Distributed time-varying formation optimal tracking for uncertain Euler–Lagrange systems with time-varying cost functions
This article studies the distributed formation optimal tracking problems for Euler–Lagrange systems, where each agent only has access to local cost function and other relative state information with its neighbors. Different from existing works, the effects of time-varying formation, parametric uncer...
Ausführliche Beschreibung
Autor*in: |
Su, Piaoyi [verfasserIn] Yu, Jianglong [verfasserIn] Hua, Yongzhao [verfasserIn] Li, Qingdong [verfasserIn] Dong, Xiwang [verfasserIn] Ren, Zhang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Aerospace science and technology - Amsterdam [u.a.] : Elsevier Science, 1997, 132 |
---|---|
Übergeordnetes Werk: |
volume:132 |
DOI / URN: |
10.1016/j.ast.2022.108019 |
---|
Katalog-ID: |
ELV009092242 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV009092242 | ||
003 | DE-627 | ||
005 | 20230524151558.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230510s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ast.2022.108019 |2 doi | |
035 | |a (DE-627)ELV009092242 | ||
035 | |a (ELSEVIER)S1270-9638(22)00693-9 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q DE-600 |
084 | |a 55.50 |2 bkl | ||
084 | |a 55.60 |2 bkl | ||
084 | |a 55.60 |2 bkl | ||
100 | 1 | |a Su, Piaoyi |e verfasserin |0 (orcid)0000-0001-9558-4536 |4 aut | |
245 | 1 | 0 | |a Distributed time-varying formation optimal tracking for uncertain Euler–Lagrange systems with time-varying cost functions |
264 | 1 | |c 2022 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a This article studies the distributed formation optimal tracking problems for Euler–Lagrange systems, where each agent only has access to local cost function and other relative state information with its neighbors. Different from existing works, the effects of time-varying formation, parametric uncertainties, external disturbances and optimal performance of Euler–Lagrange systems are all considered simultaneously. Under the proposed distributed formation optimal tracking protocol, all agents are able to asymptotically track an optimal reference trajectory, while maintain the given time-varying formation. Firstly, a dynamic system is introduced for each agent to generate optimal reference signal, which uses only the individual's own state and the neighboring relative measurements with no extra exchange of virtual states needed. Then, an optimal tracking control strategy is proposed, with which zero optimum-tracking error can be achieved. Thirdly, sufficient conditions are given to guarantee that the agents' states asymptotically converge to the optimal solution in the desired formation under the proposed algorithm. At last, numerical simulation is designed to verify the strategies. | ||
650 | 4 | |a Distributed time-varying formation | |
650 | 4 | |a Optimal tracking | |
650 | 4 | |a Euler–Lagrange systems | |
650 | 4 | |a Time-varying cost functions | |
700 | 1 | |a Yu, Jianglong |e verfasserin |0 (orcid)0000-0002-7861-2731 |4 aut | |
700 | 1 | |a Hua, Yongzhao |e verfasserin |4 aut | |
700 | 1 | |a Li, Qingdong |e verfasserin |4 aut | |
700 | 1 | |a Dong, Xiwang |e verfasserin |4 aut | |
700 | 1 | |a Ren, Zhang |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Aerospace science and technology |d Amsterdam [u.a.] : Elsevier Science, 1997 |g 132 |h Online-Ressource |w (DE-627)320521486 |w (DE-600)2014638-3 |w (DE-576)255630425 |x 1626-3219 |7 nnns |
773 | 1 | 8 | |g volume:132 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OPC-AST | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 55.50 |j Luftfahrzeugtechnik |
936 | b | k | |a 55.60 |j Raumfahrttechnik |
936 | b | k | |a 55.60 |j Raumfahrttechnik |
951 | |a AR | ||
952 | |d 132 |
author_variant |
p s ps j y jy y h yh q l ql x d xd z r zr |
---|---|
matchkey_str |
article:16263219:2022----::itiuetmvrigomtootmlrcigoucranuelgagsses |
hierarchy_sort_str |
2022 |
bklnumber |
55.50 55.60 |
publishDate |
2022 |
allfields |
10.1016/j.ast.2022.108019 doi (DE-627)ELV009092242 (ELSEVIER)S1270-9638(22)00693-9 DE-627 ger DE-627 rda eng 620 DE-600 55.50 bkl 55.60 bkl 55.60 bkl Su, Piaoyi verfasserin (orcid)0000-0001-9558-4536 aut Distributed time-varying formation optimal tracking for uncertain Euler–Lagrange systems with time-varying cost functions 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This article studies the distributed formation optimal tracking problems for Euler–Lagrange systems, where each agent only has access to local cost function and other relative state information with its neighbors. Different from existing works, the effects of time-varying formation, parametric uncertainties, external disturbances and optimal performance of Euler–Lagrange systems are all considered simultaneously. Under the proposed distributed formation optimal tracking protocol, all agents are able to asymptotically track an optimal reference trajectory, while maintain the given time-varying formation. Firstly, a dynamic system is introduced