Effects of NO
The capture of long-lived radioactive iodine (129I) from oxidizing off-gasses produced from reprocessing used nuclear fuel is paramount to human health and environmental safety. Bismuth has been investigated as a viable iodine getter but the phase stability of bismuth-based sorbents in an oxidizing...
Ausführliche Beschreibung
Autor*in: |
Baskaran, Karthikeyan [verfasserIn] Elliott, Casey [verfasserIn] Ali, Muhammad [verfasserIn] Moon, Jeremy [verfasserIn] Beland, Jade [verfasserIn] Cohrs, Dave [verfasserIn] Chong, Saehwa [verfasserIn] Riley, Brian J. [verfasserIn] Chidambaram, Dev [verfasserIn] Carlson, Krista [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of hazardous materials - New York, NY [u.a.] : Science Direct, 1976, 446 |
---|---|
Übergeordnetes Werk: |
volume:446 |
DOI / URN: |
10.1016/j.jhazmat.2022.130644 |
---|
Katalog-ID: |
ELV009130624 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV009130624 | ||
003 | DE-627 | ||
005 | 20230524144730.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230510s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.jhazmat.2022.130644 |2 doi | |
035 | |a (DE-627)ELV009130624 | ||
035 | |a (ELSEVIER)S0304-3894(22)02440-2 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q DE-600 |
084 | |a 43.13 |2 bkl | ||
084 | |a 50.17 |2 bkl | ||
084 | |a 58.53 |2 bkl | ||
100 | 1 | |a Baskaran, Karthikeyan |e verfasserin |4 aut | |
245 | 1 | 0 | |a Effects of NO |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The capture of long-lived radioactive iodine (129I) from oxidizing off-gasses produced from reprocessing used nuclear fuel is paramount to human health and environmental safety. Bismuth has been investigated as a viable iodine getter but the phase stability of bismuth-based sorbents in an oxidizing environment have not yet been researched. In the current work, bismuth nanoparticle-based sorbents, as free particles (Bi-NPs) and embedded within silica xerogel monoliths made with a porogen (TEO-5), were exposed to I2(g) before and after aging in 1 v/v% NO2 at 150 °C. For unaged sorbents, BiI3 was the dominant phase after iodine capture with 8–30 mass% BiOI present due to native Bi2O3 on the surface of the unaged nanoparticles. After 3 h of aging, 82 mass% of the Bi-NPs was converted to Bi2O3 with only a small amount of iodine captured as BiOI (18 mass%). After aging TEO-5 for 3 h, iodine was captured as both BiI3 (26 %) and BiOI (74 %) and no Bi2O3 was detected.”. Additionally, bismuth lining the micrometer-scale pores in the TEO-5 led to enhanced iodine capture. In a subsequent exposure of the sorbents to NO2 (secondary aging), all BiI3 converted to BiOI. Thus, direct capture of iodine as BiOI is desired (over BiI3) to minimize loss of iodine after capture. | ||
650 | 4 | |a Bismuth sorbents | |
650 | 4 | |a NO | |
650 | 4 | |a Iodine capture | |
650 | 4 | |a Silica xerogel | |
650 | 4 | |a Bismuth oxyhalide | |
700 | 1 | |a Elliott, Casey |e verfasserin |4 aut | |
700 | 1 | |a Ali, Muhammad |e verfasserin |4 aut | |
700 | 1 | |a Moon, Jeremy |e verfasserin |4 aut | |
700 | 1 | |a Beland, Jade |e verfasserin |4 aut | |
700 | 1 | |a Cohrs, Dave |e verfasserin |4 aut | |
700 | 1 | |a Chong, Saehwa |e verfasserin |4 aut | |
700 | 1 | |a Riley, Brian J. |e verfasserin |4 aut | |
700 | 1 | |a Chidambaram, Dev |e verfasserin |4 aut | |
700 | 1 | |a Carlson, Krista |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of hazardous materials |d New York, NY [u.a.] : Science Direct, 1976 |g 446 |h Online-Ressource |w (DE-627)302467904 |w (DE-600)1491302-1 |w (DE-576)259483893 |x 1873-3336 |7 nnns |
773 | 1 | 8 | |g volume:446 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a SSG-OPC-GGO | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 43.13 |j Umwelttoxikologie |
936 | b | k | |a 50.17 |j Sicherheitstechnik |
936 | b | k | |a 58.53 |j Abfallwirtschaft |
951 | |a AR | ||
952 | |d 446 |
author_variant |
k b kb c e ce m a ma j m jm j b jb d c dc s c sc b j r bj bjr d c dc k c kc |
---|---|
matchkey_str |
article:18733336:2023----::fet |
hierarchy_sort_str |
2023 |
bklnumber |
43.13 50.17 58.53 |
publishDate |
2023 |
allfields |
