Enhancing heat transfer performance of automotive radiator with H
The deionized (DI) water and activated carbon (AC) nanofluids were produced at different volume concentrations (VCs) such as 0.1, 0.25, and 0.4 %. ACNMs were produced through the pyrolysis process of deadly available Kigelia Africana leaves in a muffle oven at 500 °C. The structural properties of th...
Ausführliche Beschreibung
Autor*in: |
Ganesh Kumar, Poongavanam [verfasserIn] Vigneswaran, V.S. [verfasserIn] Sivalingam, Vinothkumar [verfasserIn] Velraj, R. [verfasserIn] Kim, Seong Cheol [verfasserIn] Ramkumar, Vanaraj [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of molecular liquids - New York, NY [u.a.] : Elsevier, 1983, 371 |
---|---|
Übergeordnetes Werk: |
volume:371 |
DOI / URN: |
10.1016/j.molliq.2022.121153 |
---|
Katalog-ID: |
ELV009082425 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV009082425 | ||
003 | DE-627 | ||
005 | 20230524151321.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230510s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.molliq.2022.121153 |2 doi | |
035 | |a (DE-627)ELV009082425 | ||
035 | |a (ELSEVIER)S0167-7322(22)02692-7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 540 |q DE-600 |
084 | |a 35.21 |2 bkl | ||
100 | 1 | |a Ganesh Kumar, Poongavanam |e verfasserin |4 aut | |
245 | 1 | 0 | |a Enhancing heat transfer performance of automotive radiator with H |
264 | 1 | |c 2022 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The deionized (DI) water and activated carbon (AC) nanofluids were produced at different volume concentrations (VCs) such as 0.1, 0.25, and 0.4 %. ACNMs were produced through the pyrolysis process of deadly available Kigelia Africana leaves in a muffle oven at 500 °C. The structural properties of the activated carbon nanomaterials (ACNMs) were described through the usage of SEM, EDS, XRD, and FTIR analyzers. Thermal exchange properties that as density (ρ), thermal conductivity (TC), specific heat (SH), and viscosity (µ) of DI water - AC-based nanofluids were evaluated experimentally. The five various mass flow rates (MFRs) namely 20, 40, 60, 80, and 100 g/sec were applied with different VCs of DI water - AC nanofluids in this study. In addition, the hot fluid (nanofluid) inlet temperature was constantly maintained with the help of a hot DI water bath at 50, 60, and 70 °C, respectively. The highest thermal conductivity (TC) augmentation attains up to 9.134 % is detected at 0.4 vol% of ACNMs loading at 70 °C. The addition of ACNMs augments the specific heat (SH) of the nanofluids substantially, and this augmentation diminutions with an increase in the ACNMs concentration. The addition of ACNMs in the DI water augments the Nusselt number by 21.76 %, 24.71 %, and 32.47 % for 50, 60, and 70 °C respectively, at a VCs of 0.4 % and mass flow rate of 0.1 kg/sec in the car radiator. In addition, turn up a palpable reduction in Reynolds number for specified MFRs for all the ACNM nanofluids. | ||
650 | 4 | |a Activated carbon | |
650 | 4 | |a Radiator, Nanofluids | |
650 | 4 | |a Nusselt number | |
650 | 4 | |a Friction factor | |
700 | 1 | |a Vigneswaran, V.S. |e verfasserin |4 aut | |
700 | 1 | |a Sivalingam, Vinothkumar |e verfasserin |4 aut | |
700 | 1 | |a Velraj, R. |e verfasserin |4 aut | |
700 | 1 | |a Kim, Seong Cheol |e verfasserin |4 aut | |
700 | 1 | |a Ramkumar, Vanaraj |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of molecular liquids |d New York, NY [u.a.] : Elsevier, 1983 |g 371 |h Online-Ressource |w (DE-627)302469664 |w (DE-600)1491496-7 |w (DE-576)259483915 |x 1873-3166 |7 nnns |
773 | 1 | 8 | |g volume:371 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_374 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2807 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 35.21 |j Lösungen |j Flüssigkeiten |x Physikalische Chemie |
951 | |a AR | ||
952 | |d 371 |
author_variant |
k p g kp kpg v v vv v s vs r v rv s c k sc sck v r vr |
---|---|
matchkey_str |
article:18733166:2022----::nacnhatasepromnefuooi |
hierarchy_sort_str |
2022 |
bklnumber |
35.21 |
publishDate |
2022 |
allfields |
