Efficient Perturbation Inference and Expandable Network for continual learning
Although humans are capable of learning new tasks without forgetting previous ones, most neural networks fail to do so because learning new tasks could override the knowledge acquired from previous data. In this work, we alleviate this issue by proposing a novel Efficient Perturbation Inference and...
Ausführliche Beschreibung
Autor*in: |
Du, Fei [verfasserIn] Yang, Yun [verfasserIn] Zhao, Ziyuan [verfasserIn] Zeng, Zeng [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Neural networks - Amsterdam : Elsevier, 1988, 159, Seite 97-106 |
---|---|
Übergeordnetes Werk: |
volume:159 ; pages:97-106 |
DOI / URN: |
10.1016/j.neunet.2022.10.030 |
---|
Katalog-ID: |
ELV009155317 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV009155317 | ||
003 | DE-627 | ||
005 | 20230524162716.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230510s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.neunet.2022.10.030 |2 doi | |
035 | |a (DE-627)ELV009155317 | ||
035 | |a (ELSEVIER)S0893-6080(22)00426-9 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q DE-600 |
084 | |a 54.72 |2 bkl | ||
100 | 1 | |a Du, Fei |e verfasserin |4 aut | |
245 | 1 | 0 | |a Efficient Perturbation Inference and Expandable Network for continual learning |
264 | 1 | |c 2022 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Although humans are capable of learning new tasks without forgetting previous ones, most neural networks fail to do so because learning new tasks could override the knowledge acquired from previous data. In this work, we alleviate this issue by proposing a novel Efficient Perturbation Inference and Expandable Network (EPIE-Net), which dynamically expands lightweight task-specific decoders for new classes and utilizes a mixed-label uncertainty strategy to improve the robustness. Moreover, we calculate the average probability of perturbed samples at inference, which can generally improve the performance of the model. Experimental results show that our method consistently outperforms other methods with fewer parameters in class incremental learning benchmarks. For example, on the CIFAR-100 10 steps setup, our method achieves an average accuracy of 76.33% and the last accuracy of 65.93% within only 3.46M average parameters. | ||
650 | 4 | |a Continual learning | |
650 | 4 | |a Dynamic networks | |
650 | 4 | |a Class incremental learning | |
650 | 4 | |a Uncertainty inference | |
700 | 1 | |a Yang, Yun |e verfasserin |0 (orcid)0000-0002-9893-3436 |4 aut | |
700 | 1 | |a Zhao, Ziyuan |e verfasserin |4 aut | |
700 | 1 | |a Zeng, Zeng |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Neural networks |d Amsterdam : Elsevier, 1988 |g 159, Seite 97-106 |h Online-Ressource |w (DE-627)302468536 |w (DE-600)1491372-0 |w (DE-576)07971997X |x 1879-2782 |7 nnns |
773 | 1 | 8 | |g volume:159 |g pages:97-106 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 54.72 |j Künstliche Intelligenz |
951 | |a AR | ||
952 | |d 159 |h 97-106 |
author_variant |
f d fd y y yy z z zz z z zz |
---|---|
matchkey_str |
article:18792782:2022----::fiinprubtoifrnenepnalntok |
hierarchy_sort_str |
2022 |
bklnumber |
54.72 |
publishDate |
2022 |
allfields |
10.1016/j.neunet.2022.10.030 doi (DE-627)ELV009155317 (ELSEVIER)S0893-6080(22)00426-9 DE-627 ger DE-627 rda eng 004 DE-600 54.72 bkl Du, Fei verfasserin aut Efficient Perturbation Inference and Expandable Network for continual learning 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Although humans are capable of learning new tasks without forgetting previous ones, most neural networks fail to do so because learning new tasks could override the knowledge acquired from previous data. In this work, we alleviate this issue by proposing a novel Efficient Perturbation Inference and Expandable Network (EPIE-Net), which dynamically expands lightweight task-specific decoders for new classes and utilizes a mixed-label uncertainty strategy to improve the robustness. Moreover, we calculate the average probability of perturbed samples at inference, which can generally improve the performance of the model. Experimental results show that our method consistently outperforms other methods with fewer parameters in class incremental learning benchmarks. For example, on the CIFAR-100 10 steps setup, our method achieves an average accuracy of 76.33% and the last accuracy of 65.93% within only 3.46M average parameters. Continual learning Dynamic networks Class incremental learning Uncertainty inference Yang, Yun verfasserin (orcid)0000-0002-9893-3436 aut Zhao, Ziyuan verfasserin aut Zeng, Zeng verfasserin aut Enthalten in Neural networks Amsterdam : Elsevier, 1988 159, Seite 97-106 Online-Ressource (DE-627)302468536 (DE-600)1491372-0 (DE-576)07971997X 1879-2782 nnns volume:159 pages:97-106 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.72 Künstliche Intelligenz AR 159 97-106 |