10.1016/j.jhazmat.2022.130644 doi (DE-627)ELV009130624 (ELSEVIER)S0304-3894(22)02440-2 DE-627 ger DE-627 rda eng 530 DE-600 43.13 bkl 50.17 bkl 58.53 bkl Baskaran, Karthikeyan verfasserin aut Effects of NO 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The capture of long-lived radioactive iodine (129I) from oxidizing off-gasses produced from reprocessing used nuclear fuel is paramount to human health and environmental safety. Bismuth has been investigated as a viable iodine getter but the phase stability of bismuth-based sorbents in an oxidizing environment have not yet been researched. In the current work, bismuth nanoparticle-based sorbents, as free particles (Bi-NPs) and embedded within silica xerogel monoliths made with a porogen (TEO-5), were exposed to I2(g) before and after aging in 1 v/v% NO2 at 150 °C. For unaged sorbents, BiI3 was the dominant phase after iodine capture with 8–30 mass% BiOI present due to native Bi2O3 on the surface of the unaged nanoparticles. After 3 h of aging, 82 mass% of the Bi-NPs was converted to Bi2O3 with only a small amount of iodine captured as BiOI (18 mass%). After aging TEO-5 for 3 h, iodine was captured as both BiI3 (26 %) and BiOI (74 %) and no Bi2O3 was detected.”. Additionally, bismuth lining the micrometer-scale pores in the TEO-5 led to enhanced iodine capture. In a subsequent exposure of the sorbents to NO2 (secondary aging), all BiI3 converted to BiOI. Thus, direct capture of iodine as BiOI is desired (over BiI3) to minimize loss of iodine after capture. Bismuth sorbents NO Iodine capture Silica xerogel Bismuth oxyhalide Elliott, Casey verfasserin aut Ali, Muhammad verfasserin aut Moon, Jeremy verfasserin aut Beland, Jade verfasserin aut Cohrs, Dave verfasserin aut Chong, Saehwa verfasserin aut Riley, Brian J. verfasserin aut Chidambaram, Dev verfasserin aut Carlson, Krista verfasserin aut Enthalten in Journal of hazardous materials New York, NY [u.a.] : Science Direct, 1976 446 Online-Ressource (DE-627)302467904 (DE-600)1491302-1 (DE-576)259483893 1873-3336 nnns volume:446 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 43.13 Umwelttoxikologie 50.17 Sicherheitstechnik 58.53 Abfallwirtschaft AR 446 |
spelling |
10.1016/j.jhazmat.2022.130644 doi (DE-627)ELV009130624 (ELSEVIER)S0304-3894(22)02440-2 DE-627 ger DE-627 rda eng 530 DE-600 43.13 bkl 50.17 bkl 58.53 bkl Baskaran, Karthikeyan verfasserin aut Effects of NO 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The capture of long-lived radioactive iodine (129I) from oxidizing off-gasses produced from reprocessing used nuclear fuel is paramount to human health and environmental safety. Bismuth has been investigated as a viable iodine getter but the phase stability of bismuth-based sorbents in an oxidizing environment have not yet been researched. In the current work, bismuth nanoparticle-based sorbents, as free particles (Bi-NPs) and embedded within silica xerogel monoliths made with a porogen (TEO-5), were exposed to I2(g) before and after aging in 1 v/v% NO2 at 150 °C. For unaged sorbents, BiI3 was the dominant phase after iodine capture with 8–30 mass% BiOI present due to native Bi2O3 on the surface of the unaged nanoparticles. After 3 h of aging, 82 mass% of the Bi-NPs was converted to Bi2O3 with only a small amount of iodine captured as BiOI (18 mass%). After aging TEO-5 for 3 h, iodine was captured as both BiI3 (26 %) and BiOI (74 %) and no Bi2O3 was detected.”. Additionally, bismuth lining the micrometer-scale pores in the TEO-5 led to enhanced iodine capture. In a subsequent exposure of the sorbents to NO2 (secondary aging), all BiI3 converted to BiOI. Thus, direct capture of iodine as BiOI is desired (over BiI3) to minimize loss of iodine after capture. Bismuth sorbents NO Iodine capture Silica xerogel Bismuth oxyhalide Elliott, Casey verfasserin aut Ali, Muhammad verfasserin aut Moon, Jeremy verfasserin aut Beland, Jade verfasserin aut Cohrs, Dave verfasserin aut Chong, Saehwa verfasserin aut Riley, Brian J. verfasserin aut Chidambaram, Dev verfasserin aut Carlson, Krista verfasserin aut Enthalten in Journal of hazardous materials New York, NY [u.a.] : Science Direct, 1976 446 Online-Ressource (DE-627)302467904 (DE-600)1491302-1 (DE-576)259483893 1873-3336 nnns volume:446 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 43.13 Umwelttoxikologie 50.17 Sicherheitstechnik 58.53 Abfallwirtschaft AR 446 |
allfields_unstemmed |