10.1016/j.molliq.2022.121153 doi (DE-627)ELV009082425 (ELSEVIER)S0167-7322(22)02692-7 DE-627 ger DE-627 rda eng 540 DE-600 35.21 bkl Ganesh Kumar, Poongavanam verfasserin aut Enhancing heat transfer performance of automotive radiator with H 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The deionized (DI) water and activated carbon (AC) nanofluids were produced at different volume concentrations (VCs) such as 0.1, 0.25, and 0.4 %. ACNMs were produced through the pyrolysis process of deadly available Kigelia Africana leaves in a muffle oven at 500 °C. The structural properties of the activated carbon nanomaterials (ACNMs) were described through the usage of SEM, EDS, XRD, and FTIR analyzers. Thermal exchange properties that as density (ρ), thermal conductivity (TC), specific heat (SH), and viscosity (µ) of DI water - AC-based nanofluids were evaluated experimentally. The five various mass flow rates (MFRs) namely 20, 40, 60, 80, and 100 g/sec were applied with different VCs of DI water - AC nanofluids in this study. In addition, the hot fluid (nanofluid) inlet temperature was constantly maintained with the help of a hot DI water bath at 50, 60, and 70 °C, respectively. The highest thermal conductivity (TC) augmentation attains up to 9.134 % is detected at 0.4 vol% of ACNMs loading at 70 °C. The addition of ACNMs augments the specific heat (SH) of the nanofluids substantially, and this augmentation diminutions with an increase in the ACNMs concentration. The addition of ACNMs in the DI water augments the Nusselt number by 21.76 %, 24.71 %, and 32.47 % for 50, 60, and 70 °C respectively, at a VCs of 0.4 % and mass flow rate of 0.1 kg/sec in the car radiator. In addition, turn up a palpable reduction in Reynolds number for specified MFRs for all the ACNM nanofluids. Activated carbon Radiator, Nanofluids Nusselt number Friction factor Vigneswaran, V.S. verfasserin aut Sivalingam, Vinothkumar verfasserin aut Velraj, R. verfasserin aut Kim, Seong Cheol verfasserin aut Ramkumar, Vanaraj verfasserin aut Enthalten in Journal of molecular liquids New York, NY [u.a.] : Elsevier, 1983 371 Online-Ressource (DE-627)302469664 (DE-600)1491496-7 (DE-576)259483915 1873-3166 nnns volume:371 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_374 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2807 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 35.21 Lösungen Flüssigkeiten Physikalische Chemie AR 371 |
spelling |
10.1016/j.molliq.2022.121153 doi (DE-627)ELV009082425 (ELSEVIER)S0167-7322(22)02692-7 DE-627 ger DE-627 rda eng 540 DE-600 35.21 bkl Ganesh Kumar, Poongavanam verfasserin aut Enhancing heat transfer performance of automotive radiator with H 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The deionized (DI) water and activated carbon (AC) nanofluids were produced at different volume concentrations (VCs) such as 0.1, 0.25, and 0.4 %. ACNMs were produced through the pyrolysis process of deadly available Kigelia Africana leaves in a muffle oven at 500 °C. The structural properties of the activated carbon nanomaterials (ACNMs) were described through the usage of SEM, EDS, XRD, and FTIR analyzers. Thermal exchange properties that as density (ρ), thermal conductivity (TC), specific heat (SH), and viscosity (µ) of DI water - AC-based nanofluids were evaluated experimentally. The five various mass flow rates (MFRs) namely 20, 40, 60, 80, and 100 g/sec were applied with different VCs of DI water - AC nanofluids in this study. In addition, the hot fluid (nanofluid) inlet temperature was constantly maintained with the help of a hot DI water bath at 50, 60, and 70 °C, respectively. The highest thermal conductivity (TC) augmentation attains up to 9.134 % is detected at 0.4 vol% of ACNMs loading at 70 °C. The addition of ACNMs augments the specific heat (SH) of the nanofluids substantially, and this augmentation diminutions with an increase in the ACNMs concentration. The addition of ACNMs in the DI water augments the Nusselt number by 21.76 %, 24.71 %, and 32.47 % for 50, 60, and 70 °C respectively, at a VCs of 0.4 % and mass flow rate of 0.1 kg/sec in the car radiator. In addition, turn up a palpable reduction in Reynolds number for specified MFRs for all the ACNM nanofluids. Activated carbon Radiator, Nanofluids Nusselt number Friction factor Vigneswaran, V.S. verfasserin aut Sivalingam, Vinothkumar verfasserin aut Velraj, R. verfasserin aut Kim, Seong Cheol verfasserin aut Ramkumar, Vanaraj verfasserin aut Enthalten in Journal of molecular liquids New York, NY [u.a.] : Elsevier, 1983 371 Online-Ressource (DE-627)302469664 (DE-600)1491496-7 (DE-576)259483915 1873-3166 nnns volume:371 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_374 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2807 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 35.21 Lösungen Flüssigkeiten Physikalische Chemie AR 371 |
allfields_unstemmed |
