A value of prediction model to estimate optimal response time to threats for accident prevention
This paper presents a novel value of (imperfect) prediction (VoP) model to estimate optimal response time to a threat that may result in an accident. The proposed VoP model is based on information value theory and considers both prediction accuracy and action failure probability over time. The optim...
Ausführliche Beschreibung
Autor*in: |
Zhu, Tiantian [verfasserIn] Haugen, Stein [verfasserIn] Liu, Yiliu [verfasserIn] Yang, Xue [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Reliability engineering & system safety - London [u.a.] : Elsevier Science, 1988, 232 |
---|---|
Übergeordnetes Werk: |
volume:232 |
DOI / URN: |
10.1016/j.ress.2022.109044 |
---|
Katalog-ID: |
ELV009128255 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV009128255 | ||
003 | DE-627 | ||
005 | 20230524142419.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230510s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ress.2022.109044 |2 doi | |
035 | |a (DE-627)ELV009128255 | ||
035 | |a (ELSEVIER)S0951-8320(22)00659-7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 600 |q DE-600 |
084 | |a 50.16 |2 bkl | ||
084 | |a 85.38 |2 bkl | ||
100 | 1 | |a Zhu, Tiantian |e verfasserin |0 (orcid)0000-0002-3401-8482 |4 aut | |
245 | 1 | 0 | |a A value of prediction model to estimate optimal response time to threats for accident prevention |
264 | 1 | |c 2022 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a This paper presents a novel value of (imperfect) prediction (VoP) model to estimate optimal response time to a threat that may result in an accident. The proposed VoP model is based on information value theory and considers both prediction accuracy and action failure probability over time. The optimal response time is dependent on parameters: the ratio between the accident cost and response action cost, accident probability, action failure probability, prediction performance, and response strategy (a series of sequential responses or a single response). A case study of iceberg management is presented to demonstrate the proposed approach; a sensitivity study is done to evaluate how optimal response time changes with those parameters. The case study show that it is reasonable to respond as early as possible if the threat can lead to a serious accident, while the response can be postponed when the potential consequence is moderate. In addition, the proposed VoP model is proven able to calculate accuracy requirements, thresholds for tolerating risk and acting precautionarily, and maximum investment in accident prevention. Imperfect prediction can lower risk acceptance threshold and higher the threshold of being precautionary; and it is reasonable to increase action cost. | ||
650 | 4 | |a Response time | |
650 | 4 | |a Decision time | |
650 | 4 | |a Accident prediction | |
650 | 4 | |a Prediction horizon | |
650 | 4 | |a Value of prediction | |
650 | 4 | |a Value of information | |
650 | 4 | |a Accident prevention | |
700 | 1 | |a Haugen, Stein |e verfasserin |4 aut | |
700 | 1 | |a Liu, Yiliu |e verfasserin |0 (orcid)0000-0002-0612-2231 |4 aut | |
700 | 1 | |a Yang, Xue |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Reliability engineering & system safety |d London [u.a.] : Elsevier Science, 1988 |g 232 |h Online-Ressource |w (DE-627)320608743 |w (DE-600)2021091-7 |w (DE-576)259485217 |x 0951-8320 |7 nnns |
773 | 1 | 8 | |g volume:232 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 50.16 |j Technische Zuverlässigkeit |j Instandhaltung |
936 | b | k | |a 85.38 |j Qualitätsmanagement |
951 | |a AR | ||
952 | |d 232 |
author_variant |
t z tz s h sh y l yl x y xy |
---|---|
matchkey_str |
article:09518320:2022----::vlefrdcinoetetmtotmlepneieohet |
hierarchy_sort_str |
2022 |
bklnumber |
50.16 85.38 |
publishDate |
2022 |
allfields |
10.1016/j.ress.2022.109044 doi (DE-627)ELV009128255 (ELSEVIER)S0951-8320(22)00659-7 DE-627 ger DE-627 rda eng 600 DE-600 50.16 bkl 85.38 bkl Zhu, Tiantian verfasserin (orcid)0000-0002-3401-8482 aut A value of prediction model to estimate optimal response time to threats for accident prevention 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper presents a novel value of (imperfect) prediction (VoP) model to estimate optimal response time to a threat that may result in an accident. The proposed VoP model is based on information value theory and considers both prediction accuracy and action failure probability over time. The optimal response time is dependent on parameters: the ratio between the accident cost and response action cost, accident probability, action failure probability, prediction performance, and response strategy (a series of sequential responses or a single response). A case study of iceberg management is presented to demonstrate the proposed approach; a sensitivity study is done to evaluate how optimal response time changes with those parameters. The case study show that it is reasonable to respond as early as