Influence of iron oxide layer on intensification of heat dissipation from the surface of a horizontal plate cooled with a water nozzle
The paper presents the changes in the heat transfer coefficient (HTC) and heat flux (HF) during the water spray cooling of the metal plate on the surface of which the thickness of the oxidized layer changed. The experimental investigations consisted in measuring the temperature changes inside the pl...
Ausführliche Beschreibung
Autor*in: |
Hadała, Beata [verfasserIn] Cebo-Rudnicka, Agnieszka [verfasserIn] Radziszewska, Agnieszka [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2023 |
---|
Schlagwörter: |
Oxidized Armco iron plate cooling |
---|
Übergeordnetes Werk: |
Enthalten in: International journal of heat and mass transfer - Amsterdam [u.a.] : Elsevier, 1960, 204 |
---|---|
Übergeordnetes Werk: |
volume:204 |
DOI / URN: |
10.1016/j.ijheatmasstransfer.2023.123852 |
---|
Katalog-ID: |
ELV009161457 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV009161457 | ||
003 | DE-627 | ||
005 | 20231205154009.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230510s2023 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.ijheatmasstransfer.2023.123852 |2 doi | |
035 | |a (DE-627)ELV009161457 | ||
035 | |a (ELSEVIER)S0017-9310(23)00008-X | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q DE-600 |
084 | |a 50.38 |2 bkl | ||
100 | 1 | |a Hadała, Beata |e verfasserin |4 aut | |
245 | 1 | 0 | |a Influence of iron oxide layer on intensification of heat dissipation from the surface of a horizontal plate cooled with a water nozzle |
264 | 1 | |c 2023 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a The paper presents the changes in the heat transfer coefficient (HTC) and heat flux (HF) during the water spray cooling of the metal plate on the surface of which the thickness of the oxidized layer changed. The experimental investigations consisted in measuring the temperature changes inside the plate during spray cooling with water from 700 °C to the ambient temperature. The plate was made of the material (Armco iron), the surface of which had been oxidized during heating. Three measurements were made for three different thickness of the oxidized layer. The size of the area related with the directed impact of the spray water on the surface (high impingement zone) and the size of the secondary water flow zone (horizontal flow zone) that was placed beyond the high impingement zone were assessed. The distribution of the water flux density over the cooled surface was determined as well as the increase in the thickness of the oxidized layer with the heating time. The experimental investigations allowed identify HTC and HF by using the inverse method. The uncertainty tests that allowed determine the accuracy of the inverse solution were performed. The obtained results shows that the development of the boiling process on the surface covered with the oxidized layer is local. In the high impingement zone, the increase in the thickness of the oxidized layer from 0.018 to 0.035 mm significantly influences the changes of HF and HTC during each boiling phase. The increase in the thickness of the oxidized layer caused a shift of the maximum HF and the beginning of the transition boiling towards a higher surface temperature. Outside the high impingement zone the influence of the increase in the thickness of the oxidized layer is small during film boiling phase. The obtained results were compared with those obtained for the surface characterized by a low oxidation state, obtaining 35% lower maximum values of HF in relation to the oxidized surface. | ||
650 | 4 | |a Oxidized Armco iron plate cooling | |
650 | 4 | |a Water spray cooling | |
650 | 4 | |a Local heat transfer coefficient | |
650 | 4 | |a Local heat flux | |
700 | 1 | |a Cebo-Rudnicka, Agnieszka |e verfasserin |0 (orcid)0000-0003-3614-4287 |4 aut | |
700 | 1 | |a Radziszewska, Agnieszka |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t International journal of heat and mass transfer |d Amsterdam [u.a.] : Elsevier, 1960 |g 204 |h Online-Ressource |w (DE-627)320505081 |w (DE-600)2012726-1 |w (DE-576)096806575 |x 1879-2189 |7 nnns |
773 | 1 | 8 | |g volume:204 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 50.38 |j Technische Thermodynamik |
951 | |a AR | ||
952 | |d 204 |
author_variant |
b h bh a c r acr a r ar |
---|---|
matchkey_str |
article:18792189:2023----::nlecoiooieaeoitniiainfetisptofoteufcoaoiot |
hierarchy_sort_str |
2023 |
bklnumber |
50.38 |
publishDate |
2023 |
allfields |
