, Yangzi verfasserin aut CAOM: Change-aware online 3D mapping with heterogeneous multi-beam and push-broom LiDAR point clouds 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A High-Definition (HD) map is an essential component not only for autonomous vehicles but also for surveyors in favor of city management. Moreover, the HD map must be up-to-date by reflecting environmental changes continuously. The development of LiDAR Simultaneous Localization And Mapping (SLAM) techniques has provided an effective way to collect precise point clouds for the construction of HD maps, while traditional methods are time-consuming and labor-intensive on account of the complex street scene. Furthermore, life-long 3D mapping is quite necessary and challenging nowadays. In this paper, we introduce a novel change-aware 3D online mapping framework CAOM, 1 1 Code at https://github.com/DCSI2022/CAOM. using point clouds collected by Multi-Beam LiDAR (MBL) and Push-Broom LiDAR (PBL) for rapid city map update and change detection. Concerning the prior map with higher precision, heterogenous fusion is performed to rectify the SLAM drift, based on the View-Traced Clouds (ViTC) derived according to their view in common. Meanwhile, corresponding virtual range images are integrated with distance images to detect the 3D changes between the current map and the historical reference map offline. The detection results are later fused in a probabilistic way along with the homogeneous fusion process where a resilient graph consisting of diverse factors is established to maintain the local and global consistency of the final point cloud map. Compared with 3D-CSTM, the real-world experiments have shown an average 0.5 m and max 1.5 m improvement in the ATE (Absolute Translation Error) of the trajectory generated by our system. Quantitative measurements on the individual point accuracy are also conducted to verify the performance of 3D mapping with up to 16% improvement in comparison with respect to the 3D-CSTM method. The effects of the disparity detection and probabilistic fusion can be revealed from the small objects distinguished in the point cloud map as well as > 95% overall accuracy. Heterogeneous point clouds fusion Disparity detection 3D mapping Probabilistic propagation SLAM Mobile mapping system Chen, Chi verfasserin aut Yang, Bisheng verfasserin aut Liang, Fuxun verfasserin aut Ma, Ruiqi verfasserin aut Zhang, Fei verfasserin aut Enthalten in International Society for Photogrammetry and Remote Sensing ; ID: gnd/132008-7 ISPRS journal of photogrammetry and remote sensing Amsterdam [u.a.] : Elsevier, 1989 195, Seite 204-219 Online-Ressource (DE-627)320504557 (DE-600)2012663-3 (DE-576)096806567 0924-2716 nnns volume:195 pages:204-219 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.73 Geodäsie 74.41 Luftaufnahmen Photogrammetrie AR 195 204-219 |
allfields_unstemmed |
10.1016/j.isprsjprs.2022.11.017 doi (DE-627)ELV009071911 (ELSEVIER)S0924-2716(22)00310-0 DE-627 ger DE-627 rda eng 550 DE-600 38.73 bkl 74.41 bkl Cong, Yangzi verfasserin aut CAOM: Change-aware online 3D mapping with heterogeneous multi-beam and push-broom LiDAR point clouds 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A High-Definition (HD) map is an essential component not only for autonomous vehicles but also for surveyors in favor of city management. Moreover, the HD map must be up-to-date by reflecting environmental changes continuously. The development of LiDAR Simultaneous Localization And Mapping (SLAM) techniques has provided an effective way to collect precise point clouds for the construction of HD maps, while traditional methods are time-consuming and labor-intensive on account of the complex street scene. Furthermore, life-long 3D mapping is quite necessary and challenging nowadays. In this paper, we introduce a novel change-aware 3D online mapping framework CAOM, 1 1 Code at https://github.com/DCSI2022/CAOM. using point clouds collected by Multi-Beam LiDAR (MBL) and Push-Broom LiDAR (PBL) for rapid city map update and change detection. Concerning the prior map with higher precision, heterogenous fusion is performed to rectify the SLAM drift, based on the View-Traced Clouds (ViTC) derived according to their view in common. Meanwhile, corresponding virtual range images are integrated with distance images to detect the 3D changes between the current map and the historical reference map offline. The detection results are later fused in a probabilistic way along with the homogeneous fusion process where a resilient graph consisting of diverse factors is established to maintain the local and global consistency of the final point cloud map. Compared with 3D-CSTM, the real-world experiments have shown an average 0.5 m and max 1.5 m improvement in the ATE (Absolute Translation Error) of the trajectory generated by our system. Quantitative measurements on the individual point accuracy are also conducted to verify the performance of 3D mapping with up to 16% improvement in comparison with respect to the 3D-CSTM method. The effects of the disparity detection and probabilistic fusion can be revealed from the small objects distinguished in the point cloud map as well as > 95% overall accuracy. Heterogeneous point clouds fusion Disparity detection 3D mapping Probabilistic propagation SLAM Mobile mapping system Chen, Chi verfasserin aut Yang, Bisheng verfasserin aut Liang, Fuxun verfasserin aut Ma, Ruiqi verfasserin aut Zhang, Fei verfasserin aut Enthalten in International Society for Photogrammetry and Remote Sensing ; ID: gnd/132008-7 ISPRS journal of photogrammetry and remote sensing Amsterdam [u.a.] : Elsevier, 1989 195, Seite 204-219 Online-Ressource (DE-627)320504557 (DE-600)2012663-3 (DE-576)096806567 0924-2716 nnns volume:195 pages:204-219 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.73 Geodäsie 74.41 Luftaufnahmen Photogrammetrie AR 195 204-219 |