possible if the threat can lead to a serious accident, while the response can be postponed when the potential consequence is moderate. In addition, the proposed VoP model is proven able to calculate accuracy requirements, thresholds for tolerating risk and acting precautionarily, and maximum investment in accident prevention. Imperfect prediction can lower risk acceptance threshold and higher the threshold of being precautionary; and it is reasonable to increase action cost. Response time Decision time Accident prediction Prediction horizon Value of prediction Value of information Accident prevention Haugen, Stein verfasserin aut Liu, Yiliu verfasserin (orcid)0000-0002-0612-2231 aut Yang, Xue verfasserin aut Enthalten in Reliability engineering & system safety London [u.a.] : Elsevier Science, 1988 232 Online-Ressource (DE-627)320608743 (DE-600)2021091-7 (DE-576)259485217 0951-8320 nnns volume:232 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.16 Technische Zuverlässigkeit Instandhaltung 85.38 Qualitätsmanagement AR 232 |
spelling |
10.1016/j.ress.2022.109044 doi (DE-627)ELV009128255 (ELSEVIER)S0951-8320(22)00659-7 DE-627 ger DE-627 rda eng 600 DE-600 50.16 bkl 85.38 bkl Zhu, Tiantian verfasserin (orcid)0000-0002-3401-8482 aut A value of prediction model to estimate optimal response time to threats for accident prevention 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper presents a novel value of (imperfect) prediction (VoP) model to estimate optimal response time to a threat that may result in an accident. The proposed VoP model is based on information value theory and considers both prediction accuracy and action failure probability over time. The optimal response time is dependent on parameters: the ratio between the accident cost and response action cost, accident probability, action failure probability, prediction performance, and response strategy (a series of sequential responses or a single response). A case study of iceberg management is presented to demonstrate the proposed approach; a sensitivity study is done to evaluate how optimal response time changes with those parameters. The case study show that it is reasonable to respond as early as possible if the threat can lead to a serious accident, while the response can be postponed when the potential consequence is moderate. In addition, the proposed VoP model is proven able to calculate accuracy requirements, thresholds for tolerating risk and acting precautionarily, and maximum investment in accident prevention. Imperfect prediction can lower risk acceptance threshold and higher the threshold of being precautionary; and it is reasonable to increase action cost. Response time Decision time Accident prediction Prediction horizon Value of prediction Value of information Accident prevention Haugen, Stein verfasserin aut Liu, Yiliu verfasserin (orcid)0000-0002-0612-2231 aut Yang, Xue verfasserin aut Enthalten in Reliability engineering & system safety London [u.a.] : Elsevier Science, 1988 232 Online-Ressource (DE-627)320608743 (DE-600)2021091-7 (DE-576)259485217 0951-8320 nnns volume:232 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.16 Technische Zuverlässigkeit Instandhaltung 85.38 Qualitätsmanagement AR 232 |
allfields_unstemmed |
10.1016/j.ress.2022.109044 doi (DE-627)ELV009128255 (ELSEVIER)S0951-8320(22)00659-7 DE-627 ger DE-627 rda eng 600 DE-600 50.16 bkl 85.38 bkl Zhu, Tiantian verfasserin (orcid)0000-0002-3401-8482 aut A value of prediction model to estimate optimal response time to threats for accident prevention 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper presents a novel value of (imperfect) prediction (VoP) model to estimate optimal response time to a threat that may result in an accident. The proposed VoP model is based on information value theory and considers both prediction accuracy and action failure probability over time. The optimal response time is dependent on parameters: the ratio between the accident cost and response action cost, accident probability, action failure probability, prediction performance, and response strategy (a series of sequential responses or a single response). A case study of iceberg management is presented to demonstrate the proposed approach; a sensitivity study is done to evaluate how optimal response time changes with those parameters. The case study show that it is reasonable to respond as early as possible if the threat can lead to a serious accident, while the response can be postponed when the potential consequence is moderate. In addition, the proposed VoP model is proven able to calculate accuracy requirements, thresholds for tolerating risk and acting precautionarily, and maximum investment in accident prevention. Imperfect prediction can lower risk acceptance threshold and higher the threshold of being precautionary; and it is reasonable to increase action cost. Response time Decision time Accident prediction Prediction horizon Value of prediction Value of information Accident prevention Haugen, Stein verfasserin aut Liu, Yiliu verfasserin (orcid)0000-0002-0612-2231 aut Yang, Xue verfasserin aut Enthalten in Reliability engineering & system safety London [u.a.] : Elsevier Science, 1988 232 Online-Ressource (DE-627)320608743 (DE-600)2021091-7 (DE-576)259485217 0951-8320 nnns volume:232 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.16 Technische Zuverlässigkeit Instandhaltung 85.38 Qualitätsmanagement AR 232 |