10.1016/j.ijheatmasstransfer.2023.123852 doi (DE-627)ELV009161457 (ELSEVIER)S0017-9310(23)00008-X DE-627 ger DE-627 rda eng 620 DE-600 50.38 bkl Hadała, Beata verfasserin aut Influence of iron oxide layer on intensification of heat dissipation from the surface of a horizontal plate cooled with a water nozzle 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The paper presents the changes in the heat transfer coefficient (HTC) and heat flux (HF) during the water spray cooling of the metal plate on the surface of which the thickness of the oxidized layer changed. The experimental investigations consisted in measuring the temperature changes inside the plate during spray cooling with water from 700 °C to the ambient temperature. The plate was made of the material (Armco iron), the surface of which had been oxidized during heating. Three measurements were made for three different thickness of the oxidized layer. The size of the area related with the directed impact of the spray water on the surface (high impingement zone) and the size of the secondary water flow zone (horizontal flow zone) that was placed beyond the high impingement zone were assessed. The distribution of the water flux density over the cooled surface was determined as well as the increase in the thickness of the oxidized layer with the heating time. The experimental investigations allowed identify HTC and HF by using the inverse method. The uncertainty tests that allowed determine the accuracy of the inverse solution were performed. The obtained results shows that the development of the boiling process on the surface covered with the oxidized layer is local. In the high impingement zone, the increase in the thickness of the oxidized layer from 0.018 to 0.035 mm significantly influences the changes of HF and HTC during each boiling phase. The increase in the thickness of the oxidized layer caused a shift of the maximum HF and the beginning of the transition boiling towards a higher surface temperature. Outside the high impingement zone the influence of the increase in the thickness of the oxidized layer is small during film boiling phase. The obtained results were compared with those obtained for the surface characterized by a low oxidation state, obtaining 35% lower maximum values of HF in relation to the oxidized surface. Oxidized Armco iron plate cooling Water spray cooling Local heat transfer coefficient Local heat flux Cebo-Rudnicka, Agnieszka verfasserin (orcid)0000-0003-3614-4287 aut Radziszewska, Agnieszka verfasserin aut Enthalten in International journal of heat and mass transfer Amsterdam [u.a.] : Elsevier, 1960 204 Online-Ressource (DE-627)320505081 (DE-600)2012726-1 (DE-576)096806575 1879-2189 nnns volume:204 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.38 Technische Thermodynamik AR 204 |
spelling |
10.1016/j.ijheatmasstransfer.2023.123852 doi (DE-627)ELV009161457 (ELSEVIER)S0017-9310(23)00008-X DE-627 ger DE-627 rda eng 620 DE-600 50.38 bkl Hadała, Beata verfasserin aut Influence of iron oxide layer on intensification of heat dissipation from the surface of a horizontal plate cooled with a water nozzle 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The paper presents the changes in the heat transfer coefficient (HTC) and heat flux (HF) during the water spray cooling of the metal plate on the surface of which the thickness of the oxidized layer changed. The experimental investigations consisted in measuring the temperature changes inside the plate during spray cooling with water from 700 °C to the ambient temperature. The plate was made of the material (Armco iron), the surface of which had been oxidized during heating. Three measurements were made for three different thickness of the oxidized layer. The size of the area related with the directed impact of the spray water on the surface (high impingement zone) and the size of the secondary water flow zone (horizontal flow zone) that was placed beyond the high impingement zone were assessed. The distribution of the water flux density over the cooled surface was determined as well as the increase in the thickness of the oxidized layer with the heating time. The experimental investigations allowed identify HTC and HF by using the inverse method. The uncertainty tests that allowed determine the accuracy of the inverse solution were performed. The obtained results shows that the development of the boiling process on the surface covered with the oxidized layer is local. In the high impingement zone, the increase in the thickness of the oxidized layer from 0.018 to 0.035 mm significantly influences the changes of HF and HTC during each boiling phase. The increase in the thickness of the oxidized layer caused a shift of the maximum HF and the beginning of the transition boiling towards a higher surface temperature. Outside the high impingement zone the influence of the increase in the thickness of the oxidized layer is small during film boiling phase. The obtained results were compared with those obtained for the surface characterized by a low oxidation state, obtaining 35% lower maximum values of HF in relation to the oxidized surface. Oxidized Armco iron plate cooling Water spray cooling Local heat transfer coefficient Local heat flux Cebo-Rudnicka, Agnieszka verfasserin (orcid)0000-0003-3614-4287 aut Radziszewska, Agnieszka verfasserin aut Enthalten in International journal of heat and mass transfer Amsterdam [u.a.] : Elsevier, 1960 204 Online-Ressource (DE-627)320505081 (DE-600)2012726-1 (DE-576)096806575 1879-2189 nnns volume:204 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.38 Technische Thermodynamik AR 204 |