10.1016/j.molliq.2022.121153 doi (DE-627)ELV009082425 (ELSEVIER)S0167-7322(22)02692-7 DE-627 ger DE-627 rda eng 540 DE-600 35.21 bkl Ganesh Kumar, Poongavanam verfasserin aut Enhancing heat transfer performance of automotive radiator with H 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The deionized (DI) water and activated carbon (AC) nanofluids were produced at different volume concentrations (VCs) such as 0.1, 0.25, and 0.4 %. ACNMs were produced through the pyrolysis process of deadly available Kigelia Africana leaves in a muffle oven at 500 °C. The structural properties of the activated carbon nanomaterials (ACNMs) were described through the usage of SEM, EDS, XRD, and FTIR analyzers. Thermal exchange properties that as density (ρ), thermal conductivity (TC), specific heat (SH), and viscosity (µ) of DI water - AC-based nanofluids were evaluated experimentally. The five various mass flow rates (MFRs) namely 20, 40, 60, 80, and 100 g/sec were applied with different VCs of DI water - AC nanofluids in this study. In addition, the hot fluid (nanofluid) inlet temperature was constantly maintained with the help of a hot DI water bath at 50, 60, and 70 °C, respectively. The highest thermal conductivity (TC) augmentation attains up to 9.134 % is detected at 0.4 vol% of ACNMs loading at 70 °C. The addition of ACNMs augments the specific heat (SH) of the nanofluids substantially, and this augmentation diminutions with an increase in the ACNMs concentration. The addition of ACNMs in the DI water augments the Nusselt number by 21.76 %, 24.71 %, and 32.47 % for 50, 60, and 70 °C respectively, at a VCs of 0.4 % and mass flow rate of 0.1 kg/sec in the car radiator. In addition, turn up a palpable reduction in Reynolds number for specified MFRs for all the ACNM nanofluids. Activated carbon Radiator, Nanofluids Nusselt number Friction factor Vigneswaran, V.S. verfasserin aut Sivalingam, Vinothkumar verfasserin aut Velraj, R. verfasserin aut Kim, Seong Cheol verfasserin aut Ramkumar, Vanaraj verfasserin aut Enthalten in Journal of molecular liquids New York, NY [u.a.] : Elsevier, 1983 371 Online-Ressource (DE-627)302469664 (DE-600)1491496-7 (DE-576)259483915 1873-3166 nnns volume:371 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_374 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2807 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 35.21 Lösungen Flüssigkeiten Physikalische Chemie AR 371 |
allfieldsGer |
10.1016/j.molliq.2022.121153 doi (DE-627)ELV009082425 (ELSEVIER)S0167-7322(22)02692-7 DE-627 ger DE-627 rda eng 540 DE-600 35.21 bkl Ganesh Kumar, Poongavanam verfasserin aut Enhancing heat transfer performance of automotive radiator with H 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The deionized (DI) water and activated carbon (AC) nanofluids were produced at different volume concentrations (VCs) such as 0.1, 0.25, and 0.4 %. ACNMs were produced through the pyrolysis process of deadly available Kigelia Africana leaves in a muffle oven at 500 °C. The structural properties of the activated carbon nanomaterials (ACNMs) were described through the usage of SEM, EDS, XRD, and FTIR analyzers. Thermal exchange properties that as density (ρ), thermal conductivity (TC), specific heat (SH), and viscosity (µ) of DI water - AC-based nanofluids were evaluated experimentally. The five various mass flow rates (MFRs) namely 20, 40, 60, 80, and 100 g/sec were applied with different VCs of DI water - AC nanofluids in this study. In addition, the hot fluid (nanofluid) inlet temperature was constantly maintained with the help of a hot DI water bath at 50, 60, and 70 °C, respectively. The highest thermal conductivity (TC) augmentation attains up to 9.134 % is detected at 0.4 vol% of ACNMs loading at 70 °C. The addition of ACNMs augments the specific heat (SH) of the nanofluids substantially, and this augmentation diminutions with an increase in the ACNMs concentration. The addition of ACNMs in the DI water augments the Nusselt number by 21.76 %, 24.71 %, and 32.47 % for 50, 60, and 70 °C respectively, at a VCs of 0.4 % and mass flow rate of 0.1 kg/sec in the car radiator. In addition, turn up a palpable reduction in Reynolds number for specified MFRs for all the ACNM nanofluids. Activated carbon Radiator, Nanofluids Nusselt number Friction factor Vigneswaran, V.S. verfasserin aut Sivalingam, Vinothkumar verfasserin aut Velraj, R. verfasserin aut Kim, Seong Cheol verfasserin aut Ramkumar, Vanaraj verfasserin aut Enthalten in Journal of molecular liquids New York, NY [u.a.] : Elsevier, 1983 371 Online-Ressource (DE-627)302469664 (DE-600)1491496-7 (DE-576)259483915 1873-3166 nnns volume:371 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_374 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2807 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 35.21 Lösungen Flüssigkeiten Physikalische Chemie AR 371 |