allfieldsGer |
10.1016/j.ress.2022.109044 doi (DE-627)ELV009128255 (ELSEVIER)S0951-8320(22)00659-7 DE-627 ger DE-627 rda eng 600 DE-600 50.16 bkl 85.38 bkl Zhu, Tiantian verfasserin (orcid)0000-0002-3401-8482 aut A value of prediction model to estimate optimal response time to threats for accident prevention 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper presents a novel value of (imperfect) prediction (VoP) model to estimate optimal response time to a threat that may result in an accident. The proposed VoP model is based on information value theory and considers both prediction accuracy and action failure probability over time. The optimal response time is dependent on parameters: the ratio between the accident cost and response action cost, accident probability, action failure probability, prediction performance, and response strategy (a series of sequential responses or a single response). A case study of iceberg management is presented to demonstrate the proposed approach; a sensitivity study is done to evaluate how optimal response time changes with those parameters. The case study show that it is reasonable to respond as early as possible if the threat can lead to a serious accident, while the response can be postponed when the potential consequence is moderate. In addition, the proposed VoP model is proven able to calculate accuracy requirements, thresholds for tolerating risk and acting precautionarily, and maximum investment in accident prevention. Imperfect prediction can lower risk acceptance threshold and higher the threshold of being precautionary; and it is reasonable to increase action cost. Response time Decision time Accident prediction Prediction horizon Value of prediction Value of information Accident prevention Haugen, Stein verfasserin aut Liu, Yiliu verfasserin (orcid)0000-0002-0612-2231 aut Yang, Xue verfasserin aut Enthalten in Reliability engineering & system safety London [u.a.] : Elsevier Science, 1988 232 Online-Ressource (DE-627)320608743 (DE-600)2021091-7 (DE-576)259485217 0951-8320 nnns volume:232 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.16 Technische Zuverlässigkeit Instandhaltung 85.38 Qualitätsmanagement AR 232 |
allfieldsSound |
10.1016/j.ress.2022.109044 doi (DE-627)ELV009128255 (ELSEVIER)S0951-8320(22)00659-7 DE-627 ger DE-627 rda eng 600 DE-600 50.16 bkl 85.38 bkl Zhu, Tiantian verfasserin (orcid)0000-0002-3401-8482 aut A value of prediction model to estimate optimal response time to threats for accident prevention 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper presents a novel value of (imperfect) prediction (VoP) model to estimate optimal response time to a threat that may result in an accident. The proposed VoP model is based on information value theory and considers both prediction accuracy and action failure probability over time. The optimal response time is dependent on parameters: the ratio between the accident cost and response action cost, accident probability, action failure probability, prediction performance, and response strategy (a series of sequential responses or a single response). A case study of iceberg management is presented to demonstrate the proposed approach; a sensitivity study is done to evaluate how optimal response time changes with those parameters. The case study show that it is reasonable to respond as early as possible if the threat can lead to a serious accident, while the response can be postponed when the potential consequence is moderate. In addition, the proposed VoP model is proven able to calculate accuracy requirements, thresholds for tolerating risk and acting precautionarily, and maximum investment in accident prevention. Imperfect prediction can lower risk acceptance threshold and higher the threshold of being precautionary; and it is reasonable to increase action cost. Response time Decision time Accident prediction Prediction horizon Value of prediction Value of information Accident prevention Haugen, Stein verfasserin aut Liu, Yiliu verfasserin (orcid)0000-0002-0612-2231 aut Yang, Xue verfasserin aut Enthalten in Reliability engineering & system safety London [u.a.] : Elsevier Science, 1988 232 Online-Ressource (DE-627)320608743 (DE-600)2021091-7 (DE-576)259485217 0951-8320 nnns volume:232 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.16 Technische Zuverlässigkeit Instandhaltung 85.38 Qualitätsmanagement AR 232 |
language |
English |
source |
Enthalten in Reliability engineering & system safety 232 volume:232 |
sourceStr |
Enthalten in Reliability engineering & system safety 232 volume:232 |
format_phy_str_mv |
Article |