allfieldsGer |
10.1016/j.isprsjprs.2022.11.017 doi (DE-627)ELV009071911 (ELSEVIER)S0924-2716(22)00310-0 DE-627 ger DE-627 rda eng 550 DE-600 38.73 bkl 74.41 bkl Cong, Yangzi verfasserin aut CAOM: Change-aware online 3D mapping with heterogeneous multi-beam and push-broom LiDAR point clouds 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A High-Definition (HD) map is an essential component not only for autonomous vehicles but also for surveyors in favor of city management. Moreover, the HD map must be up-to-date by reflecting environmental changes continuously. The development of LiDAR Simultaneous Localization And Mapping (SLAM) techniques has provided an effective way to collect precise point clouds for the construction of HD maps, while traditional methods are time-consuming and labor-intensive on account of the complex street scene. Furthermore, life-long 3D mapping is quite necessary and challenging nowadays. In this paper, we introduce a novel change-aware 3D online mapping framework CAOM, 1 1 Code at https://github.com/DCSI2022/CAOM. using point clouds collected by Multi-Beam LiDAR (MBL) and Push-Broom LiDAR (PBL) for rapid city map update and change detection. Concerning the prior map with higher precision, heterogenous fusion is performed to rectify the SLAM drift, based on the View-Traced Clouds (ViTC) derived according to their view in common. Meanwhile, corresponding virtual range images are integrated with distance images to detect the 3D changes between the current map and the historical reference map offline. The detection results are later fused in a probabilistic way along with the homogeneous fusion process where a resilient graph consisting of diverse factors is established to maintain the local and global consistency of the final point cloud map. Compared with 3D-CSTM, the real-world experiments have shown an average 0.5 m and max 1.5 m improvement in the ATE (Absolute Translation Error) of the trajectory generated by our system. Quantitative measurements on the individual point accuracy are also conducted to verify the performance of 3D mapping with up to 16% improvement in comparison with respect to the 3D-CSTM method. The effects of the disparity detection and probabilistic fusion can be revealed from the small objects distinguished in the point cloud map as well as > 95% overall accuracy. Heterogeneous point clouds fusion Disparity detection 3D mapping Probabilistic propagation SLAM Mobile mapping system Chen, Chi verfasserin aut Yang, Bisheng verfasserin aut Liang, Fuxun verfasserin aut Ma, Ruiqi verfasserin aut Zhang, Fei verfasserin aut Enthalten in International Society for Photogrammetry and Remote Sensing ; ID: gnd/132008-7 ISPRS journal of photogrammetry and remote sensing Amsterdam [u.a.] : Elsevier, 1989 195, Seite 204-219 Online-Ressource (DE-627)320504557 (DE-600)2012663-3 (DE-576)096806567 0924-2716 nnns volume:195 pages:204-219 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.73 Geodäsie 74.41 Luftaufnahmen Photogrammetrie AR 195 204-219 |
allfieldsSound |
10.1016/j.isprsjprs.2022.11.017 doi (DE-627)ELV009071911 (ELSEVIER)S0924-2716(22)00310-0 DE-627 ger DE-627 rda eng 550 DE-600 38.73 bkl 74.41 bkl Cong, Yangzi verfasserin aut CAOM: Change-aware online 3D mapping with heterogeneous multi-beam and push-broom LiDAR point clouds 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier A High-Definition (HD) map is an essential component not only for autonomous vehicles but also for surveyors in favor of city management. Moreover, the HD map must be up-to-date by reflecting environmental changes continuously. The development of LiDAR Simultaneous Localization And Mapping (SLAM) techniques has provided an effective way to collect precise point clouds for the construction of HD maps, while traditional methods are time-consuming and labor-intensive on account of the complex street scene. Furthermore, life-long 3D mapping is quite necessary and challenging nowadays. In this paper, we introduce a novel change-aware 3D online mapping framework CAOM, 1 1 Code at https://github.com/DCSI2022/CAOM. using point clouds collected by Multi-Beam LiDAR (MBL) and Push-Broom LiDAR (PBL) for rapid city map update and change detection. Concerning the prior map with higher precision, heterogenous fusion is performed to rectify the SLAM drift, based on the View-Traced Clouds (ViTC) derived according to their view in common. Meanwhile, corresponding virtual range images are integrated with distance images to detect the 3D