allfields_unstemmed |
10.1016/j.ijheatmasstransfer.2023.123852 doi (DE-627)ELV009161457 (ELSEVIER)S0017-9310(23)00008-X DE-627 ger DE-627 rda eng 620 DE-600 50.38 bkl Hadała, Beata verfasserin aut Influence of iron oxide layer on intensification of heat dissipation from the surface of a horizontal plate cooled with a water nozzle 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The paper presents the changes in the heat transfer coefficient (HTC) and heat flux (HF) during the water spray cooling of the metal plate on the surface of which the thickness of the oxidized layer changed. The experimental investigations consisted in measuring the temperature changes inside the plate during spray cooling with water from 700 °C to the ambient temperature. The plate was made of the material (Armco iron), the surface of which had been oxidized during heating. Three measurements were made for three different thickness of the oxidized layer. The size of the area related with the directed impact of the spray water on the surface (high impingement zone) and the size of the secondary water flow zone (horizontal flow zone) that was placed beyond the high impingement zone were assessed. The distribution of the water flux density over the cooled surface was determined as well as the increase in the thickness of the oxidized layer with the heating time. The experimental investigations allowed identify HTC and HF by using the inverse method. The uncertainty tests that allowed determine the accuracy of the inverse solution were performed. The obtained results shows that the development of the boiling process on the surface covered with the oxidized layer is local. In the high impingement zone, the increase in the thickness of the oxidized layer from 0.018 to 0.035 mm significantly influences the changes of HF and HTC during each boiling phase. The increase in the thickness of the oxidized layer caused a shift of the maximum HF and the beginning of the transition boiling towards a higher surface temperature. Outside the high impingement zone the influence of the increase in the thickness of the oxidized layer is small during film boiling phase. The obtained results were compared with those obtained for the surface characterized by a low oxidation state, obtaining 35% lower maximum values of HF in relation to the oxidized surface. Oxidized Armco iron plate cooling Water spray cooling Local heat transfer coefficient Local heat flux Cebo-Rudnicka, Agnieszka verfasserin (orcid)0000-0003-3614-4287 aut Radziszewska, Agnieszka verfasserin aut Enthalten in International journal of heat and mass transfer Amsterdam [u.a.] : Elsevier, 1960 204 Online-Ressource (DE-627)320505081 (DE-600)2012726-1 (DE-576)096806575 1879-2189 nnns volume:204 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.38 Technische Thermodynamik AR 204 |
allfieldsGer |
10.1016/j.ijheatmasstransfer.2023.123852 doi (DE-627)ELV009161457 (ELSEVIER)S0017-9310(23)00008-X DE-627 ger DE-627 rda eng 620 DE-600 50.38 bkl Hadała, Beata verfasserin aut Influence of iron oxide layer on intensification of heat dissipation from the surface of a horizontal plate cooled with a water nozzle 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The paper presents the changes in the heat transfer coefficient (HTC) and heat flux (HF) during the water spray cooling of the metal plate on the surface of which the thickness of the oxidized layer changed. The experimental investigations consisted in measuring the temperature changes inside the plate during spray cooling with water from 700 °C to the ambient temperature. The plate was made of the material (Armco iron), the surface of which had been oxidized during heating. Three measurements were made for three different thickness of the oxidized layer. The size of the area related with the directed impact of the spray water on the surface (high impingement zone) and the size of the secondary water flow zone (horizontal flow zone) that was placed beyond the high impingement zone were assessed. The distribution of the water flux density over the cooled surface was determined as well as the increase in the thickness of the oxidized layer with the heating time. The experimental investigations allowed identify HTC and HF by using the inverse method. The uncertainty tests that allowed determine the accuracy of the inverse solution were performed. The obtained results shows that the development of the boiling