bklname |
Technische Zuverlässigkeit Instandhaltung Qualitätsmanagement |
institution |
findex.gbv.de |
topic_facet |
Response time Decision time Accident prediction Prediction horizon Value of prediction Value of information Accident prevention |
dewey-raw |
600 |
isfreeaccess_bool |
false |
container_title |
Reliability engineering & system safety |
authorswithroles_txt_mv |
Zhu, Tiantian @@aut@@ Haugen, Stein @@aut@@ Liu, Yiliu @@aut@@ Yang, Xue @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
320608743 |
dewey-sort |
3600 |
id |
ELV009128255 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV009128255</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524142419.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230510s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ress.2022.109044</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV009128255</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0951-8320(22)00659-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.16</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">85.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhu, Tiantian</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-3401-8482</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A value of prediction model to estimate optimal response time to threats for accident prevention</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper presents a novel value of (imperfect) prediction (VoP) model to estimate optimal response time to a threat that may result in an accident. The proposed VoP model is based on information value theory and considers both prediction accuracy and action failure probability over time. The optimal response time is dependent on parameters: the ratio between the accident cost and response action cost, accident probability, action failure probability, prediction performance, and response strategy (a series of sequential responses or a single response). A case study of iceberg management is presented to demonstrate the proposed approach; a sensitivity study is done to evaluate how optimal response time changes with those parameters. The case study show that it is reasonable to respond as early as possible if the threat can lead to a serious accident, while the response can be postponed when the potential consequence is moderate. In addition, the proposed VoP model is proven able to calculate accuracy requirements, thresholds for tolerating risk and acting precautionarily, and maximum investment in accident prevention. Imperfect prediction can lower risk acceptance threshold and higher the threshold of being precautionary; and it is reasonable to increase action cost.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Response time</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Decision time</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Accident prediction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Prediction horizon</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Value of prediction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Value of information</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Accident prevention</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Haugen, Stein</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Yiliu</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-0612-2231</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Xue</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Reliability engineering & system safety</subfield><subfield code="d">London [u.a.] : Elsevier Science, 1988</subfield><subfield code="g">232</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320608743</subfield><subfield code="w">(DE-600)2021091-7</subfield><subfield code="w">(DE-576)259485217</subfield><subfield code="x">0951-8320</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.16</subfield><subfield code="j">Technische Zuverlässigkeit</subfield><subfield code="j">Instandhaltung</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">85.38</subfield><subfield code="j">Qualitätsmanagement</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">232</subfield></datafield></record></collection>
|
author |
Zhu, Tiantian |
spellingShingle |
Zhu, Tiantian ddc 600 bkl 50.16 bkl 85.38 misc Response time misc Decision time misc Accident prediction misc Prediction horizon misc Value of prediction misc Value of information misc Accident prevention A value of prediction model to estimate optimal response time to threats for accident prevention |
authorStr |
Zhu, Tiantian |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320608743 |
format |
electronic Article |
dewey-ones |
600 - Technology |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0951-8320 |
topic_title |
600 DE-600 50.16 bkl 85.38 bkl A value of prediction model to estimate optimal response time to threats for accident prevention Response time Decision time Accident prediction Prediction horizon Value of prediction Value of information Accident prevention |
