Revised method of multiple scales for 1:2 internal resonance piezoelectric vibration energy harvester considering the coupled frequency
The piezoelectric vibration energy harvester based on the 1:2 internal resonance possesses the advantages of wide-band and high-efficiency energy harvesting. The method of multiple scales (MMS) has been applied to derive the approximate analytical solution of the output response. However, the couple...
Ausführliche Beschreibung
Autor*in: |
Nie, Xiaochun [verfasserIn] Tan, Ting [verfasserIn] Yan, Zhimiao [verfasserIn] Yan, Zhitao [verfasserIn] Wang, Lingzhi [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: No title available - 118 |
---|---|
Übergeordnetes Werk: |
volume:118 |
DOI / URN: |
10.1016/j.cnsns.2022.107018 |
---|
Katalog-ID: |
ELV009077693 |
---|
LEADER | 01000naa a22002652 4500 | ||
---|---|---|---|
001 | ELV009077693 | ||
003 | DE-627 | ||
005 | 20230510131535.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230510s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.cnsns.2022.107018 |2 doi | |
035 | |a (DE-627)ELV009077693 | ||
035 | |a (ELSEVIER)S1007-5704(22)00505-6 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
100 | 1 | |a Nie, Xiaochun |e verfasserin |4 aut | |
245 | 1 | 0 | |a Revised method of multiple scales for 1:2 internal resonance piezoelectric vibration energy harvester considering the coupled frequency |
264 | 1 | |c 2022 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The piezoelectric vibration energy harvester based on the 1:2 internal resonance possesses the advantages of wide-band and high-efficiency energy harvesting. The method of multiple scales (MMS) has been applied to derive the approximate analytical solution of the output response. However, the coupled frequency caused by internal resonance has strong effect on the output voltage response, which cannot be determined by traditional MMS. To overcome this shortage, the method of equivalent forced load is proposed to decouple the voltage frequency, and then obtain the revised approximate analytical solution (MMS-New) of the output responses. The responses of the electromechanical-coupled governing equations of the system are verified by experiments. Compared with the approximate solutions of the traditional MMS, the accuracy of the revised approximate solutions are significantly improved. In the internal resonance region, the maximum accuracy of output voltage response can be improved by 40.64%, and the maximum accuracy can be increased to 10 times outside the internal resonance region. In the whole excitation frequency range, the amplitude–frequency response curve exhibits nonlinear hardening and softening when the forward and reverse sweep frequency analysis are respectively performed. The Jacobi matrix and Lyapunov stability theory of the modulation equations are derived to determine the stability of the approximate solutions. The dynamic behavior in unstable region are investigated using means of time history curve, spectrum, phase orbit and Poincare section, the quasi periodic and chaotic motions are observed. | ||
650 | 4 | |a Method of multiple scales | |
650 | 4 | |a Coupled frequency | |
650 | 4 | |a Internal resonance | |
650 | 4 | |a Energy harvesting | |
650 | 4 | |a Method of equivalent forced load | |
700 | 1 | |a Tan, Ting |e verfasserin |0 (orcid)0000-0001-7862-1796 |4 aut | |
700 | 1 | |a Yan, Zhimiao |e verfasserin |4 aut | |
700 | 1 | |a Yan, Zhitao |e verfasserin |4 aut | |
700 | 1 | |a Wang, Lingzhi |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t No title available |g 118 |w (DE-627)352827580 |x 1007-5704 |7 nnns |
773 | 1 | 8 | |g volume:118 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
951 | |a AR | ||
952 | |d 118 |
author_variant |
x n xn t t tt z y zy z y zy l w lw |
---|---|
matchkey_str |
article:10075704:2022----::eiemtoomlilsaefr2nenleoacpeolcrcirtoeeghret |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1016/j.cnsns.2022.107018 doi (DE-627)ELV009077693 (ELSEVIER)S1007-5704(22)00505-6 DE-627 ger DE-627 rda eng Nie, Xiaochun verfasserin aut Revised method of multiple scales for 1:2 internal resonance piezoelectric vibration energy harvester considering the coupled frequency 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The piezoelectric vibration energy harvester based on the 1:2 internal resonance possesses the advantages of wide-band and high-efficiency energy harvesting. The method of multiple scales (MMS) has been applied to derive the approximate analytical solution of the output response. However, the coupled frequency caused by internal resonance has strong effect on the output voltage response, which cannot be determined by traditional MMS. To overcome this shortage, the method of equivalent forced load is proposed to decouple the voltage frequency, and then obtain the revised approximate analytical solution (MMS-New) of the output responses. The responses of the electromechanical-coupled governing equations of the system are verified by experiments. Compared with the approximate solutions of the traditional MMS, the accuracy of the revised approximate solutions are significantly improved. In the internal