10.1016/j.jhazmat.2022.130644 doi (DE-627)ELV009130624 (ELSEVIER)S0304-3894(22)02440-2 DE-627 ger DE-627 rda eng 530 DE-600 43.13 bkl 50.17 bkl 58.53 bkl Baskaran, Karthikeyan verfasserin aut Effects of NO 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The capture of long-lived radioactive iodine (129I) from oxidizing off-gasses produced from reprocessing used nuclear fuel is paramount to human health and environmental safety. Bismuth has been investigated as a viable iodine getter but the phase stability of bismuth-based sorbents in an oxidizing environment have not yet been researched. In the current work, bismuth nanoparticle-based sorbents, as free particles (Bi-NPs) and embedded within silica xerogel monoliths made with a porogen (TEO-5), were exposed to I2(g) before and after aging in 1 v/v% NO2 at 150 °C. For unaged sorbents, BiI3 was the dominant phase after iodine capture with 8–30 mass% BiOI present due to native Bi2O3 on the surface of the unaged nanoparticles. After 3 h of aging, 82 mass% of the Bi-NPs was converted to Bi2O3 with only a small amount of iodine captured as BiOI (18 mass%). After aging TEO-5 for 3 h, iodine was captured as both BiI3 (26 %) and BiOI (74 %) and no Bi2O3 was detected.”. Additionally, bismuth lining the micrometer-scale pores in the TEO-5 led to enhanced iodine capture. In a subsequent exposure of the sorbents to NO2 (secondary aging), all BiI3 converted to BiOI. Thus, direct capture of iodine as BiOI is desired (over BiI3) to minimize loss of iodine after capture. Bismuth sorbents NO Iodine capture Silica xerogel Bismuth oxyhalide Elliott, Casey verfasserin aut Ali, Muhammad verfasserin aut Moon, Jeremy verfasserin aut Beland, Jade verfasserin aut Cohrs, Dave verfasserin aut Chong, Saehwa verfasserin aut Riley, Brian J. verfasserin aut Chidambaram, Dev verfasserin aut Carlson, Krista verfasserin aut Enthalten in Journal of hazardous materials New York, NY [u.a.] : Science Direct, 1976 446 Online-Ressource (DE-627)302467904 (DE-600)1491302-1 (DE-576)259483893 1873-3336 nnns volume:446 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 43.13 Umwelttoxikologie 50.17 Sicherheitstechnik 58.53 Abfallwirtschaft AR 446 |
allfieldsGer |
10.1016/j.jhazmat.2022.130644 doi (DE-627)ELV009130624 (ELSEVIER)S0304-3894(22)02440-2 DE-627 ger DE-627 rda eng 530 DE-600 43.13 bkl 50.17 bkl 58.53 bkl Baskaran, Karthikeyan verfasserin aut Effects of NO 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The capture of long-lived radioactive iodine (129I) from oxidizing off-gasses produced from reprocessing used nuclear fuel is paramount to human health and environmental safety. Bismuth has been investigated as a viable iodine getter but the phase stability of bismuth-based sorbents in an oxidizing environment have not yet been researched. In the current work, bismuth nanoparticle-based sorbents, as free particles (Bi-NPs) and embedded within silica xerogel monoliths made with a porogen (TEO-5), were exposed to I2(g) before and after aging in 1 v/v% NO2 at 150 °C. For unaged sorbents, BiI3 was the dominant phase after iodine capture with 8–30 mass% BiOI present due to native Bi2O3 on the surface of the unaged nanoparticles. After 3 h of aging, 82 mass% of the Bi-NPs was converted to Bi2O3 with only a small amount of iodine captured as BiOI (18 mass%). After aging TEO-5 for 3 h, iodine was captured as both BiI3 (26 %) and BiOI (74 %) and no Bi2O3 was detected.”. Additionally, bismuth lining the micrometer-scale pores in the TEO-5 led to enhanced iodine capture. In a subsequent exposure of the sorbents to NO2 (secondary aging), all BiI3 converted to BiOI. Thus, direct capture of iodine as BiOI is desired (over BiI3) to minimize loss of iodine after capture. Bismuth sorbents NO Iodine capture Silica xerogel Bismuth oxyhalide Elliott, Casey verfasserin aut Ali, Muhammad verfasserin aut Moon, Jeremy verfasserin aut Beland, Jade verfasserin aut Cohrs, Dave verfasserin aut Chong, Saehwa verfasserin aut Riley, Brian J. verfasserin aut Chidambaram, Dev verfasserin aut Carlson, Krista verfasserin aut Enthalten in Journal of hazardous materials New York, NY [u.a.] : Science Direct, 1976 446 Online-Ressource (DE-627)302467904 (DE-600)1491302-1 (DE-576)259483893 1873-3336 nnns volume:446 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 43.13 Umwelttoxikologie 50.17 Sicherheitstechnik 58.53 Abfallwirtschaft AR 446 |