process on the surface covered with the oxidized layer is local. In the high impingement zone, the increase in the thickness of the oxidized layer from 0.018 to 0.035 mm significantly influences the changes of HF and HTC during each boiling phase. The increase in the thickness of the oxidized layer caused a shift of the maximum HF and the beginning of the transition boiling towards a higher surface temperature. Outside the high impingement zone the influence of the increase in the thickness of the oxidized layer is small during film boiling phase. The obtained results were compared with those obtained for the surface characterized by a low oxidation state, obtaining 35% lower maximum values of HF in relation to the oxidized surface. Oxidized Armco iron plate cooling Water spray cooling Local heat transfer coefficient Local heat flux Cebo-Rudnicka, Agnieszka verfasserin (orcid)0000-0003-3614-4287 aut Radziszewska, Agnieszka verfasserin aut Enthalten in International journal of heat and mass transfer Amsterdam [u.a.] : Elsevier, 1960 204 Online-Ressource (DE-627)320505081 (DE-600)2012726-1 (DE-576)096806575 1879-2189 nnns volume:204 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.38 Technische Thermodynamik AR 204 |
allfieldsSound |
10.1016/j.ijheatmasstransfer.2023.123852 doi (DE-627)ELV009161457 (ELSEVIER)S0017-9310(23)00008-X DE-627 ger DE-627 rda eng 620 DE-600 50.38 bkl Hadała, Beata verfasserin aut Influence of iron oxide layer on intensification of heat dissipation from the surface of a horizontal plate cooled with a water nozzle 2023 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier The paper presents the changes in the heat transfer coefficient (HTC) and heat flux (HF) during the water spray cooling of the metal plate on the surface of which the thickness of the oxidized layer changed. The experimental investigations consisted in measuring the temperature changes inside the plate during spray cooling with water from 700 °C to the ambient temperature. The plate was made of the material (Armco iron), the surface of which had been oxidized during heating. Three measurements were made for three different thickness of the oxidized layer. The size of the area related with the directed impact of the spray water on the surface (high impingement zone) and the size of the secondary water flow zone (horizontal flow zone) that was placed beyond the high impingement zone were assessed. The distribution of the water flux density over the cooled surface was determined as well as the increase in the thickness of the oxidized layer with the heating time. The experimental investigations allowed identify HTC and HF by using the inverse method. The uncertainty tests that allowed determine the accuracy of the inverse solution were performed. The obtained results shows that the development of the boiling process on the surface covered with the oxidized layer is local. In the high impingement zone, the increase in the thickness of the oxidized layer from 0.018 to 0.035 mm significantly influences the changes of HF and HTC during each boiling phase. The increase in the thickness of the oxidized layer caused a shift of the maximum HF and the beginning of the transition boiling towards a higher surface temperature. Outside the high impingement zone the influence of the increase in the thickness of the oxidized layer is small during film boiling phase. The obtained results were compared with those obtained for the surface characterized by a low oxidation state, obtaining 35% lower maximum values of HF in relation to the oxidized surface. Oxidized Armco iron plate cooling Water spray cooling Local heat transfer coefficient Local heat flux Cebo-Rudnicka, Agnieszka verfasserin (orcid)0000-0003-3614-4287 aut Radziszewska, Agnieszka verfasserin aut Enthalten in International journal of heat and mass transfer Amsterdam [u.a.] : Elsevier, 1960 204 Online-Ressource (DE-627)320505081 (DE-600)2012726-1 (DE-576)096806575 1879-2189 nnns volume:204 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.38 Technische Thermodynamik AR 204 |
language |
English |
source |
Enthalten in International journal of heat and mass transfer 204 volume:204 |
sourceStr |
Enthalten in International journal of heat and mass transfer 204 volume:204 |
format_phy_str_mv |
Article |
bklname |
Technische Thermodynamik |
institution |
findex.gbv.de |
topic_facet |
Oxidized Armco iron plate cooling Water spray cooling Local heat transfer coefficient Local heat flux |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
International journal of heat and mass transfer |
authorswithroles_txt_mv |
Hadała, Beata @@aut@@ Cebo-Rudnicka, Agnieszka @@aut@@ Radziszewska, Agnieszka @@aut@@ |
publishDateDaySort_date |
2023-01-01T00:00:00Z |
hierarchy_top_id |
320505081 |
dewey-sort |
3620 |
id |