topic |
ddc 600 bkl 50.16 bkl 85.38 misc Response time misc Decision time misc Accident prediction misc Prediction horizon misc Value of prediction misc Value of information misc Accident prevention |
topic_unstemmed |
ddc 600 bkl 50.16 bkl 85.38 misc Response time misc Decision time misc Accident prediction misc Prediction horizon misc Value of prediction misc Value of information misc Accident prevention |
topic_browse |
ddc 600 bkl 50.16 bkl 85.38 misc Response time misc Decision time misc Accident prediction misc Prediction horizon misc Value of prediction misc Value of information misc Accident prevention |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Reliability engineering & system safety |
hierarchy_parent_id |
320608743 |
dewey-tens |
600 - Technology |
hierarchy_top_title |
Reliability engineering & system safety |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320608743 (DE-600)2021091-7 (DE-576)259485217 |
title |
A value of prediction model to estimate optimal response time to threats for accident prevention |
ctrlnum |
(DE-627)ELV009128255 (ELSEVIER)S0951-8320(22)00659-7 |
title_full |
A value of prediction model to estimate optimal response time to threats for accident prevention |
author_sort |
Zhu, Tiantian |
journal |
Reliability engineering & system safety |
journalStr |
Reliability engineering & system safety |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
author_browse |
Zhu, Tiantian Haugen, Stein Liu, Yiliu Yang, Xue |
container_volume |
232 |
class |
600 DE-600 50.16 bkl 85.38 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Zhu, Tiantian |
doi_str_mv |
10.1016/j.ress.2022.109044 |
normlink |
(ORCID)0000-0002-3401-8482 (ORCID)0000-0002-0612-2231 |
normlink_prefix_str_mv |
(orcid)0000-0002-3401-8482 (orcid)0000-0002-0612-2231 |
dewey-full |
600 |
author2-role |
verfasserin |
title_sort |
a value of prediction model to estimate optimal response time to threats for accident prevention |
title_auth |
A value of prediction model to estimate optimal response time to threats for accident prevention |
abstract |
This paper presents a novel value of (imperfect) prediction (VoP) model to estimate optimal response time to a threat that may result in an accident. The proposed VoP model is based on information value theory and considers both prediction accuracy and action failure probability over time. The optimal response time is dependent on parameters: the ratio between the accident cost and response action cost, accident probability, action failure probability, prediction performance, and response strategy (a series of sequential responses or a single response). A case study of iceberg management is presented to demonstrate the proposed approach; a sensitivity study is done to evaluate how optimal response time changes with those parameters. The case study show that it is reasonable to respond as early as possible if the threat can lead to a serious accident, while the response can be postponed when the potential consequence is moderate. In addition, the proposed VoP model is proven able to calculate accuracy requirements, thresholds for tolerating risk and acting precautionarily, and maximum investment in accident prevention. Imperfect prediction can lower risk acceptance threshold and higher the threshold of being precautionary; and it is reasonable to increase action cost. |
abstractGer |
This paper presents a novel value of (imperfect) prediction (VoP) model to estimate optimal response time to a threat that may result in an accident. The proposed VoP model is based on information value theory and considers both prediction accuracy and action failure probability over time. The optimal response time is dependent on parameters: the ratio between the accident cost and response action cost, accident probability, action failure probability, prediction performance, and response strategy (a series of sequential responses or a single response). A case study of iceberg management is presented to demonstrate the proposed approach; a sensitivity study is done to evaluate how optimal response time changes with those parameters. The case study show that it is reasonable to respond as early as possible if the threat can lead to a serious accident, while the response can be postponed when the potential consequence is moderate. In addition, the proposed VoP model is proven able to calculate accuracy requirements, thresholds for tolerating risk and acting precautionarily, and maximum investment in accident prevention. Imperfect prediction can lower risk acceptance threshold and higher the threshold of being precautionary; and it is reasonable to increase action cost. |
abstract_unstemmed |