allfieldsSound |
10.1016/j.jhazmat.2022.130644 doi (DE-627)ELV009130624 (ELSEVIER)S0304-3894(22)02440-2 DE-627 ger DE-627 rda eng 530 DE-600 43.13 bkl 50.17 bkl 58.53 bkl Baskaran, Karthikeyan verfasserin aut Effects of NO 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The capture of long-lived radioactive iodine (129I) from oxidizing off-gasses produced from reprocessing used nuclear fuel is paramount to human health and environmental safety. Bismuth has been investigated as a viable iodine getter but the phase stability of bismuth-based sorbents in an oxidizing environment have not yet been researched. In the current work, bismuth nanoparticle-based sorbents, as free particles (Bi-NPs) and embedded within silica xerogel monoliths made with a porogen (TEO-5), were exposed to I2(g) before and after aging in 1 v/v% NO2 at 150 °C. For unaged sorbents, BiI3 was the dominant phase after iodine capture with 8–30 mass% BiOI present due to native Bi2O3 on the surface of the unaged nanoparticles. After 3 h of aging, 82 mass% of the Bi-NPs was converted to Bi2O3 with only a small amount of iodine captured as BiOI (18 mass%). After aging TEO-5 for 3 h, iodine was captured as both BiI3 (26 %) and BiOI (74 %) and no Bi2O3 was detected.”. Additionally, bismuth lining the micrometer-scale pores in the TEO-5 led to enhanced iodine capture. In a subsequent exposure of the sorbents to NO2 (secondary aging), all BiI3 converted to BiOI. Thus, direct capture of iodine as BiOI is desired (over BiI3) to minimize loss of iodine after capture. Bismuth sorbents NO Iodine capture Silica xerogel Bismuth oxyhalide Elliott, Casey verfasserin aut Ali, Muhammad verfasserin aut Moon, Jeremy verfasserin aut Beland, Jade verfasserin aut Cohrs, Dave verfasserin aut Chong, Saehwa verfasserin aut Riley, Brian J. verfasserin aut Chidambaram, Dev verfasserin aut Carlson, Krista verfasserin aut Enthalten in Journal of hazardous materials New York, NY [u.a.] : Science Direct, 1976 446 Online-Ressource (DE-627)302467904 (DE-600)1491302-1 (DE-576)259483893 1873-3336 nnns volume:446 GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 43.13 Umwelttoxikologie 50.17 Sicherheitstechnik 58.53 Abfallwirtschaft AR 446 |
language |
English |
source |
Enthalten in Journal of hazardous materials 446 volume:446 |
sourceStr |
Enthalten in Journal of hazardous materials 446 volume:446 |
format_phy_str_mv |
Article |
bklname |
Umwelttoxikologie Sicherheitstechnik Abfallwirtschaft |
institution |
findex.gbv.de |
topic_facet |
Bismuth sorbents NO Iodine capture Silica xerogel Bismuth oxyhalide |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Journal of hazardous materials |
authorswithroles_txt_mv |
Baskaran, Karthikeyan @@aut@@ Elliott, Casey @@aut@@ Ali, Muhammad @@aut@@ Moon, Jeremy @@aut@@ Beland, Jade @@aut@@ Cohrs, Dave @@aut@@ Chong, Saehwa @@aut@@ Riley, Brian J. @@aut@@ Chidambaram, Dev @@aut@@ Carlson, Krista @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
302467904 |
dewey-sort |
3530 |
id |
ELV009130624 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV009130624</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524144730.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230510s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jhazmat.2022.130644</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV009130624</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0304-3894(22)02440-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.17</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.53</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Baskaran, Karthikeyan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Effects of NO</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The capture of long-lived radioactive iodine (129I) from oxidizing off-gasses produced from reprocessing used nuclear fuel is paramount to human health and environmental safety. Bismuth has been investigated as a viable iodine getter but the phase stability of bismuth-based sorbents in an oxidizing environment have not yet been researched. In the current work, bismuth nanoparticle-based sorbents, as free particles (Bi-NPs) and embedded within silica xerogel monoliths made with a porogen (TEO-5), were exposed to I2(g) before and after aging in 1 v/v% NO2 at 150 °C. For unaged sorbents, BiI3 was the dominant phase after iodine capture with 8–30 mass% BiOI present due to native Bi2O3 on the surface of the unaged nanoparticles. After 3 h of aging, 82 mass% of the Bi-NPs was converted to Bi2O3 with only a small amount of iodine captured as BiOI (18 mass%). After aging TEO-5 for 3 h, iodine was captured as both BiI3 (26 %) and BiOI (74 %) and no Bi2O3 was detected.”