changes between the current map and the historical reference map offline. The detection results are later fused in a probabilistic way along with the homogeneous fusion process where a resilient graph consisting of diverse factors is established to maintain the local and global consistency of the final point cloud map. Compared with 3D-CSTM, the real-world experiments have shown an average 0.5 m and max 1.5 m improvement in the ATE (Absolute Translation Error) of the trajectory generated by our system. Quantitative measurements on the individual point accuracy are also conducted to verify the performance of 3D mapping with up to 16% improvement in comparison with respect to the 3D-CSTM method. The effects of the disparity detection and probabilistic fusion can be revealed from the small objects distinguished in the point cloud map as well as > 95% overall accuracy. Heterogeneous point clouds fusion Disparity detection 3D mapping Probabilistic propagation SLAM Mobile mapping system Chen, Chi verfasserin aut Yang, Bisheng verfasserin aut Liang, Fuxun verfasserin aut Ma, Ruiqi verfasserin aut Zhang, Fei verfasserin aut Enthalten in International Society for Photogrammetry and Remote Sensing ; ID: gnd/132008-7 ISPRS journal of photogrammetry and remote sensing Amsterdam [u.a.] : Elsevier, 1989 195, Seite 204-219 Online-Ressource (DE-627)320504557 (DE-600)2012663-3 (DE-576)096806567 0924-2716 nnns volume:195 pages:204-219 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 38.73 Geodäsie 74.41 Luftaufnahmen Photogrammetrie AR 195 204-219 |
language |
English |
source |
Enthalten in ISPRS journal of photogrammetry and remote sensing 195, Seite 204-219 volume:195 pages:204-219 |
sourceStr |
Enthalten in ISPRS journal of photogrammetry and remote sensing 195, Seite 204-219 volume:195 pages:204-219 |
format_phy_str_mv |
Article |
bklname |
Geodäsie Luftaufnahmen Photogrammetrie |
institution |
findex.gbv.de |
topic_facet |
Heterogeneous point clouds fusion Disparity detection 3D mapping Probabilistic propagation SLAM Mobile mapping system |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
ISPRS journal of photogrammetry and remote sensing |
authorswithroles_txt_mv |
Cong, Yangzi @@aut@@ Chen, Chi @@aut@@ Yang, Bisheng @@aut@@ Liang, Fuxun @@aut@@ Ma, Ruiqi @@aut@@ Zhang, Fei @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
320504557 |
dewey-sort |
3550 |
id |
ELV009071911 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV009071911</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524160930.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230510s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.isprsjprs.2022.11.017</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV009071911</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0924-2716(22)00310-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.73</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">74.41</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cong, Yangzi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">CAOM: Change-aware online 3D mapping with heterogeneous multi-beam and push-broom LiDAR point clouds</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A High-Definition (HD) map is an essential component not only for autonomous vehicles but also for surveyors in favor of city management. Moreover, the HD map must be up-to-date by reflecting environmental changes continuously. The development of LiDAR Simultaneous Localization And Mapping (SLAM) techniques has provided an effective way to collect precise point clouds for the construction of HD maps, while traditional methods are time-consuming and labor-intensive on account of the complex street scene. Furthermore, life-long 3D mapping is quite necessary and challenging nowadays. In this paper, we introduce a novel change-aware 3D online mapping framework CAOM, 1 1 Code at https://github.com/DCSI2022/CAOM. using point clouds collected by Multi-Beam LiDAR (MBL) and Push-Broom LiDAR (PBL) for rapid city map update and change detection. Concerning the prior map with higher precision, heterogenous fusion is performed to rectify the SLAM drift, based on the View-Traced Clouds (ViTC) derived according to their view in common. Meanwhile, corresponding virtual range images are integrated with distance images to detect the 3D changes between the current map and the historical reference map offline. The detection results are later fused in a probabilistic way along with the homogeneous fusion process where a resilient graph consisting of diverse factors is established to maintain the local and global consistency of the final point cloud map. Compared with 3D-CSTM, the real-world experiments have shown an average 0.5 m and max 1.5 m improvement in the ATE (Absolute Translation Error) of the trajectory generated by our system. Quantitative measurements on the individual point accuracy are also conducted to verify the performance of 3D mapping with up to 16% improvement in comparison with respect to the 3D-CSTM method. The effects of the disparity detection and probabilistic fusion can be revealed from the small objects distinguished in the point cloud map as well as > 95% overall accuracy.