ELV009161457 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV009161457</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231205154009.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230510s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijheatmasstransfer.2023.123852</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV009161457</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0017-9310(23)00008-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hadała, Beata</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Influence of iron oxide layer on intensification of heat dissipation from the surface of a horizontal plate cooled with a water nozzle</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The paper presents the changes in the heat transfer coefficient (HTC) and heat flux (HF) during the water spray cooling of the metal plate on the surface of which the thickness of the oxidized layer changed. The experimental investigations consisted in measuring the temperature changes inside the plate during spray cooling with water from 700 °C to the ambient temperature. The plate was made of the material (Armco iron), the surface of which had been oxidized during heating. Three measurements were made for three different thickness of the oxidized layer. The size of the area related with the directed impact of the spray water on the surface (high impingement zone) and the size of the secondary water flow zone (horizontal flow zone) that was placed beyond the high impingement zone were assessed. The distribution of the water flux density over the cooled surface was determined as well as the increase in the thickness of the oxidized layer with the heating time. The experimental investigations allowed identify HTC and HF by using the inverse method. The uncertainty tests that allowed determine the accuracy of the inverse solution were performed. The obtained results shows that the development of the boiling process on the surface covered with the oxidized layer is local. In the high impingement zone, the increase in the thickness of the oxidized layer from 0.018 to 0.035 mm significantly influences the changes of HF and HTC during each boiling phase. The increase in the thickness of the oxidized layer caused a shift of the maximum HF and the beginning of the transition boiling towards a higher surface temperature. Outside the high impingement zone the influence of the increase in the thickness of the oxidized layer is small during film boiling phase. The obtained results were compared with those obtained for the surface characterized by a low oxidation state, obtaining 35% lower maximum values of HF in relation to the oxidized surface.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Oxidized Armco iron plate cooling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Water spray cooling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Local heat transfer coefficient</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Local heat flux</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cebo-Rudnicka, Agnieszka</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-3614-4287</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Radziszewska, Agnieszka</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of heat and mass transfer</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1960</subfield><subfield code="g">204</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320505081</subfield><subfield code="w">(DE-600)2012726-1</subfield><subfield code="w">(DE-576)096806575</subfield><subfield code="x">1879-2189</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:204</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.38</subfield><subfield code="j">Technische Thermodynamik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">204</subfield></datafield></record></collection>
|
author |
Hadała, Beata |
spellingShingle |
Hadała, Beata ddc 620 bkl 50.38 misc Oxidized Armco iron plate cooling misc Water spray cooling misc Local heat transfer coefficient misc Local heat flux Influence of iron oxide layer on intensification of heat dissipation from the surface of a horizontal plate cooled with a water nozzle |
authorStr |
Hadała, Beata |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320505081 |
format |
electronic Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1879-2189 |
topic_title |
620 DE-600 50.38 bkl Influence of iron oxide layer on intensification of heat dissipation from the surface of a horizontal plate cooled with a water nozzle Oxidized Armco iron plate cooling Water spray cooling Local heat transfer coefficient Local heat flux |
topic |
ddc 620 bkl 50.38 misc Oxidized Armco iron plate cooling misc Water spray cooling misc Local heat transfer coefficient misc Local heat flux |
topic_unstemmed |
ddc 620 bkl 50.38 misc Oxidized Armco iron plate cooling misc Water spray cooling misc Local heat transfer coefficient misc Local heat flux |