allfieldsSound |
10.1016/j.molliq.2022.121153 doi (DE-627)ELV009082425 (ELSEVIER)S0167-7322(22)02692-7 DE-627 ger DE-627 rda eng 540 DE-600 35.21 bkl Ganesh Kumar, Poongavanam verfasserin aut Enhancing heat transfer performance of automotive radiator with H 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The deionized (DI) water and activated carbon (AC) nanofluids were produced at different volume concentrations (VCs) such as 0.1, 0.25, and 0.4 %. ACNMs were produced through the pyrolysis process of deadly available Kigelia Africana leaves in a muffle oven at 500 °C. The structural properties of the activated carbon nanomaterials (ACNMs) were described through the usage of SEM, EDS, XRD, and FTIR analyzers. Thermal exchange properties that as density (ρ), thermal conductivity (TC), specific heat (SH), and viscosity (µ) of DI water - AC-based nanofluids were evaluated experimentally. The five various mass flow rates (MFRs) namely 20, 40, 60, 80, and 100 g/sec were applied with different VCs of DI water - AC nanofluids in this study. In addition, the hot fluid (nanofluid) inlet temperature was constantly maintained with the help of a hot DI water bath at 50, 60, and 70 °C, respectively. The highest thermal conductivity (TC) augmentation attains up to 9.134 % is detected at 0.4 vol% of ACNMs loading at 70 °C. The addition of ACNMs augments the specific heat (SH) of the nanofluids substantially, and this augmentation diminutions with an increase in the ACNMs concentration. The addition of ACNMs in the DI water augments the Nusselt number by 21.76 %, 24.71 %, and 32.47 % for 50, 60, and 70 °C respectively, at a VCs of 0.4 % and mass flow rate of 0.1 kg/sec in the car radiator. In addition, turn up a palpable reduction in Reynolds number for specified MFRs for all the ACNM nanofluids. Activated carbon Radiator, Nanofluids Nusselt number Friction factor Vigneswaran, V.S. verfasserin aut Sivalingam, Vinothkumar verfasserin aut Velraj, R. verfasserin aut Kim, Seong Cheol verfasserin aut Ramkumar, Vanaraj verfasserin aut Enthalten in Journal of molecular liquids New York, NY [u.a.] : Elsevier, 1983 371 Online-Ressource (DE-627)302469664 (DE-600)1491496-7 (DE-576)259483915 1873-3166 nnns volume:371 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_374 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2807 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 35.21 Lösungen Flüssigkeiten Physikalische Chemie AR 371 |
language |
English |
source |
Enthalten in Journal of molecular liquids 371 volume:371 |
sourceStr |
Enthalten in Journal of molecular liquids 371 volume:371 |
format_phy_str_mv |
Article |
bklname |
Lösungen Flüssigkeiten |
institution |
findex.gbv.de |
topic_facet |
Activated carbon Radiator, Nanofluids Nusselt number Friction factor |
dewey-raw |
540 |
isfreeaccess_bool |
false |
container_title |
Journal of molecular liquids |
authorswithroles_txt_mv |
Ganesh Kumar, Poongavanam @@aut@@ Vigneswaran, V.S. @@aut@@ Sivalingam, Vinothkumar @@aut@@ Velraj, R. @@aut@@ Kim, Seong Cheol @@aut@@ Ramkumar, Vanaraj @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
302469664 |
dewey-sort |
3540 |
id |
ELV009082425 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV009082425</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524151321.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230510s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.molliq.2022.121153</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV009082425</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0167-7322(22)02692-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.21</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ganesh Kumar, Poongavanam</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Enhancing heat transfer performance of automotive radiator with H</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The deionized (DI) water and activated carbon (AC) nanofluids were produced at different volume concentrations (VCs) such as 0.1, 0.25, and 0.4 %. ACNMs were produced through the pyrolysis process of deadly available Kigelia Africana leaves in a muffle oven at 500 °C. The structural properties of the activated carbon nanomaterials (ACNMs) were described through the usage of SEM, EDS, XRD, and FTIR analyzers. Thermal exchange properties that as density (ρ), thermal conductivity (TC), specific heat (SH), and viscosity (µ) of DI water - AC-based nanofluids were evaluated experimentally. The five various mass flow rates (MFRs) namely 20, 40, 60, 80, and 100 g/sec were applied with different VCs of DI water - AC nanofluids in this study. In addition, the hot fluid (nanofluid) inlet temperature was constantly maintained with the help of a hot DI water bath at 50, 60, and 70 °C, respectively. The highest thermal conductivity (TC) augmentation attains up to 9.134 % is detected at 0.4 vol% of ACNMs loading at 70 °C. The addition of ACNMs augments the specific heat (SH) of the nanofluids substantially, and this augmentation diminutions with an increase in the ACNMs concentration. The addition of ACNMs in the DI water augments the Nusselt number by 21.76 %, 24.71 %, and 32.47 % for 50, 60, and 70 °C respectively, at a VCs of 0.4 % and mass flow rate of 0.1 kg/sec in the car radiator. In addition, turn up a palpable reduction in Reynolds number for specified MFRs for all the ACNM nanofluids.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Activated carbon</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Radiator, Nanofluids</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nusselt number</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Friction factor</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vigneswaran, V.S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sivalingam, Vinothkumar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Velraj, R.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, Seong Cheol</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ramkumar, Vanaraj</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of molecular liquids</subfield><subfield code="d">New York, NY [u.a.] : Elsevier, 1983</subfield><subfield code="g">371</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)302469664</subfield><subfield code="w">(DE-600)1491496-7</subfield><subfield code="w">(DE-576)259483915</subfield><subfield code="x">1873-3166</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:371</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_374</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2807</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.21</subfield><subfield code="j">Lösungen</subfield><subfield code="j">Flüssigkeiten</subfield><subfield code="x">Physikalische Chemie</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">371</subfield></datafield></record></collection>
|
author |
Ganesh Kumar, Poongavanam |
spellingShingle |
Ganesh Kumar, Poongavanam ddc 540 bkl 35.21 misc Activated carbon misc Radiator, Nanofluids misc Nusselt number misc Friction factor Enhancing heat transfer performance of automotive radiator with H |
authorStr |
Ganesh Kumar, Poongavanam |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)302469664 |
format |
electronic Article |
dewey-ones |
540 - Chemistry & allied sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1873-3166 |
topic_title |
540 DE-600 35.21 bkl Enhancing heat transfer performance of automotive radiator with H Activated carbon Radiator, Nanofluids Nusselt number Friction factor |
topic |
ddc 540 bkl 35.21 misc Activated carbon misc Radiator, Nanofluids misc Nusselt number misc Friction factor |
topic_unstemmed |
ddc 540 bkl 35.21 misc Activated carbon misc Radiator, Nanofluids misc Nusselt number misc Friction factor |
topic_browse |
ddc 540 bkl 35.21 misc Activated carbon misc Radiator, Nanofluids misc Nusselt number misc Friction factor |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of molecular liquids |
hierarchy_parent_id |
302469664 |
dewey-tens |
540 - Chemistry |
hierarchy_top_title |
Journal of molecular liquids |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)302469664 (DE-600)1491496-7 (DE-576)259483915 |
title |
Enhancing heat transfer performance of automotive radiator with H |
ctrlnum |
(DE-627)ELV009082425 (ELSEVIER)S0167-7322(22)02692-7 |
title_full |
Enhancing heat transfer performance of automotive radiator with H |
author_sort |
Ganesh Kumar, Poongavanam |
journal |
Journal of molecular liquids |
journalStr |
Journal of molecular liquids |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
author_browse |
Ganesh Kumar, Poongavanam Vigneswaran, V.S. Sivalingam, Vinothkumar Velraj, R. Kim, Seong Cheol Ramkumar, Vanaraj |
container_volume |
371 |
class |
540 DE-600 35.21 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Ganesh Kumar, Poongavanam |
doi_str_mv |
10.1016/j.molliq.2022.121153 |
dewey-full |
540 |