resonance region, the maximum accuracy of output voltage response can be improved by 40.64%, and the maximum accuracy can be increased to 10 times outside the internal resonance region. In the whole excitation frequency range, the amplitude–frequency response curve exhibits nonlinear hardening and softening when the forward and reverse sweep frequency analysis are respectively performed. The Jacobi matrix and Lyapunov stability theory of the modulation equations are derived to determine the stability of the approximate solutions. The dynamic behavior in unstable region are investigated using means of time history curve, spectrum, phase orbit and Poincare section, the quasi periodic and chaotic motions are observed. Method of multiple scales Coupled frequency Internal resonance Energy harvesting Method of equivalent forced load Tan, Ting verfasserin (orcid)0000-0001-7862-1796 aut Yan, Zhimiao verfasserin aut Yan, Zhitao verfasserin aut Wang, Lingzhi verfasserin aut Enthalten in No title available 118 (DE-627)352827580 1007-5704 nnns volume:118 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 AR 118 |
spelling |
10.1016/j.cnsns.2022.107018 doi (DE-627)ELV009077693 (ELSEVIER)S1007-5704(22)00505-6 DE-627 ger DE-627 rda eng Nie, Xiaochun verfasserin aut Revised method of multiple scales for 1:2 internal resonance piezoelectric vibration energy harvester considering the coupled frequency 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The piezoelectric vibration energy harvester based on the 1:2 internal resonance possesses the advantages of wide-band and high-efficiency energy harvesting. The method of multiple scales (MMS) has been applied to derive the approximate analytical solution of the output response. However, the coupled frequency caused by internal resonance has strong effect on the output voltage response, which cannot be determined by traditional MMS. To overcome this shortage, the method of equivalent forced load is proposed to decouple the voltage frequency, and then obtain the revised approximate analytical solution (MMS-New) of the output responses. The responses of the electromechanical-coupled governing equations of the system are verified by experiments. Compared with the approximate solutions of the traditional MMS, the accuracy of the revised approximate solutions are significantly improved. In the internal resonance region, the maximum accuracy of output voltage response can be improved by 40.64%, and the maximum accuracy can be increased to 10 times outside the internal resonance region. In the whole excitation frequency range, the amplitude–frequency response curve exhibits nonlinear hardening and softening when the forward and reverse sweep frequency analysis are respectively performed. The Jacobi matrix and Lyapunov stability theory of the modulation equations are derived to determine the stability of the approximate solutions. The dynamic behavior in unstable region are investigated using means of time history curve, spectrum, phase orbit and Poincare section, the quasi periodic and chaotic motions are observed. Method of multiple scales Coupled frequency Internal resonance Energy harvesting Method of equivalent forced load Tan, Ting verfasserin (orcid)0000-0001-7862-1796 aut Yan, Zhimiao verfasserin aut Yan, Zhitao verfasserin aut Wang, Lingzhi verfasserin aut Enthalten in No title available 118 (DE-627)352827580 1007-5704 nnns volume:118 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 AR 118 |
allfields_unstemmed |
10.1016/j.cnsns.2022.107018 doi (DE-627)ELV009077693 (ELSEVIER)S1007-5704(22)00505-6 DE-627 ger DE-627 rda eng Nie, Xiaochun verfasserin aut Revised method of multiple scales for 1:2 internal resonance piezoelectric vibration energy harvester considering the coupled frequency 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The piezoelectric vibration energy harvester based on the 1:2 internal resonance possesses the advantages of wide-band and high-efficiency energy harvesting. The method of multiple scales (MMS) has been applied to derive the approximate analytical solution of the output response. However, the coupled frequency caused by internal resonance has strong effect on the output voltage response, which cannot be determined by traditional MMS. To overcome this shortage, the method of equivalent forced load is proposed to decouple the voltage frequency, and then obtain the revised approximate analytical solution (MMS-New) of the output responses. The responses of the electromechanical-coupled governing equations of the system are verified by experiments. Compared with the approximate solutions of the traditional MMS, the accuracy of the revised approximate solutions are significantly improved. In the internal resonance region, the maximum accuracy of output voltage response can be improved by 40.64%, and the maximum accuracy can be increased to 10 times outside the internal resonance region. In the whole excitation frequency range, the amplitude–frequency response curve exhibits nonlinear hardening and softening when the forward and reverse sweep frequency analysis are respectively performed. The Jacobi matrix and Lyapunov stability theory of the modulation equations are derived to determine the stability of the approximate solutions. The dynamic behavior in unstable region are investigated using means of time history curve, spectrum, phase orbit and Poincare section, the quasi periodic and chaotic motions are observed. Method of multiple scales Coupled frequency Internal resonance Energy harvesting Method of equivalent forced load Tan, Ting verfasserin (orcid)0000-0001-7862-1796 aut Yan, Zhimiao verfasserin aut Yan, Zhitao verfasserin aut Wang, Lingzhi verfasserin aut Enthalten in No title available 118 (DE-627)352827580 1007-5704 nnns volume:118 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 AR 118 |