for each agent to generate optimal reference signal, which uses only the individual's own state and the neighboring relative measurements with no extra exchange of virtual states needed. Then, an optimal tracking control strategy is proposed, with which zero optimum-tracking error can be achieved. Thirdly, sufficient conditions are given to guarantee that the agents' states asymptotically converge to the optimal solution in the desired formation under the proposed algorithm. At last, numerical simulation is designed to verify the strategies. Distributed time-varying formation Optimal tracking Euler–Lagrange systems Time-varying cost functions Yu, Jianglong verfasserin (orcid)0000-0002-7861-2731 aut Hua, Yongzhao verfasserin aut Li, Qingdong verfasserin aut Dong, Xiwang verfasserin aut Ren, Zhang verfasserin aut Enthalten in Aerospace science and technology Amsterdam [u.a.] : Elsevier Science, 1997 132 Online-Ressource (DE-627)320521486 (DE-600)2014638-3 (DE-576)255630425 1626-3219 nnns volume:132 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-AST GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 55.50 Luftfahrzeugtechnik 55.60 Raumfahrttechnik 55.60 Raumfahrttechnik AR 132 |
spelling |
10.1016/j.ast.2022.108019 doi (DE-627)ELV009092242 (ELSEVIER)S1270-9638(22)00693-9 DE-627 ger DE-627 rda eng 620 DE-600 55.50 bkl 55.60 bkl 55.60 bkl Su, Piaoyi verfasserin (orcid)0000-0001-9558-4536 aut Distributed time-varying formation optimal tracking for uncertain Euler–Lagrange systems with time-varying cost functions 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This article studies the distributed formation optimal tracking problems for Euler–Lagrange systems, where each agent only has access to local cost function and other relative state information with its neighbors. Different from existing works, the effects of time-varying formation, parametric uncertainties, external disturbances and optimal performance of Euler–Lagrange systems are all considered simultaneously. Under the proposed distributed formation optimal tracking protocol, all agents are able to asymptotically track an optimal reference trajectory, while maintain the given time-varying formation. Firstly, a dynamic system is introduced for each agent to generate optimal reference signal, which uses only the individual's own state and the neighboring relative measurements with no extra exchange of virtual states needed. Then, an optimal tracking control strategy is proposed, with which zero optimum-tracking error can be achieved. Thirdly, sufficient conditions are given to guarantee that the agents' states asymptotically converge to the optimal solution in the desired formation under the proposed algorithm. At last, numerical simulation is designed to verify the strategies. Distributed time-varying formation Optimal tracking Euler–Lagrange systems Time-varying cost functions Yu, Jianglong verfasserin (orcid)0000-0002-7861-2731 aut Hua, Yongzhao verfasserin aut Li, Qingdong verfasserin aut Dong, Xiwang verfasserin aut Ren, Zhang verfasserin aut Enthalten in Aerospace science and technology Amsterdam [u.a.] : Elsevier Science, 1997 132 Online-Ressource (DE-627)320521486 (DE-600)2014638-3 (DE-576)255630425 1626-3219 nnns volume:132 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-AST GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 55.50 Luftfahrzeugtechnik 55.60 Raumfahrttechnik 55.60 Raumfahrttechnik AR 132 |
allfields_unstemmed |
10.1016/j.ast.2022.108019 doi (DE-627)ELV009092242 (ELSEVIER)S1270-9638(22)00693-9 DE-627 ger DE-627 rda eng 620 DE-600 55.50 bkl 55.60 bkl 55.60 bkl Su, Piaoyi verfasserin (orcid)0000-0001-9558-4536 aut Distributed time-varying formation optimal tracking for uncertain Euler–Lagrange systems with time-varying cost functions 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This article studies the distributed formation optimal tracking problems for Euler–Lagrange systems, where each agent only has access to local cost function and other relative state information with its neighbors. Different from existing works, the effects of time-varying formation, parametric uncertainties, external disturbances and optimal performance of Euler–Lagrange systems are all considered simultaneously. Under the proposed distributed formation optimal tracking protocol, all agents are able to asymptotically track an optimal reference trajectory, while maintain the given time-varying formation. Firstly, a dynamic system is introduced for each agent to generate optimal reference signal, which uses only the individual's own state and the neighboring relative measurements with no extra exchange of virtual states needed. Then, an optimal tracking control strategy is proposed, with which zero optimum-tracking error can be achieved. Thirdly, sufficient conditions are given to guarantee that the agents' states asymptotically converge to the optimal solution in the desired formation under the proposed algorithm. At last, numerical simulation is designed to verify the strategies. Distributed time-varying formation Optimal tracking Euler–Lagrange systems Time-varying cost functions Yu, Jianglong verfasserin (orcid)0000-0002-7861-2731 aut Hua, Yongzhao verfasserin aut Li, Qingdong verfasserin aut Dong, Xiwang verfasserin aut Ren, Zhang verfasserin aut Enthalten in Aerospace science and technology Amsterdam [u.a.] : Elsevier Science, 1997 132 Online-Ressource (DE-627)320521486 (DE-600)2014638-3 (DE-576)255630425 1626-3219 nnns volume:132 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-AST GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 55.50 Luftfahrzeugtechnik 55.60 Raumfahrttechnik 55.60 Raumfahrttechnik AR 132 |