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heterogeneous point clouds fusion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Disparity detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">3D mapping</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probabilistic propagation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SLAM</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mobile mapping system</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Chi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Bisheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liang, Fuxun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ma, Ruiqi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Fei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="a">International Society for Photogrammetry and Remote Sensing ; ID: gnd/132008-7</subfield><subfield code="t">ISPRS journal of photogrammetry and remote sensing</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1989</subfield><subfield code="g">195, Seite 204-219</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320504557</subfield><subfield code="w">(DE-600)2012663-3</subfield><subfield code="w">(DE-576)096806567</subfield><subfield code="x">0924-2716</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:195</subfield><subfield code="g">pages:204-219</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.73</subfield><subfield code="j">Geodäsie</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">74.41</subfield><subfield code="j">Luftaufnahmen</subfield><subfield code="j">Photogrammetrie</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">195</subfield><subfield code="h">204-219</subfield></datafield></record></collection>
|
author |
Cong, Yangzi |
spellingShingle |
Cong, Yangzi ddc 550 bkl 38.73 bkl 74.41 misc Heterogeneous point clouds fusion misc Disparity detection misc 3D mapping misc Probabilistic propagation misc SLAM misc Mobile mapping system CAOM: Change-aware online 3D mapping with heterogeneous multi-beam and push-broom LiDAR point clouds |
authorStr |
Cong, Yangzi |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320504557 |
format |
electronic Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0924-2716 |
topic_title |
550 DE-600 38.73 bkl 74.41 bkl CAOM: Change-aware online 3D mapping with heterogeneous multi-beam and push-broom LiDAR point clouds Heterogeneous point clouds fusion Disparity detection 3D mapping Probabilistic propagation SLAM Mobile mapping system |
topic |
ddc 550 bkl 38.73 bkl 74.41 misc Heterogeneous point clouds fusion misc Disparity detection misc 3D mapping misc Probabilistic propagation misc SLAM misc Mobile mapping system |
topic_unstemmed |
ddc 550 bkl 38.73 bkl 74.41 misc Heterogeneous point clouds fusion misc Disparity detection misc 3D mapping misc Probabilistic propagation misc SLAM misc Mobile mapping system |
topic_browse |
ddc 550 bkl 38.73 bkl 74.41 misc Heterogeneous point clouds fusion misc Disparity detection misc 3D mapping misc Probabilistic propagation misc SLAM misc Mobile mapping system |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
ISPRS journal of photogrammetry and remote sensing |
hierarchy_parent_id |
320504557 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
ISPRS journal of photogrammetry and remote sensing |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320504557 (DE-600)2012663-3 (DE-576)096806567 |
title |
CAOM: Change-aware online 3D mapping with heterogeneous multi-beam and push-broom LiDAR point clouds |
ctrlnum |
(DE-627)ELV009071911 (ELSEVIER)S0924-2716(22)00310-0 |
title_full |
CAOM: Change-aware online 3D mapping with heterogeneous multi-beam and push-broom LiDAR point clouds |
author_sort |
Cong, Yangzi |
journal |
ISPRS journal of photogrammetry and remote sensing |
journalStr |
ISPRS journal of photogrammetry and remote sensing |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
container_start_page |
204 |
author_browse |
Cong, Yangzi Chen, Chi Yang, Bisheng Liang, Fuxun Ma, Ruiqi Zhang, Fei |
container_volume |
195 |
class |
550 DE-600 38.73 bkl 74.41 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Cong, Yangzi |
doi_str_mv |
10.1016/j.isprsjprs.2022.11.017 |
dewey-full |
550 |
author2-role |
verfasserin |
title_sort |
caom: change-aware online 3d mapping with heterogeneous multi-beam and push-broom lidar point clouds |
title_auth |
CAOM: Change-aware online 3D mapping with heterogeneous multi-beam and push-broom LiDAR point clouds |
abstract |