spelling |
10.1016/j.neunet.2022.10.030 doi (DE-627)ELV009155317 (ELSEVIER)S0893-6080(22)00426-9 DE-627 ger DE-627 rda eng 004 DE-600 54.72 bkl Du, Fei verfasserin aut Efficient Perturbation Inference and Expandable Network for continual learning 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Although humans are capable of learning new tasks without forgetting previous ones, most neural networks fail to do so because learning new tasks could override the knowledge acquired from previous data. In this work, we alleviate this issue by proposing a novel Efficient Perturbation Inference and Expandable Network (EPIE-Net), which dynamically expands lightweight task-specific decoders for new classes and utilizes a mixed-label uncertainty strategy to improve the robustness. Moreover, we calculate the average probability of perturbed samples at inference, which can generally improve the performance of the model. Experimental results show that our method consistently outperforms other methods with fewer parameters in class incremental learning benchmarks. For example, on the CIFAR-100 10 steps setup, our method achieves an average accuracy of 76.33% and the last accuracy of 65.93% within only 3.46M average parameters. Continual learning Dynamic networks Class incremental learning Uncertainty inference Yang, Yun verfasserin (orcid)0000-0002-9893-3436 aut Zhao, Ziyuan verfasserin aut Zeng, Zeng verfasserin aut Enthalten in Neural networks Amsterdam : Elsevier, 1988 159, Seite 97-106 Online-Ressource (DE-627)302468536 (DE-600)1491372-0 (DE-576)07971997X 1879-2782 nnns volume:159 pages:97-106 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.72 Künstliche Intelligenz AR 159 97-106 |
allfields_unstemmed |
10.1016/j.neunet.2022.10.030 doi (DE-627)ELV009155317 (ELSEVIER)S0893-6080(22)00426-9 DE-627 ger DE-627 rda eng 004 DE-600 54.72 bkl Du, Fei verfasserin aut Efficient Perturbation Inference and Expandable Network for continual learning 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Although humans are capable of learning new tasks without forgetting previous ones, most neural networks fail to do so because learning new tasks could override the knowledge acquired from previous data. In this work, we alleviate this issue by proposing a novel Efficient Perturbation Inference and Expandable Network (EPIE-Net), which dynamically expands lightweight task-specific decoders for new classes and utilizes a mixed-label uncertainty strategy to improve the robustness. Moreover, we calculate the average probability of perturbed samples at inference, which can generally improve the performance of the model. Experimental results show that our method consistently outperforms other methods with fewer parameters in class incremental learning benchmarks. For example, on the CIFAR-100 10 steps setup, our method achieves an average accuracy of 76.33% and the last accuracy of 65.93% within only 3.46M average parameters. Continual learning Dynamic networks Class incremental learning Uncertainty inference Yang, Yun verfasserin (orcid)0000-0002-9893-3436 aut Zhao, Ziyuan verfasserin aut Zeng, Zeng verfasserin aut Enthalten in Neural networks Amsterdam : Elsevier, 1988 159, Seite 97-106 Online-Ressource (DE-627)302468536 (DE-600)1491372-0 (DE-576)07971997X 1879-2782 nnns volume:159 pages:97-106 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.72 Künstliche Intelligenz AR 159 97-106 |
allfieldsGer |
10.1016/j.neunet.2022.10.030 doi (DE-627)ELV009155317 (ELSEVIER)S0893-6080(22)00426-9 DE-627 ger DE-627 rda eng 004 DE-600 54.72 bkl Du, Fei verfasserin aut Efficient Perturbation Inference and Expandable Network for continual learning 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Although humans are capable of learning new tasks without forgetting previous ones, most neural networks fail to do so because learning new tasks could override the knowledge acquired from previous data. In this work, we alleviate this issue by proposing a novel Efficient Perturbation Inference and Expandable Network (EPIE-Net), which dynamically expands lightweight task-specific decoders for new classes and utilizes a mixed-label uncertainty strategy to improve the robustness. Moreover, we calculate the average probability of perturbed samples at inference, which can generally improve the performance of the model. Experimental results show that our method consistently outperforms other methods with fewer parameters in class incremental learning benchmarks. For example, on the CIFAR-100 10 steps setup, our method achieves an average accuracy of 76.33% and the last accuracy of 65.93% within only 3.46M average parameters. Continual learning Dynamic networks Class incremental learning Uncertainty inference Yang, Yun verfasserin (orcid)0000-0002-9893-3436 aut Zhao, Ziyuan verfasserin aut Zeng, Zeng verfasserin aut Enthalten in Neural networks Amsterdam : Elsevier, 1988 159, Seite 97-106 Online-Ressource (DE-627)302468536 (DE-600)1491372-0 (DE-576)07971997X 1879-2782 nnns volume:159 pages:97-106 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.72 Künstliche Intelligenz AR 159 97-106 |