allfieldsGer |
10.1016/j.ast.2022.108019 doi (DE-627)ELV009092242 (ELSEVIER)S1270-9638(22)00693-9 DE-627 ger DE-627 rda eng 620 DE-600 55.50 bkl 55.60 bkl 55.60 bkl Su, Piaoyi verfasserin (orcid)0000-0001-9558-4536 aut Distributed time-varying formation optimal tracking for uncertain Euler–Lagrange systems with time-varying cost functions 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This article studies the distributed formation optimal tracking problems for Euler–Lagrange systems, where each agent only has access to local cost function and other relative state information with its neighbors. Different from existing works, the effects of time-varying formation, parametric uncertainties, external disturbances and optimal performance of Euler–Lagrange systems are all considered simultaneously. Under the proposed distributed formation optimal tracking protocol, all agents are able to asymptotically track an optimal reference trajectory, while maintain the given time-varying formation. Firstly, a dynamic system is introduced for each agent to generate optimal reference signal, which uses only the individual's own state and the neighboring relative measurements with no extra exchange of virtual states needed. Then, an optimal tracking control strategy is proposed, with which zero optimum-tracking error can be achieved. Thirdly, sufficient conditions are given to guarantee that the agents' states asymptotically converge to the optimal solution in the desired formation under the proposed algorithm. At last, numerical simulation is designed to verify the strategies. Distributed time-varying formation Optimal tracking Euler–Lagrange systems Time-varying cost functions Yu, Jianglong verfasserin (orcid)0000-0002-7861-2731 aut Hua, Yongzhao verfasserin aut Li, Qingdong verfasserin aut Dong, Xiwang verfasserin aut Ren, Zhang verfasserin aut Enthalten in Aerospace science and technology Amsterdam [u.a.] : Elsevier Science, 1997 132 Online-Ressource (DE-627)320521486 (DE-600)2014638-3 (DE-576)255630425 1626-3219 nnns volume:132 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-AST GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 55.50 Luftfahrzeugtechnik 55.60 Raumfahrttechnik 55.60 Raumfahrttechnik AR 132 |
allfieldsSound |
10.1016/j.ast.2022.108019 doi (DE-627)ELV009092242 (ELSEVIER)S1270-9638(22)00693-9 DE-627 ger DE-627 rda eng 620 DE-600 55.50 bkl 55.60 bkl 55.60 bkl Su, Piaoyi verfasserin (orcid)0000-0001-9558-4536 aut Distributed time-varying formation optimal tracking for uncertain Euler–Lagrange systems with time-varying cost functions 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This article studies the distributed formation optimal tracking problems for Euler–Lagrange systems, where each agent only has access to local cost function and other relative state information with its neighbors. Different from existing works, the effects of time-varying formation, parametric uncertainties, external disturbances and optimal performance of Euler–Lagrange systems are all considered simultaneously. Under the proposed distributed formation optimal tracking protocol, all agents are able to asymptotically track an optimal reference trajectory, while maintain the given time-varying formation. Firstly, a dynamic system is introduced for each agent to generate optimal reference signal, which uses only the individual's own state and the neighboring relative measurements with no extra exchange of virtual states needed. Then, an optimal tracking control strategy is proposed, with which zero optimum-tracking error can be achieved. Thirdly, sufficient conditions are given to guarantee that the agents' states asymptotically converge to the optimal solution in the desired formation under the proposed algorithm. At last, numerical simulation is designed to verify the strategies. Distributed time-varying formation Optimal tracking Euler–Lagrange systems Time-varying cost functions Yu, Jianglong verfasserin (orcid)0000-0002-7861-2731 aut Hua, Yongzhao verfasserin aut Li, Qingdong verfasserin aut Dong, Xiwang verfasserin aut Ren, Zhang verfasserin aut Enthalten in Aerospace science and technology Amsterdam [u.a.] : Elsevier Science, 1997 132 Online-Ressource (DE-627)320521486 (DE-600)2014638-3 (DE-576)255630425 1626-3219 nnns volume:132 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-AST GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 55.50 Luftfahrzeugtechnik 55.60 Raumfahrttechnik 55.60 Raumfahrttechnik AR 132 |