. Additionally, bismuth lining the micrometer-scale pores in the TEO-5 led to enhanced iodine capture. In a subsequent exposure of the sorbents to NO2 (secondary aging), all BiI3 converted to BiOI. Thus, direct capture of iodine as BiOI is desired (over BiI3) to minimize loss of iodine after capture.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bismuth sorbents</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NO</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Iodine capture</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Silica xerogel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bismuth oxyhalide</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Elliott, Casey</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ali, Muhammad</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Moon, Jeremy</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Beland, Jade</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cohrs, Dave</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chong, Saehwa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Riley, Brian J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chidambaram, Dev</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Carlson, Krista</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of hazardous materials</subfield><subfield code="d">New York, NY [u.a.] : Science Direct, 1976</subfield><subfield code="g">446</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)302467904</subfield><subfield code="w">(DE-600)1491302-1</subfield><subfield code="w">(DE-576)259483893</subfield><subfield code="x">1873-3336</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.13</subfield><subfield code="j">Umwelttoxikologie</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.17</subfield><subfield code="j">Sicherheitstechnik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.53</subfield><subfield code="j">Abfallwirtschaft</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">446</subfield></datafield></record></collection>
|
author |
Baskaran, Karthikeyan |
spellingShingle |
Baskaran, Karthikeyan ddc 530 bkl 43.13 bkl 50.17 bkl 58.53 misc Bismuth sorbents misc NO misc Iodine capture misc Silica xerogel misc Bismuth oxyhalide Effects of NO |
authorStr |
Baskaran, Karthikeyan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)302467904 |
format |
electronic Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1873-3336 |
topic_title |
530 DE-600 43.13 bkl 50.17 bkl 58.53 bkl Effects of NO Bismuth sorbents NO Iodine capture Silica xerogel Bismuth oxyhalide |
topic |
ddc 530 bkl 43.13 bkl 50.17 bkl 58.53 misc Bismuth sorbents misc NO misc Iodine capture misc Silica xerogel misc Bismuth oxyhalide |
topic_unstemmed |
ddc 530 bkl 43.13 bkl 50.17 bkl 58.53 misc Bismuth sorbents misc NO misc Iodine capture misc Silica xerogel misc Bismuth oxyhalide |
topic_browse |
ddc 530 bkl 43.13 bkl 50.17 bkl 58.53 misc Bismuth sorbents misc NO misc Iodine capture misc Silica xerogel misc Bismuth oxyhalide |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of hazardous materials |
hierarchy_parent_id |
302467904 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Journal of hazardous materials |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)302467904 (DE-600)1491302-1 (DE-576)259483893 |
title |
Effects of NO |
ctrlnum |
(DE-627)ELV009130624 (ELSEVIER)S0304-3894(22)02440-2 |
title_full |
Effects of NO |
author_sort |
Baskaran, Karthikeyan |
journal |
Journal of hazardous materials |
journalStr |
Journal of hazardous materials |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Baskaran, Karthikeyan Elliott, Casey Ali, Muhammad Moon, Jeremy Beland, Jade Cohrs, Dave Chong, Saehwa Riley, Brian J. Chidambaram, Dev Carlson, Krista |