allfieldsSound |
10.1016/j.neunet.2022.10.030 doi (DE-627)ELV009155317 (ELSEVIER)S0893-6080(22)00426-9 DE-627 ger DE-627 rda eng 004 DE-600 54.72 bkl Du, Fei verfasserin aut Efficient Perturbation Inference and Expandable Network for continual learning 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Although humans are capable of learning new tasks without forgetting previous ones, most neural networks fail to do so because learning new tasks could override the knowledge acquired from previous data. In this work, we alleviate this issue by proposing a novel Efficient Perturbation Inference and Expandable Network (EPIE-Net), which dynamically expands lightweight task-specific decoders for new classes and utilizes a mixed-label uncertainty strategy to improve the robustness. Moreover, we calculate the average probability of perturbed samples at inference, which can generally improve the performance of the model. Experimental results show that our method consistently outperforms other methods with fewer parameters in class incremental learning benchmarks. For example, on the CIFAR-100 10 steps setup, our method achieves an average accuracy of 76.33% and the last accuracy of 65.93% within only 3.46M average parameters. Continual learning Dynamic networks Class incremental learning Uncertainty inference Yang, Yun verfasserin (orcid)0000-0002-9893-3436 aut Zhao, Ziyuan verfasserin aut Zeng, Zeng verfasserin aut Enthalten in Neural networks Amsterdam : Elsevier, 1988 159, Seite 97-106 Online-Ressource (DE-627)302468536 (DE-600)1491372-0 (DE-576)07971997X 1879-2782 nnns volume:159 pages:97-106 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 54.72 Künstliche Intelligenz AR 159 97-106 |
language |
English |
source |
Enthalten in Neural networks 159, Seite 97-106 volume:159 pages:97-106 |
sourceStr |
Enthalten in Neural networks 159, Seite 97-106 volume:159 pages:97-106 |
format_phy_str_mv |
Article |
bklname |
Künstliche Intelligenz |
institution |
findex.gbv.de |
topic_facet |
Continual learning Dynamic networks Class incremental learning Uncertainty inference |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Neural networks |
authorswithroles_txt_mv |
Du, Fei @@aut@@ Yang, Yun @@aut@@ Zhao, Ziyuan @@aut@@ Zeng, Zeng @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
302468536 |
dewey-sort |
14 |
id |
ELV009155317 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV009155317</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524162716.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230510s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.neunet.2022.10.030</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV009155317</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0893-6080(22)00426-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.72</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Du, Fei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Efficient Perturbation Inference and Expandable Network for continual learning</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Although humans are capable of learning new tasks without forgetting previous ones, most neural networks fail to do so because learning new tasks could override the knowledge acquired from previous data. In this work, we alleviate this issue by proposing a novel Efficient Perturbation Inference and Expandable Network (EPIE-Net), which dynamically expands lightweight task-specific decoders for new classes and utilizes a mixed-label uncertainty strategy to improve the robustness. Moreover, we calculate the average probability of perturbed samples at inference, which can generally improve the performance of the model. Experimental results show that our method consistently outperforms other methods with fewer parameters in class incremental learning benchmarks. For example, on the CIFAR-100 10 steps setup, our method achieves an average accuracy of 76.33% and the last accuracy of 65.93% within only 3.46M average parameters.