A High-Definition (HD) map is an essential component not only for autonomous vehicles but also for surveyors in favor of city management. Moreover, the HD map must be up-to-date by reflecting environmental changes continuously. The development of LiDAR Simultaneous Localization And Mapping (SLAM) techniques has provided an effective way to collect precise point clouds for the construction of HD maps, while traditional methods are time-consuming and labor-intensive on account of the complex street scene. Furthermore, life-long 3D mapping is quite necessary and challenging nowadays. In this paper, we introduce a novel change-aware 3D online mapping framework CAOM, 1 1 Code at https://github.com/DCSI2022/CAOM. using point clouds collected by Multi-Beam LiDAR (MBL) and Push-Broom LiDAR (PBL) for rapid city map update and change detection. Concerning the prior map with higher precision, heterogenous fusion is performed to rectify the SLAM drift, based on the View-Traced Clouds (ViTC) derived according to their view in common. Meanwhile, corresponding virtual range images are integrated with distance images to detect the 3D changes between the current map and the historical reference map offline. The detection results are later fused in a probabilistic way along with the homogeneous fusion process where a resilient graph consisting of diverse factors is established to maintain the local and global consistency of the final point cloud map. Compared with 3D-CSTM, the real-world experiments have shown an average 0.5 m and max 1.5 m improvement in the ATE (Absolute Translation Error) of the trajectory generated by our system. Quantitative measurements on the individual point accuracy are also conducted to verify the performance of 3D mapping with up to 16% improvement in comparison with respect to the 3D-CSTM method. The effects of the disparity detection and probabilistic fusion can be revealed from the small objects distinguished in the point cloud map as well as > 95% overall accuracy. |
abstractGer |
A High-Definition (HD) map is an essential component not only for autonomous vehicles but also for surveyors in favor of city management. Moreover, the HD map must be up-to-date by reflecting environmental changes continuously. The development of LiDAR Simultaneous Localization And Mapping (SLAM) techniques has provided an effective way to collect precise point clouds for the construction of HD maps, while traditional methods are time-consuming and labor-intensive on account of the complex street scene. Furthermore, life-long 3D mapping is quite necessary and challenging nowadays. In this paper, we introduce a novel change-aware 3D online mapping framework CAOM, 1 1 Code at https://github.com/DCSI2022/CAOM. using point clouds collected by Multi-Beam LiDAR (MBL) and Push-Broom LiDAR (PBL) for rapid city map update and change detection. Concerning the prior map with higher precision, heterogenous fusion is performed to rectify the SLAM drift, based on the View-Traced Clouds (ViTC) derived according to their view in common. Meanwhile, corresponding virtual range images are integrated with distance images to detect the 3D changes between the current map and the historical reference map offline. The detection results are later fused in a probabilistic way along with the homogeneous fusion process where a resilient graph consisting of diverse factors is established to maintain the local and global consistency of the final point cloud map. Compared with 3D-CSTM, the real-world experiments have shown an average 0.5 m and max 1.5 m improvement in the ATE (Absolute Translation Error) of the trajectory generated by our system. Quantitative measurements on the individual point accuracy are also conducted to verify the performance of 3D mapping with up to 16% improvement in comparison with respect to the 3D-CSTM method. The effects of the disparity detection and probabilistic fusion can be revealed from the small objects distinguished in the point cloud map as well as > 95% overall accuracy. |
abstract_unstemmed |
A High-Definition (HD) map is an essential component not only for autonomous vehicles but also for surveyors in favor of city management. Moreover, the HD map must be up-to-date by reflecting environmental changes continuously. The development of LiDAR Simultaneous Localization And Mapping (SLAM) techniques has provided an effective way to collect precise point clouds for the construction of HD maps, while traditional methods are time-consuming and labor-intensive on account of the complex street scene. Furthermore, life-long 3D mapping is quite necessary and challenging nowadays. In this paper, we introduce a novel change-aware 3D online mapping framework CAOM, 1 1 Code at https://github.com/DCSI2022/CAOM. using point clouds collected by Multi-Beam LiDAR (MBL) and Push-Broom LiDAR (PBL) for rapid city map update and change detection. Concerning the prior map with higher precision, heterogenous fusion is performed to rectify the SLAM drift, based on the View-Traced Clouds (ViTC) derived according to their view in common. Meanwhile, corresponding virtual range images are integrated with distance images to detect the 3D changes between the current map and the historical reference map offline. The detection results are later fused in a probabilistic way along with the homogeneous fusion process where a resilient graph consisting of diverse factors is established to maintain the local and global consistency of the final point cloud map. Compared with 3D-CSTM, the real-world experiments have shown an average 0.5 m and max 1.5 m improvement in the ATE (Absolute Translation Error) of the trajectory generated by our system. Quantitative measurements on the individual point accuracy are also conducted to verify the performance of 3D mapping with up to 16% improvement in comparison with respect to the 3D-CSTM method. The effects of the disparity detection and probabilistic fusion can be revealed from the small objects distinguished in the point cloud map as well as > 95% overall accuracy. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