allfieldsGer |
10.1016/j.cnsns.2022.107018 doi (DE-627)ELV009077693 (ELSEVIER)S1007-5704(22)00505-6 DE-627 ger DE-627 rda eng Nie, Xiaochun verfasserin aut Revised method of multiple scales for 1:2 internal resonance piezoelectric vibration energy harvester considering the coupled frequency 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The piezoelectric vibration energy harvester based on the 1:2 internal resonance possesses the advantages of wide-band and high-efficiency energy harvesting. The method of multiple scales (MMS) has been applied to derive the approximate analytical solution of the output response. However, the coupled frequency caused by internal resonance has strong effect on the output voltage response, which cannot be determined by traditional MMS. To overcome this shortage, the method of equivalent forced load is proposed to decouple the voltage frequency, and then obtain the revised approximate analytical solution (MMS-New) of the output responses. The responses of the electromechanical-coupled governing equations of the system are verified by experiments. Compared with the approximate solutions of the traditional MMS, the accuracy of the revised approximate solutions are significantly improved. In the internal resonance region, the maximum accuracy of output voltage response can be improved by 40.64%, and the maximum accuracy can be increased to 10 times outside the internal resonance region. In the whole excitation frequency range, the amplitude–frequency response curve exhibits nonlinear hardening and softening when the forward and reverse sweep frequency analysis are respectively performed. The Jacobi matrix and Lyapunov stability theory of the modulation equations are derived to determine the stability of the approximate solutions. The dynamic behavior in unstable region are investigated using means of time history curve, spectrum, phase orbit and Poincare section, the quasi periodic and chaotic motions are observed. Method of multiple scales Coupled frequency Internal resonance Energy harvesting Method of equivalent forced load Tan, Ting verfasserin (orcid)0000-0001-7862-1796 aut Yan, Zhimiao verfasserin aut Yan, Zhitao verfasserin aut Wang, Lingzhi verfasserin aut Enthalten in No title available 118 (DE-627)352827580 1007-5704 nnns volume:118 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 AR 118 |
allfieldsSound |
10.1016/j.cnsns.2022.107018 doi (DE-627)ELV009077693 (ELSEVIER)S1007-5704(22)00505-6 DE-627 ger DE-627 rda eng Nie, Xiaochun verfasserin aut Revised method of multiple scales for 1:2 internal resonance piezoelectric vibration energy harvester considering the coupled frequency 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The piezoelectric vibration energy harvester based on the 1:2 internal resonance possesses the advantages of wide-band and high-efficiency energy harvesting. The method of multiple scales (MMS) has been applied to derive the approximate analytical solution of the output response. However, the coupled frequency caused by internal resonance has strong effect on the output voltage response, which cannot be determined by traditional MMS. To overcome this shortage, the method of equivalent forced load is proposed to decouple the voltage frequency, and then obtain the revised approximate analytical solution (MMS-New) of the output responses. The responses of the electromechanical-coupled governing equations of the system are verified by experiments. Compared with the approximate solutions of the traditional MMS, the accuracy of the revised approximate solutions are significantly improved. In the internal resonance region, the maximum accuracy of output voltage response can be improved by 40.64%, and the maximum accuracy can be increased to 10 times outside the internal resonance region. In the whole excitation frequency range, the amplitude–frequency response curve exhibits nonlinear hardening and softening when the forward and reverse sweep frequency analysis are respectively performed. The Jacobi matrix and Lyapunov stability theory of the modulation equations are derived to determine the stability of the approximate solutions. The dynamic behavior in unstable region are investigated using means of time history curve, spectrum, phase orbit and Poincare section, the quasi periodic and chaotic motions are observed. Method of multiple scales Coupled frequency Internal resonance Energy harvesting Method of equivalent forced load Tan, Ting verfasserin (orcid)0000-0001-7862-1796 aut Yan, Zhimiao verfasserin aut Yan, Zhitao verfasserin aut Wang, Lingzhi verfasserin aut Enthalten in No title available 118 (DE-627)352827580 1007-5704 nnns volume:118 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 AR 118 |