container_volume |
446 |
class |
530 DE-600 43.13 bkl 50.17 bkl 58.53 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Baskaran, Karthikeyan |
doi_str_mv |
10.1016/j.jhazmat.2022.130644 |
dewey-full |
530 |
author2-role |
verfasserin |
title_sort |
effects of no |
title_auth |
Effects of NO |
abstract |
The capture of long-lived radioactive iodine (129I) from oxidizing off-gasses produced from reprocessing used nuclear fuel is paramount to human health and environmental safety. Bismuth has been investigated as a viable iodine getter but the phase stability of bismuth-based sorbents in an oxidizing environment have not yet been researched. In the current work, bismuth nanoparticle-based sorbents, as free particles (Bi-NPs) and embedded within silica xerogel monoliths made with a porogen (TEO-5), were exposed to I2(g) before and after aging in 1 v/v% NO2 at 150 °C. For unaged sorbents, BiI3 was the dominant phase after iodine capture with 8–30 mass% BiOI present due to native Bi2O3 on the surface of the unaged nanoparticles. After 3 h of aging, 82 mass% of the Bi-NPs was converted to Bi2O3 with only a small amount of iodine captured as BiOI (18 mass%). After aging TEO-5 for 3 h, iodine was captured as both BiI3 (26 %) and BiOI (74 %) and no Bi2O3 was detected.”. Additionally, bismuth lining the micrometer-scale pores in the TEO-5 led to enhanced iodine capture. In a subsequent exposure of the sorbents to NO2 (secondary aging), all BiI3 converted to BiOI. Thus, direct capture of iodine as BiOI is desired (over BiI3) to minimize loss of iodine after capture. |
abstractGer |
The capture of long-lived radioactive iodine (129I) from oxidizing off-gasses produced from reprocessing used nuclear fuel is paramount to human health and environmental safety. Bismuth has been investigated as a viable iodine getter but the phase stability of bismuth-based sorbents in an oxidizing environment have not yet been researched. In the current work, bismuth nanoparticle-based sorbents, as free particles (Bi-NPs) and embedded within silica xerogel monoliths made with a porogen (TEO-5), were exposed to I2(g) before and after aging in 1 v/v% NO2 at 150 °C. For unaged sorbents, BiI3 was the dominant phase after iodine capture with 8–30 mass% BiOI present due to native Bi2O3 on the surface of the unaged nanoparticles. After 3 h of aging, 82 mass% of the Bi-NPs was converted to Bi2O3 with only a small amount of iodine captured as BiOI (18 mass%). After aging TEO-5 for 3 h, iodine was captured as both BiI3 (26 %) and BiOI (74 %) and no Bi2O3 was detected.”. Additionally, bismuth lining the micrometer-scale pores in the TEO-5 led to enhanced iodine capture. In a subsequent exposure of the sorbents to NO2 (secondary aging), all BiI3 converted to BiOI. Thus, direct capture of iodine as BiOI is desired (over BiI3) to minimize loss of iodine after capture. |
abstract_unstemmed |
The capture of long-lived radioactive iodine (129I) from oxidizing off-gasses produced from reprocessing used nuclear fuel is paramount to human health and environmental safety. Bismuth has been investigated as a viable iodine getter but the phase stability of bismuth-based sorbents in an oxidizing environment have not yet been researched. In the current work, bismuth nanoparticle-based sorbents, as free particles (Bi-NPs) and embedded within silica xerogel monoliths made with a porogen (TEO-5), were exposed to I2(g) before and after aging in 1 v/v% NO2 at 150 °C. For unaged sorbents, BiI3 was the dominant phase after iodine capture with 8–30 mass% BiOI present due to native Bi2O3 on the surface of the unaged nanoparticles. After 3 h of aging, 82 mass% of the Bi-NPs was converted to Bi2O3 with only a small amount of iodine captured as BiOI (18 mass%). After aging TEO-5 for 3 h, iodine was captured as both BiI3 (26 %) and BiOI (74 %) and no Bi2O3 was detected.”. Additionally, bismuth lining the micrometer-scale pores in the TEO-5 led to enhanced iodine capture. In a subsequent exposure of the sorbents to NO2 (secondary aging), all BiI3 converted to BiOI. Thus, direct capture of iodine as BiOI is desired (over BiI3) to minimize loss of iodine after capture. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV SSG-OPC-GGO GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Effects of NO |