author2-role |
verfasserin |
title_sort |
enhancing heat transfer performance of automotive radiator with h |
title_auth |
Enhancing heat transfer performance of automotive radiator with H |
abstract |
The deionized (DI) water and activated carbon (AC) nanofluids were produced at different volume concentrations (VCs) such as 0.1, 0.25, and 0.4 %. ACNMs were produced through the pyrolysis process of deadly available Kigelia Africana leaves in a muffle oven at 500 °C. The structural properties of the activated carbon nanomaterials (ACNMs) were described through the usage of SEM, EDS, XRD, and FTIR analyzers. Thermal exchange properties that as density (ρ), thermal conductivity (TC), specific heat (SH), and viscosity (µ) of DI water - AC-based nanofluids were evaluated experimentally. The five various mass flow rates (MFRs) namely 20, 40, 60, 80, and 100 g/sec were applied with different VCs of DI water - AC nanofluids in this study. In addition, the hot fluid (nanofluid) inlet temperature was constantly maintained with the help of a hot DI water bath at 50, 60, and 70 °C, respectively. The highest thermal conductivity (TC) augmentation attains up to 9.134 % is detected at 0.4 vol% of ACNMs loading at 70 °C. The addition of ACNMs augments the specific heat (SH) of the nanofluids substantially, and this augmentation diminutions with an increase in the ACNMs concentration. The addition of ACNMs in the DI water augments the Nusselt number by 21.76 %, 24.71 %, and 32.47 % for 50, 60, and 70 °C respectively, at a VCs of 0.4 % and mass flow rate of 0.1 kg/sec in the car radiator. In addition, turn up a palpable reduction in Reynolds number for specified MFRs for all the ACNM nanofluids. |
abstractGer |
The deionized (DI) water and activated carbon (AC) nanofluids were produced at different volume concentrations (VCs) such as 0.1, 0.25, and 0.4 %. ACNMs were produced through the pyrolysis process of deadly available Kigelia Africana leaves in a muffle oven at 500 °C. The structural properties of the activated carbon nanomaterials (ACNMs) were described through the usage of SEM, EDS, XRD, and FTIR analyzers. Thermal exchange properties that as density (ρ), thermal conductivity (TC), specific heat (SH), and viscosity (µ) of DI water - AC-based nanofluids were evaluated experimentally. The five various mass flow rates (MFRs) namely 20, 40, 60, 80, and 100 g/sec were applied with different VCs of DI water - AC nanofluids in this study. In addition, the hot fluid (nanofluid) inlet temperature was constantly maintained with the help of a hot DI water bath at 50, 60, and 70 °C, respectively. The highest thermal conductivity (TC) augmentation attains up to 9.134 % is detected at 0.4 vol% of ACNMs loading at 70 °C. The addition of ACNMs augments the specific heat (SH) of the nanofluids substantially, and this augmentation diminutions with an increase in the ACNMs concentration. The addition of ACNMs in the DI water augments the Nusselt number by 21.76 %, 24.71 %, and 32.47 % for 50, 60, and 70 °C respectively, at a VCs of 0.4 % and mass flow rate of 0.1 kg/sec in the car radiator. In addition, turn up a palpable reduction in Reynolds number for specified MFRs for all the ACNM nanofluids. |
abstract_unstemmed |
The deionized (DI) water and activated carbon (AC) nanofluids were produced at different volume concentrations (VCs) such as 0.1, 0.25, and 0.4 %. ACNMs were produced through the pyrolysis process of deadly available Kigelia Africana leaves in a muffle oven at 500 °C. The structural properties of the activated carbon nanomaterials (ACNMs) were described through the usage of SEM, EDS, XRD, and FTIR analyzers. Thermal exchange properties that as density (ρ), thermal conductivity (TC), specific heat (SH), and viscosity (µ) of DI water - AC-based nanofluids were evaluated experimentally. The five various mass flow rates (MFRs) namely 20, 40, 60, 80, and 100 g/sec were applied with different VCs of DI water - AC nanofluids in this study. In addition, the hot fluid (nanofluid) inlet temperature was constantly maintained with the help of a hot DI water bath at 50, 60, and 70 °C, respectively. The highest thermal conductivity (TC) augmentation attains up to 9.134 % is detected at 0.4 vol% of ACNMs loading at 70 °C. The addition of ACNMs augments the specific heat (SH) of the nanofluids substantially, and this augmentation diminutions with an increase in the ACNMs concentration. The addition of ACNMs in the DI water augments the Nusselt number by 21.76 %, 24.71 %, and 32.47 % for 50, 60, and 70 °C respectively, at a VCs of 0.4 % and mass flow rate of 0.1 kg/sec in the car radiator. In addition, turn up a palpable reduction in Reynolds number for specified MFRs for all the ACNM nanofluids. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_374 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2807 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Enhancing heat transfer performance of automotive radiator with H |