language |
English |
source |
Enthalten in Aerospace science and technology 132 volume:132 |
sourceStr |
Enthalten in Aerospace science and technology 132 volume:132 |
format_phy_str_mv |
Article |
bklname |
Luftfahrzeugtechnik Raumfahrttechnik |
institution |
findex.gbv.de |
topic_facet |
Distributed time-varying formation Optimal tracking Euler–Lagrange systems Time-varying cost functions |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
Aerospace science and technology |
authorswithroles_txt_mv |
Su, Piaoyi @@aut@@ Yu, Jianglong @@aut@@ Hua, Yongzhao @@aut@@ Li, Qingdong @@aut@@ Dong, Xiwang @@aut@@ Ren, Zhang @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
320521486 |
dewey-sort |
3620 |
id |
ELV009092242 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV009092242</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524151558.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230510s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ast.2022.108019</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV009092242</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1270-9638(22)00693-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">55.50</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">55.60</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">55.60</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Su, Piaoyi</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-9558-4536</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Distributed time-varying formation optimal tracking for uncertain Euler–Lagrange systems with time-varying cost functions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This article studies the distributed formation optimal tracking problems for Euler–Lagrange systems, where each agent only has access to local cost function and other relative state information with its neighbors. Different from existing works, the effects of time-varying formation, parametric uncertainties, external disturbances and optimal performance of Euler–Lagrange systems are all considered simultaneously. Under the proposed distributed formation optimal tracking protocol, all agents are able to asymptotically track an optimal reference trajectory, while maintain the given time-varying formation. Firstly, a dynamic system is introduced for each agent to generate optimal reference signal, which uses only the individual's own state and the neighboring relative measurements with no extra exchange of virtual states needed. Then, an optimal tracking control strategy is proposed, with which zero optimum-tracking error can be achieved. Thirdly, sufficient conditions are given to guarantee that the agents' states asymptotically converge to the optimal solution in the desired formation under the proposed algorithm. At last, numerical simulation is designed to verify the strategies.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distributed time-varying formation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimal tracking</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Euler–Lagrange systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Time-varying cost functions</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Jianglong</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-7861-2731</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hua, Yongzhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Qingdong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dong, Xiwang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ren, Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Aerospace science and technology</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1997</subfield><subfield code="g">132</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320521486</subfield><subfield code="w">(DE-600)2014638-3</subfield><subfield code="w">(DE-576)255630425</subfield><subfield code="x">1626-3219</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:132</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">55.50</subfield><subfield code="j">Luftfahrzeugtechnik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">55.60</subfield><subfield code="j">Raumfahrttechnik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">55.60</subfield><subfield code="j">Raumfahrttechnik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">132</subfield></datafield></record></collection>
|
author |
Su, Piaoyi |
spellingShingle |
Su, Piaoyi ddc 620 bkl 55.50 bkl 55.60 misc Distributed time-varying formation misc Optimal tracking misc Euler–Lagrange systems misc Time-varying cost functions Distributed time-varying formation optimal tracking for uncertain Euler–Lagrange systems with time-varying cost functions |
authorStr |
Su, Piaoyi |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320521486 |
format |
electronic Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1626-3219 |
topic_title |