This paper presents a novel value of (imperfect) prediction (VoP) model to estimate optimal response time to a threat that may result in an accident. The proposed VoP model is based on information value theory and considers both prediction accuracy and action failure probability over time. The optimal response time is dependent on parameters: the ratio between the accident cost and response action cost, accident probability, action failure probability, prediction performance, and response strategy (a series of sequential responses or a single response). A case study of iceberg management is presented to demonstrate the proposed approach; a sensitivity study is done to evaluate how optimal response time changes with those parameters. The case study show that it is reasonable to respond as early as possible if the threat can lead to a serious accident, while the response can be postponed when the potential consequence is moderate. In addition, the proposed VoP model is proven able to calculate accuracy requirements, thresholds for tolerating risk and acting precautionarily, and maximum investment in accident prevention. Imperfect prediction can lower risk acceptance threshold and higher the threshold of being precautionary; and it is reasonable to increase action cost. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
A value of prediction model to estimate optimal response time to threats for accident prevention |
remote_bool |
true |
author2 |
Haugen, Stein Liu, Yiliu Yang, Xue |
author2Str |
Haugen, Stein Liu, Yiliu Yang, Xue |
ppnlink |
320608743 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.ress.2022.109044 |
up_date |
2024-07-06T22:05:33.488Z |
_version_ |
1803868997933858816 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV009128255</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524142419.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230510s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ress.2022.109044</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV009128255</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0951-8320(22)00659-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.16</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">85.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhu, Tiantian</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-3401-8482</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A value of prediction model to estimate optimal response time to threats for accident prevention</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper presents a novel value of (imperfect) prediction (VoP) model to estimate optimal response time to a threat that may result in an accident. The proposed VoP model is based on information value theory and considers both prediction accuracy and action failure probability over time. The optimal response time is dependent on parameters: the ratio between the accident cost and response action cost, accident probability, action failure probability, prediction performance, and response strategy (a series of sequential responses or a single response). A case study of iceberg management is presented to demonstrate the proposed approach; a sensitivity study is done to evaluate how optimal response time changes with those parameters. The case study show that it is reasonable to respond as early as possible if the threat can lead to a serious accident, while the response can be postponed when the potential consequence is moderate. In addition, the proposed VoP model is proven able to calculate accuracy requirements, thresholds for tolerating risk and acting precautionarily, and maximum investment in accident prevention. Imperfect prediction can lower risk acceptance threshold and higher the threshold of being precautionary; and it is reasonable to increase action cost.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Response time</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Decision time</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Accident prediction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Prediction horizon</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Value of prediction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Value of information</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Accident prevention</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Haugen, Stein</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Yiliu</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-0612-2231</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Xue</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Reliability engineering & system safety</subfield><subfield code="d">London [u.a.] : Elsevier Science, 1988</subfield><subfield code="g">232</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320608743</subfield><subfield code="w">(DE-600)2021091-7</subfield><subfield code="w">(DE-576)259485217</subfield><subfield code="x">0951-8320</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.16</subfield><subfield code="j">Technische Zuverlässigkeit</subfield><subfield code="j">Instandhaltung</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">85.38</subfield><subfield code="j">Qualitätsmanagement</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">232</subfield></datafield></record></collection>
|
score |
7.402112 |