language |
English |
source |
Enthalten in No title available 118 volume:118 |
sourceStr |
Enthalten in No title available 118 volume:118 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Method of multiple scales Coupled frequency Internal resonance Energy harvesting Method of equivalent forced load |
isfreeaccess_bool |
false |
container_title |
No title available |
authorswithroles_txt_mv |
Nie, Xiaochun @@aut@@ Tan, Ting @@aut@@ Yan, Zhimiao @@aut@@ Yan, Zhitao @@aut@@ Wang, Lingzhi @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
352827580 |
id |
ELV009077693 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV009077693</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230510131535.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230510s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.cnsns.2022.107018</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV009077693</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1007-5704(22)00505-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nie, Xiaochun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Revised method of multiple scales for 1:2 internal resonance piezoelectric vibration energy harvester considering the coupled frequency</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The piezoelectric vibration energy harvester based on the 1:2 internal resonance possesses the advantages of wide-band and high-efficiency energy harvesting. The method of multiple scales (MMS) has been applied to derive the approximate analytical solution of the output response. However, the coupled frequency caused by internal resonance has strong effect on the output voltage response, which cannot be determined by traditional MMS. To overcome this shortage, the method of equivalent forced load is proposed to decouple the voltage frequency, and then obtain the revised approximate analytical solution (MMS-New) of the output responses. The responses of the electromechanical-coupled governing equations of the system are verified by experiments. Compared with the approximate solutions of the traditional MMS, the accuracy of the revised approximate solutions are significantly improved. In the internal resonance region, the maximum accuracy of output voltage response can be improved by 40.64%, and the maximum accuracy can be increased to 10 times outside the internal resonance region. In the whole excitation frequency range, the amplitude–frequency response curve exhibits nonlinear hardening and softening when the forward and reverse sweep frequency analysis are respectively performed. The Jacobi matrix and Lyapunov stability theory of the modulation equations are derived to determine the stability of the approximate solutions. The dynamic behavior in unstable region are investigated using means of time history curve, spectrum, phase orbit and Poincare section, the quasi periodic and chaotic motions are observed.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Method of multiple scales</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coupled frequency</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Internal resonance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Energy harvesting</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Method of equivalent forced load</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tan, Ting</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-7862-1796</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yan, Zhimiao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yan, Zhitao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Lingzhi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">No title available</subfield><subfield code="g">118</subfield><subfield code="w">(DE-627)352827580</subfield><subfield code="x">1007-5704</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">118</subfield></datafield></record></collection>
|
author |
Nie, Xiaochun |
spellingShingle |
Nie, Xiaochun misc Method of multiple scales misc Coupled frequency misc Internal resonance misc Energy harvesting misc Method of equivalent forced load Revised method of multiple scales for 1:2 internal resonance piezoelectric vibration energy harvester considering the coupled frequency |
authorStr |
Nie, Xiaochun |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)352827580 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1007-5704 |
topic_title |
Revised method of multiple scales for 1:2 internal resonance piezoelectric vibration energy harvester considering the coupled frequency Method of multiple scales Coupled frequency Internal resonance Energy harvesting Method of equivalent forced load |
topic |
misc Method of multiple scales misc Coupled frequency misc Internal resonance misc Energy harvesting misc Method of equivalent forced load |
topic_unstemmed |
misc Method of multiple scales misc Coupled frequency misc Internal resonance misc Energy harvesting misc Method of equivalent forced load |