620 DE-600 55.50 bkl 55.60 bkl Distributed time-varying formation optimal tracking for uncertain Euler–Lagrange systems with time-varying cost functions Distributed time-varying formation Optimal tracking Euler–Lagrange systems Time-varying cost functions |
topic |
ddc 620 bkl 55.50 bkl 55.60 misc Distributed time-varying formation misc Optimal tracking misc Euler–Lagrange systems misc Time-varying cost functions |
topic_unstemmed |
ddc 620 bkl 55.50 bkl 55.60 misc Distributed time-varying formation misc Optimal tracking misc Euler–Lagrange systems misc Time-varying cost functions |
topic_browse |
ddc 620 bkl 55.50 bkl 55.60 misc Distributed time-varying formation misc Optimal tracking misc Euler–Lagrange systems misc Time-varying cost functions |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Aerospace science and technology |
hierarchy_parent_id |
320521486 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
Aerospace science and technology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320521486 (DE-600)2014638-3 (DE-576)255630425 |
title |
Distributed time-varying formation optimal tracking for uncertain Euler–Lagrange systems with time-varying cost functions |
ctrlnum |
(DE-627)ELV009092242 (ELSEVIER)S1270-9638(22)00693-9 |
title_full |
Distributed time-varying formation optimal tracking for uncertain Euler–Lagrange systems with time-varying cost functions |
author_sort |
Su, Piaoyi |
journal |
Aerospace science and technology |
journalStr |
Aerospace science and technology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
author_browse |
Su, Piaoyi Yu, Jianglong Hua, Yongzhao Li, Qingdong Dong, Xiwang Ren, Zhang |
container_volume |
132 |
class |
620 DE-600 55.50 bkl 55.60 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Su, Piaoyi |
doi_str_mv |
10.1016/j.ast.2022.108019 |
normlink |
(ORCID)0000-0001-9558-4536 (ORCID)0000-0002-7861-2731 |
normlink_prefix_str_mv |
(orcid)0000-0001-9558-4536 (orcid)0000-0002-7861-2731 |
dewey-full |
620 |
author2-role |
verfasserin |
title_sort |
distributed time-varying formation optimal tracking for uncertain euler–lagrange systems with time-varying cost functions |
title_auth |
Distributed time-varying formation optimal tracking for uncertain Euler–Lagrange systems with time-varying cost functions |
abstract |
This article studies the distributed formation optimal tracking problems for Euler–Lagrange systems, where each agent only has access to local cost function and other relative state information with its neighbors. Different from existing works, the effects of time-varying formation, parametric uncertainties, external disturbances and optimal performance of Euler–Lagrange systems are all considered simultaneously. Under the proposed distributed formation optimal tracking protocol, all agents are able to asymptotically track an optimal reference trajectory, while maintain the given time-varying formation. Firstly, a dynamic system is introduced for each agent to generate optimal reference signal, which uses only the individual's own state and the neighboring relative measurements with no extra exchange of virtual states needed. Then, an optimal tracking control strategy is proposed, with which zero optimum-tracking error can be achieved. Thirdly, sufficient conditions are given to guarantee that the agents' states asymptotically converge to the optimal solution in the desired formation under the proposed algorithm. At last, numerical simulation is designed to verify the strategies. |
abstractGer |
This article studies the distributed formation optimal tracking problems for Euler–Lagrange systems, where each agent only has access to local cost function and other relative state information with its neighbors. Different from existing works, the effects of time-varying formation, parametric uncertainties, external disturbances and optimal performance of Euler–Lagrange systems are all considered simultaneously. Under the proposed distributed formation optimal tracking protocol, all agents are able to asymptotically track an optimal reference trajectory, while maintain the given time-varying formation. Firstly, a dynamic system is introduced for each agent to generate optimal reference signal, which uses only the individual's own state and the neighboring relative measurements with no extra exchange of virtual states needed. Then, an optimal tracking control strategy is proposed, with which zero optimum-tracking error can be achieved. Thirdly, sufficient conditions are given to guarantee that the agents' states asymptotically converge to the optimal solution in the desired formation under the proposed algorithm. At last, numerical simulation is designed to verify the strategies. |
abstract_unstemmed |