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Continual learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamic networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Class incremental learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Uncertainty inference</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Yun</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-9893-3436</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Ziyuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zeng, Zeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Neural networks</subfield><subfield code="d">Amsterdam : Elsevier, 1988</subfield><subfield code="g">159, Seite 97-106</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)302468536</subfield><subfield code="w">(DE-600)1491372-0</subfield><subfield code="w">(DE-576)07971997X</subfield><subfield code="x">1879-2782</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:159</subfield><subfield code="g">pages:97-106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.72</subfield><subfield code="j">Künstliche Intelligenz</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">159</subfield><subfield code="h">97-106</subfield></datafield></record></collection>
|
author |
Du, Fei |
spellingShingle |
Du, Fei ddc 004 bkl 54.72 misc Continual learning misc Dynamic networks misc Class incremental learning misc Uncertainty inference Efficient Perturbation Inference and Expandable Network for continual learning |
authorStr |
Du, Fei |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)302468536 |
format |
electronic Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1879-2782 |
topic_title |
004 DE-600 54.72 bkl Efficient Perturbation Inference and Expandable Network for continual learning Continual learning Dynamic networks Class incremental learning Uncertainty inference |
topic |
ddc 004 bkl 54.72 misc Continual learning misc Dynamic networks misc Class incremental learning misc Uncertainty inference |
topic_unstemmed |
ddc 004 bkl 54.72 misc Continual learning misc Dynamic networks misc Class incremental learning misc Uncertainty inference |
topic_browse |
ddc 004 bkl 54.72 misc Continual learning misc Dynamic networks misc Class incremental learning misc Uncertainty inference |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Neural networks |
hierarchy_parent_id |
302468536 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Neural networks |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)302468536 (DE-600)1491372-0 (DE-576)07971997X |
title |
Efficient Perturbation Inference and Expandable Network for continual learning |
ctrlnum |
(DE-627)ELV009155317 (ELSEVIER)S0893-6080(22)00426-9 |
title_full |
Efficient Perturbation Inference and Expandable Network for continual learning |
author_sort |
Du, Fei |
journal |
Neural networks |
journalStr |
Neural networks |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
container_start_page |
97 |
author_browse |
Du, Fei Yang, Yun Zhao, Ziyuan Zeng, Zeng |
container_volume |
159 |
class |
004 DE-600 54.72 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Du, Fei |
doi_str_mv |
10.1016/j.neunet.2022.10.030 |
normlink |
(ORCID)0000-0002-9893-3436 |
normlink_prefix_str_mv |
(orcid)0000-0002-9893-3436 |
dewey-full |
004 |
author2-role |
verfasserin |
title_sort |
efficient perturbation inference and expandable network for continual learning |
title_auth |
Efficient Perturbation Inference and Expandable Network for continual learning |
abstract |
Although humans are capable of learning new tasks without forgetting previous ones, most neural networks fail to do so because learning new tasks could override the knowledge acquired from previous data. In this work, we alleviate this issue by proposing a novel Efficient Perturbation Inference and Expandable Network (EPIE-Net), which dynamically expands lightweight task-specific decoders for new classes and utilizes a mixed-label uncertainty strategy to improve the robustness. Moreover, we calculate the average probability of perturbed samples at inference, which can generally improve the performance of the model. Experimental results show that our method consistently outperforms other methods with fewer parameters in class incremental learning benchmarks. For example, on the CIFAR-100 10 steps setup, our method achieves an average accuracy of 76.33% and the last accuracy of 65.93% within only 3.46M average parameters. |
abstractGer |