remote_bool |
true |
author2 |
Vigneswaran, V.S. Sivalingam, Vinothkumar Velraj, R. Kim, Seong Cheol Ramkumar, Vanaraj |
author2Str |
Vigneswaran, V.S. Sivalingam, Vinothkumar Velraj, R. Kim, Seong Cheol Ramkumar, Vanaraj |
ppnlink |
302469664 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.molliq.2022.121153 |
up_date |
2024-07-06T21:55:42.454Z |
_version_ |
1803868378187694080 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV009082425</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524151321.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230510s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.molliq.2022.121153</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV009082425</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0167-7322(22)02692-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">540</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">35.21</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ganesh Kumar, Poongavanam</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Enhancing heat transfer performance of automotive radiator with H</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The deionized (DI) water and activated carbon (AC) nanofluids were produced at different volume concentrations (VCs) such as 0.1, 0.25, and 0.4 %. ACNMs were produced through the pyrolysis process of deadly available Kigelia Africana leaves in a muffle oven at 500 °C. The structural properties of the activated carbon nanomaterials (ACNMs) were described through the usage of SEM, EDS, XRD, and FTIR analyzers. Thermal exchange properties that as density (ρ), thermal conductivity (TC), specific heat (SH), and viscosity (µ) of DI water - AC-based nanofluids were evaluated experimentally. The five various mass flow rates (MFRs) namely 20, 40, 60, 80, and 100 g/sec were applied with different VCs of DI water - AC nanofluids in this study. In addition, the hot fluid (nanofluid) inlet temperature was constantly maintained with the help of a hot DI water bath at 50, 60, and 70 °C, respectively. The highest thermal conductivity (TC) augmentation attains up to 9.134 % is detected at 0.4 vol% of ACNMs loading at 70 °C. The addition of ACNMs augments the specific heat (SH) of the nanofluids substantially, and this augmentation diminutions with an increase in the ACNMs concentration. The addition of ACNMs in the DI water augments the Nusselt number by 21.76 %, 24.71 %, and 32.47 % for 50, 60, and 70 °C respectively, at a VCs of 0.4 % and mass flow rate of 0.1 kg/sec in the car radiator. In addition, turn up a palpable reduction in Reynolds number for specified MFRs for all the ACNM nanofluids.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Activated carbon</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Radiator, Nanofluids</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nusselt number</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Friction factor</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vigneswaran, V.S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sivalingam, Vinothkumar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Velraj, R.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, Seong Cheol</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ramkumar, Vanaraj</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of molecular liquids</subfield><subfield code="d">New York, NY [u.a.] : Elsevier, 1983</subfield><subfield code="g">371</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)302469664</subfield><subfield code="w">(DE-600)1491496-7</subfield><subfield code="w">(DE-576)259483915</subfield><subfield code="x">1873-3166</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:371</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_374</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2807</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">35.21</subfield><subfield code="j">Lösungen</subfield><subfield code="j">Flüssigkeiten</subfield><subfield code="x">Physikalische Chemie</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">371</subfield></datafield></record></collection>
|
score |
7.4021244 |