This article studies the distributed formation optimal tracking problems for Euler–Lagrange systems, where each agent only has access to local cost function and other relative state information with its neighbors. Different from existing works, the effects of time-varying formation, parametric uncertainties, external disturbances and optimal performance of Euler–Lagrange systems are all considered simultaneously. Under the proposed distributed formation optimal tracking protocol, all agents are able to asymptotically track an optimal reference trajectory, while maintain the given time-varying formation. Firstly, a dynamic system is introduced for each agent to generate optimal reference signal, which uses only the individual's own state and the neighboring relative measurements with no extra exchange of virtual states needed. Then, an optimal tracking control strategy is proposed, with which zero optimum-tracking error can be achieved. Thirdly, sufficient conditions are given to guarantee that the agents' states asymptotically converge to the optimal solution in the desired formation under the proposed algorithm. At last, numerical simulation is designed to verify the strategies. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-AST GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Distributed time-varying formation optimal tracking for uncertain Euler–Lagrange systems with time-varying cost functions |
remote_bool |
true |
author2 |
Yu, Jianglong Hua, Yongzhao Li, Qingdong Dong, Xiwang Ren, Zhang |
author2Str |
Yu, Jianglong Hua, Yongzhao Li, Qingdong Dong, Xiwang Ren, Zhang |
ppnlink |
320521486 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.ast.2022.108019 |
up_date |
2024-07-06T21:57:52.107Z |
_version_ |
1803868514139766784 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV009092242</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524151558.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230510s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ast.2022.108019</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV009092242</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S1270-9638(22)00693-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">55.50</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">55.60</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">55.60</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Su, Piaoyi</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-9558-4536</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Distributed time-varying formation optimal tracking for uncertain Euler–Lagrange systems with time-varying cost functions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This article studies the distributed formation optimal tracking problems for Euler–Lagrange systems, where each agent only has access to local cost function and other relative state information with its neighbors. Different from existing works, the effects of time-varying formation, parametric uncertainties, external disturbances and optimal performance of Euler–Lagrange systems are all considered simultaneously. Under the proposed distributed formation optimal tracking protocol, all agents are able to asymptotically track an optimal reference trajectory, while maintain the given time-varying formation. Firstly, a dynamic system is introduced for each agent to generate optimal reference signal, which uses only the individual's own state and the neighboring relative measurements with no extra exchange of virtual states needed. Then, an optimal tracking control strategy is proposed, with which zero optimum-tracking error can be achieved. Thirdly, sufficient conditions are given to guarantee that the agents' states asymptotically converge to the optimal solution in the desired formation under the proposed algorithm. At last, numerical simulation is designed to verify the strategies.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distributed time-varying formation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimal tracking</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Euler–Lagrange systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Time-varying cost functions</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Jianglong</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-7861-2731</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hua, Yongzhao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Qingdong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dong, Xiwang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ren, Zhang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Aerospace science and technology</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1997</subfield><subfield code="g">132</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320521486</subfield><subfield code="w">(DE-600)2014638-3</subfield><subfield code="w">(DE-576)255630425</subfield><subfield code="x">1626-3219</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:132</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">55.50</subfield><subfield code="j">Luftfahrzeugtechnik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">55.60</subfield><subfield code="j">Raumfahrttechnik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">55.60</subfield><subfield code="j">Raumfahrttechnik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">132</subfield></datafield></record></collection>
|
score |
7.401513 |