topic_browse |
misc Method of multiple scales misc Coupled frequency misc Internal resonance misc Energy harvesting misc Method of equivalent forced load |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
No title available |
hierarchy_parent_id |
352827580 |
hierarchy_top_title |
No title available |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)352827580 |
title |
Revised method of multiple scales for 1:2 internal resonance piezoelectric vibration energy harvester considering the coupled frequency |
ctrlnum |
(DE-627)ELV009077693 (ELSEVIER)S1007-5704(22)00505-6 |
title_full |
Revised method of multiple scales for 1:2 internal resonance piezoelectric vibration energy harvester considering the coupled frequency |
author_sort |
Nie, Xiaochun |
journal |
No title available |
journalStr |
No title available |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
author_browse |
Nie, Xiaochun Tan, Ting Yan, Zhimiao Yan, Zhitao Wang, Lingzhi |
container_volume |
118 |
format_se |
Elektronische Aufsätze |
author-letter |
Nie, Xiaochun |
doi_str_mv |
10.1016/j.cnsns.2022.107018 |
normlink |
(ORCID)0000-0001-7862-1796 |
normlink_prefix_str_mv |
(orcid)0000-0001-7862-1796 |
author2-role |
verfasserin |
title_sort |
revised method of multiple scales for 1:2 internal resonance piezoelectric vibration energy harvester considering the coupled frequency |
title_auth |
Revised method of multiple scales for 1:2 internal resonance piezoelectric vibration energy harvester considering the coupled frequency |
abstract |
The piezoelectric vibration energy harvester based on the 1:2 internal resonance possesses the advantages of wide-band and high-efficiency energy harvesting. The method of multiple scales (MMS) has been applied to derive the approximate analytical solution of the output response. However, the coupled frequency caused by internal resonance has strong effect on the output voltage response, which cannot be determined by traditional MMS. To overcome this shortage, the method of equivalent forced load is proposed to decouple the voltage frequency, and then obtain the revised approximate analytical solution (MMS-New) of the output responses. The responses of the electromechanical-coupled governing equations of the system are verified by experiments. Compared with the approximate solutions of the traditional MMS, the accuracy of the revised approximate solutions are significantly improved. In the internal resonance region, the maximum accuracy of output voltage response can be improved by 40.64%, and the maximum accuracy can be increased to 10 times outside the internal resonance region. In the whole excitation frequency range, the amplitude–frequency response curve exhibits nonlinear hardening and softening when the forward and reverse sweep frequency analysis are respectively performed. The Jacobi matrix and Lyapunov stability theory of the modulation equations are derived to determine the stability of the approximate solutions. The dynamic behavior in unstable region are investigated using means of time history curve, spectrum, phase orbit and Poincare section, the quasi periodic and chaotic motions are observed. |
abstractGer |
The piezoelectric vibration energy harvester based on the 1:2 internal resonance possesses the advantages of wide-band and high-efficiency energy harvesting. The method of multiple scales (MMS) has been applied to derive the approximate analytical solution of the output response. However, the coupled frequency caused by internal resonance has strong effect on the output voltage response, which cannot be determined by traditional MMS. To overcome this shortage, the method of equivalent forced load is proposed to decouple the voltage frequency, and then obtain the revised approximate analytical solution (MMS-New) of the output responses. The responses of the electromechanical-coupled governing equations of the system are verified by experiments. Compared with the approximate solutions of the traditional MMS, the accuracy of the revised approximate solutions are significantly improved. In the internal resonance region, the maximum accuracy of output voltage response can be improved by 40.64%, and the maximum accuracy can be increased to 10 times outside the internal resonance region. In the whole excitation frequency range, the amplitude–frequency response curve exhibits nonlinear hardening and softening when the forward and reverse sweep frequency analysis are respectively performed. The Jacobi matrix and Lyapunov stability theory of the modulation equations are derived to determine the stability of the approximate solutions. The dynamic behavior in unstable region are investigated using means of time history curve, spectrum, phase orbit and Poincare section, the quasi periodic and chaotic motions are observed. |
abstract_unstemmed |