Although humans are capable of learning new tasks without forgetting previous ones, most neural networks fail to do so because learning new tasks could override the knowledge acquired from previous data. In this work, we alleviate this issue by proposing a novel Efficient Perturbation Inference and Expandable Network (EPIE-Net), which dynamically expands lightweight task-specific decoders for new classes and utilizes a mixed-label uncertainty strategy to improve the robustness. Moreover, we calculate the average probability of perturbed samples at inference, which can generally improve the performance of the model. Experimental results show that our method consistently outperforms other methods with fewer parameters in class incremental learning benchmarks. For example, on the CIFAR-100 10 steps setup, our method achieves an average accuracy of 76.33% and the last accuracy of 65.93% within only 3.46M average parameters. |
abstract_unstemmed |
Although humans are capable of learning new tasks without forgetting previous ones, most neural networks fail to do so because learning new tasks could override the knowledge acquired from previous data. In this work, we alleviate this issue by proposing a novel Efficient Perturbation Inference and Expandable Network (EPIE-Net), which dynamically expands lightweight task-specific decoders for new classes and utilizes a mixed-label uncertainty strategy to improve the robustness. Moreover, we calculate the average probability of perturbed samples at inference, which can generally improve the performance of the model. Experimental results show that our method consistently outperforms other methods with fewer parameters in class incremental learning benchmarks. For example, on the CIFAR-100 10 steps setup, our method achieves an average accuracy of 76.33% and the last accuracy of 65.93% within only 3.46M average parameters. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Efficient Perturbation Inference and Expandable Network for continual learning |
remote_bool |
true |
author2 |
Yang, Yun Zhao, Ziyuan Zeng, Zeng |
author2Str |
Yang, Yun Zhao, Ziyuan Zeng, Zeng |
ppnlink |
302468536 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.neunet.2022.10.030 |
up_date |
2024-07-06T22:11:12.022Z |
_version_ |
1803869352910389248 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV009155317</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524162716.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230510s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.neunet.2022.10.030</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV009155317</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0893-6080(22)00426-9</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.72</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Du, Fei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Efficient Perturbation Inference and Expandable Network for continual learning</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Although humans are capable of learning new tasks without forgetting previous ones, most neural networks fail to do so because learning new tasks could override the knowledge acquired from previous data. In this work, we alleviate this issue by proposing a novel Efficient Perturbation Inference and Expandable Network (EPIE-Net), which dynamically expands lightweight task-specific decoders for new classes and utilizes a mixed-label uncertainty strategy to improve the robustness. Moreover, we calculate the average probability of perturbed samples at inference, which can generally improve the performance of the model. Experimental results show that our method consistently outperforms other methods with fewer parameters in class incremental learning benchmarks. For example, on the CIFAR-100 10 steps setup, our method achieves an average accuracy of 76.33% and the last accuracy of 65.93% within only 3.46M average parameters.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Continual learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamic networks</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Class incremental learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Uncertainty inference</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Yun</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-9893-3436</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Ziyuan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zeng, Zeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Neural networks</subfield><subfield code="d">Amsterdam : Elsevier, 1988</subfield><subfield code="g">159, Seite 97-106</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)302468536</subfield><subfield code="w">(DE-600)1491372-0</subfield><subfield code="w">(DE-576)07971997X</subfield><subfield code="x">1879-2782</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:159</subfield><subfield code="g">pages:97-106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.72</subfield><subfield code="j">Künstliche Intelligenz</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">159</subfield><subfield code="h">97-106</subfield></datafield></record></collection>
|
score |
7.4006395 |