remote_bool |
true |
author2 |
Elliott, Casey Ali, Muhammad Moon, Jeremy Beland, Jade Cohrs, Dave Chong, Saehwa Riley, Brian J. Chidambaram, Dev Carlson, Krista |
author2Str |
Elliott, Casey Ali, Muhammad Moon, Jeremy Beland, Jade Cohrs, Dave Chong, Saehwa Riley, Brian J. Chidambaram, Dev Carlson, Krista |
ppnlink |
302467904 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.jhazmat.2022.130644 |
up_date |
2024-07-06T22:06:01.674Z |
_version_ |
1803869027486924800 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV009130624</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524144730.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230510s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.jhazmat.2022.130644</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV009130624</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0304-3894(22)02440-2</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">43.13</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.17</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58.53</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Baskaran, Karthikeyan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Effects of NO</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The capture of long-lived radioactive iodine (129I) from oxidizing off-gasses produced from reprocessing used nuclear fuel is paramount to human health and environmental safety. Bismuth has been investigated as a viable iodine getter but the phase stability of bismuth-based sorbents in an oxidizing environment have not yet been researched. In the current work, bismuth nanoparticle-based sorbents, as free particles (Bi-NPs) and embedded within silica xerogel monoliths made with a porogen (TEO-5), were exposed to I2(g) before and after aging in 1 v/v% NO2 at 150 °C. For unaged sorbents, BiI3 was the dominant phase after iodine capture with 8–30 mass% BiOI present due to native Bi2O3 on the surface of the unaged nanoparticles. After 3 h of aging, 82 mass% of the Bi-NPs was converted to Bi2O3 with only a small amount of iodine captured as BiOI (18 mass%). After aging TEO-5 for 3 h, iodine was captured as both BiI3 (26 %) and BiOI (74 %) and no Bi2O3 was detected.”. Additionally, bismuth lining the micrometer-scale pores in the TEO-5 led to enhanced iodine capture. In a subsequent exposure of the sorbents to NO2 (secondary aging), all BiI3 converted to BiOI. Thus, direct capture of iodine as BiOI is desired (over BiI3) to minimize loss of iodine after capture.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bismuth sorbents</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NO</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Iodine capture</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Silica xerogel</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bismuth oxyhalide</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Elliott, Casey</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ali, Muhammad</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Moon, Jeremy</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Beland, Jade</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cohrs, Dave</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chong, Saehwa</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Riley, Brian J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chidambaram, Dev</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Carlson, Krista</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of hazardous materials</subfield><subfield code="d">New York, NY [u.a.] : Science Direct, 1976</subfield><subfield code="g">446</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)302467904</subfield><subfield code="w">(DE-600)1491302-1</subfield><subfield code="w">(DE-576)259483893</subfield><subfield code="x">1873-3336</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">43.13</subfield><subfield code="j">Umwelttoxikologie</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.17</subfield><subfield code="j">Sicherheitstechnik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">58.53</subfield><subfield code="j">Abfallwirtschaft</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">446</subfield></datafield></record></collection>
|
score |
7.401086 |