CAOM: Change-aware online 3D mapping with heterogeneous multi-beam and push-broom LiDAR point clouds |
remote_bool |
true |
author2 |
Chen, Chi Yang, Bisheng Liang, Fuxun Ma, Ruiqi Zhang, Fei |
author2Str |
Chen, Chi Yang, Bisheng Liang, Fuxun Ma, Ruiqi Zhang, Fei |
ppnlink |
320504557 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.isprsjprs.2022.11.017 |
up_date |
2024-07-06T21:53:29.217Z |
_version_ |
1803868238479622144 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV009071911</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524160930.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230510s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.isprsjprs.2022.11.017</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV009071911</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0924-2716(22)00310-0</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.73</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">74.41</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cong, Yangzi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">CAOM: Change-aware online 3D mapping with heterogeneous multi-beam and push-broom LiDAR point clouds</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">A High-Definition (HD) map is an essential component not only for autonomous vehicles but also for surveyors in favor of city management. Moreover, the HD map must be up-to-date by reflecting environmental changes continuously. The development of LiDAR Simultaneous Localization And Mapping (SLAM) techniques has provided an effective way to collect precise point clouds for the construction of HD maps, while traditional methods are time-consuming and labor-intensive on account of the complex street scene. Furthermore, life-long 3D mapping is quite necessary and challenging nowadays. In this paper, we introduce a novel change-aware 3D online mapping framework CAOM, 1 1 Code at https://github.com/DCSI2022/CAOM. using point clouds collected by Multi-Beam LiDAR (MBL) and Push-Broom LiDAR (PBL) for rapid city map update and change detection. Concerning the prior map with higher precision, heterogenous fusion is performed to rectify the SLAM drift, based on the View-Traced Clouds (ViTC) derived according to their view in common. Meanwhile, corresponding virtual range images are integrated with distance images to detect the 3D changes between the current map and the historical reference map offline. The detection results are later fused in a probabilistic way along with the homogeneous fusion process where a resilient graph consisting of diverse factors is established to maintain the local and global consistency of the final point cloud map. Compared with 3D-CSTM, the real-world experiments have shown an average 0.5 m and max 1.5 m improvement in the ATE (Absolute Translation Error) of the trajectory generated by our system. Quantitative measurements on the individual point accuracy are also conducted to verify the performance of 3D mapping with up to 16% improvement in comparison with respect to the 3D-CSTM method. The effects of the disparity detection and probabilistic fusion can be revealed from the small objects distinguished in the point cloud map as well as > 95% overall accuracy.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heterogeneous point clouds fusion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Disparity detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">3D mapping</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probabilistic propagation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SLAM</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mobile mapping system</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Chi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Bisheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liang, Fuxun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ma, Ruiqi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Fei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="a">International Society for Photogrammetry and Remote Sensing ; ID: gnd/132008-7</subfield><subfield code="t">ISPRS journal of photogrammetry and remote sensing</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1989</subfield><subfield code="g">195, Seite 204-219</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320504557</subfield><subfield code="w">(DE-600)2012663-3</subfield><subfield code="w">(DE-576)096806567</subfield><subfield code="x">0924-2716</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:195</subfield><subfield code="g">pages:204-219</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.73</subfield><subfield code="j">Geodäsie</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">74.41</subfield><subfield code="j">Luftaufnahmen</subfield><subfield code="j">Photogrammetrie</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">195</subfield><subfield code="h">204-219</subfield></datafield></record></collection>
|
score |
7.402011 |