The piezoelectric vibration energy harvester based on the 1:2 internal resonance possesses the advantages of wide-band and high-efficiency energy harvesting. The method of multiple scales (MMS) has been applied to derive the approximate analytical solution of the output response. However, the coupled frequency caused by internal resonance has strong effect on the output voltage response, which cannot be determined by traditional MMS. To overcome this shortage, the method of equivalent forced load is proposed to decouple the voltage frequency, and then obtain the revised approximate analytical solution (MMS-New) of the output responses. The responses of the electromechanical-coupled governing equations of the system are verified by experiments. Compared with the approximate solutions of the traditional MMS, the accuracy of the revised approximate solutions are significantly improved. In the internal resonance region, the maximum accuracy of output voltage response can be improved by 40.64%, and the maximum accuracy can be increased to 10 times outside the internal resonance region. In the whole excitation frequency range, the amplitude–frequency response curve exhibits nonlinear hardening and softening when the forward and reverse sweep frequency analysis are respectively performed. The Jacobi matrix and Lyapunov stability theory of the modulation equations are derived to determine the stability of the approximate solutions. The dynamic behavior in unstable region are investigated using means of time history curve, spectrum, phase orbit and Poincare section, the quasi periodic and chaotic motions are observed. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Revised method of multiple scales for 1:2 internal resonance piezoelectric vibration energy harvester considering the coupled frequency |
remote_bool |
true |
author2 |
Tan, Ting Yan, Zhimiao Yan, Zhitao Wang, Lingzhi |
author2Str |
Tan, Ting Yan, Zhimiao Yan, Zhitao Wang, Lingzhi |
ppnlink |
352827580 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.cnsns.2022.107018 |
up_date |
2024-07-06T21:54:42.116Z |
_version_ |
1803868314918715392 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000naa a22002652 4500</leader><controlfield tag="001">ELV009077693</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230510131535.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230510s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.cnsns.2022.107018</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV009077693</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1007-5704(22)00505-6</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nie, Xiaochun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Revised method of multiple scales for 1:2 internal resonance piezoelectric vibration energy harvester considering the coupled frequency</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The piezoelectric vibration energy harvester based on the 1:2 internal resonance possesses the advantages of wide-band and high-efficiency energy harvesting. The method of multiple scales (MMS) has been applied to derive the approximate analytical solution of the output response. However, the coupled frequency caused by internal resonance has strong effect on the output voltage response, which cannot be determined by traditional MMS. To overcome this shortage, the method of equivalent forced load is proposed to decouple the voltage frequency, and then obtain the revised approximate analytical solution (MMS-New) of the output responses. The responses of the electromechanical-coupled governing equations of the system are verified by experiments. Compared with the approximate solutions of the traditional MMS, the accuracy of the revised approximate solutions are significantly improved. In the internal resonance region, the maximum accuracy of output voltage response can be improved by 40.64%, and the maximum accuracy can be increased to 10 times outside the internal resonance region. In the whole excitation frequency range, the amplitude–frequency response curve exhibits nonlinear hardening and softening when the forward and reverse sweep frequency analysis are respectively performed. The Jacobi matrix and Lyapunov stability theory of the modulation equations are derived to determine the stability of the approximate solutions. The dynamic behavior in unstable region are investigated using means of time history curve, spectrum, phase orbit and Poincare section, the quasi periodic and chaotic motions are observed.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Method of multiple scales</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coupled frequency</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Internal resonance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Energy harvesting</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Method of equivalent forced load</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tan, Ting</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-7862-1796</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yan, Zhimiao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yan, Zhitao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Lingzhi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">No title available</subfield><subfield code="g">118</subfield><subfield code="w">(DE-627)352827580</subfield><subfield code="x">1007-5704</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">118</subfield></datafield></record></collection>
|
score |
7.401634 |