topic_browse |
ddc 620 bkl 50.38 misc Oxidized Armco iron plate cooling misc Water spray cooling misc Local heat transfer coefficient misc Local heat flux |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International journal of heat and mass transfer |
hierarchy_parent_id |
320505081 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
International journal of heat and mass transfer |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320505081 (DE-600)2012726-1 (DE-576)096806575 |
title |
Influence of iron oxide layer on intensification of heat dissipation from the surface of a horizontal plate cooled with a water nozzle |
ctrlnum |
(DE-627)ELV009161457 (ELSEVIER)S0017-9310(23)00008-X |
title_full |
Influence of iron oxide layer on intensification of heat dissipation from the surface of a horizontal plate cooled with a water nozzle |
author_sort |
Hadała, Beata |
journal |
International journal of heat and mass transfer |
journalStr |
International journal of heat and mass transfer |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2023 |
contenttype_str_mv |
zzz |
author_browse |
Hadała, Beata Cebo-Rudnicka, Agnieszka Radziszewska, Agnieszka |
container_volume |
204 |
class |
620 DE-600 50.38 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Hadała, Beata |
doi_str_mv |
10.1016/j.ijheatmasstransfer.2023.123852 |
normlink |
(ORCID)0000-0003-3614-4287 |
normlink_prefix_str_mv |
(orcid)0000-0003-3614-4287 |
dewey-full |
620 |
author2-role |
verfasserin |
title_sort |
influence of iron oxide layer on intensification of heat dissipation from the surface of a horizontal plate cooled with a water nozzle |
title_auth |
Influence of iron oxide layer on intensification of heat dissipation from the surface of a horizontal plate cooled with a water nozzle |
abstract |
The paper presents the changes in the heat transfer coefficient (HTC) and heat flux (HF) during the water spray cooling of the metal plate on the surface of which the thickness of the oxidized layer changed. The experimental investigations consisted in measuring the temperature changes inside the plate during spray cooling with water from 700 °C to the ambient temperature. The plate was made of the material (Armco iron), the surface of which had been oxidized during heating. Three measurements were made for three different thickness of the oxidized layer. The size of the area related with the directed impact of the spray water on the surface (high impingement zone) and the size of the secondary water flow zone (horizontal flow zone) that was placed beyond the high impingement zone were assessed. The distribution of the water flux density over the cooled surface was determined as well as the increase in the thickness of the oxidized layer with the heating time. The experimental investigations allowed identify HTC and HF by using the inverse method. The uncertainty tests that allowed determine the accuracy of the inverse solution were performed. The obtained results shows that the development of the boiling process on the surface covered with the oxidized layer is local. In the high impingement zone, the increase in the thickness of the oxidized layer from 0.018 to 0.035 mm significantly influences the changes of HF and HTC during each boiling phase. The increase in the thickness of the oxidized layer caused a shift of the maximum HF and the beginning of the transition boiling towards a higher surface temperature. Outside the high impingement zone the influence of the increase in the thickness of the oxidized layer is small during film boiling phase. The obtained results were compared with those obtained for the surface characterized by a low oxidation state, obtaining 35% lower maximum values of HF in relation to the oxidized surface. |
abstractGer |
The paper presents the changes in the heat transfer coefficient (HTC) and heat flux (HF) during the water spray cooling of the metal plate on the surface of which the thickness of the oxidized layer changed. The experimental investigations consisted in measuring the temperature changes inside the plate during spray cooling with water from 700 °C to the ambient temperature. The plate was made of the material (Armco iron), the surface of which had been oxidized during heating. Three measurements were made for three different thickness of the oxidized layer. The size of the area related with the directed impact of the spray water on the surface (high impingement zone) and the size of the secondary water flow zone (horizontal flow zone) that was placed beyond the high impingement zone were assessed. The distribution of the water flux density over the cooled surface was determined as well as the increase in the thickness of the oxidized layer with the heating time. The experimental investigations allowed identify HTC and HF by using the inverse method. The uncertainty tests that allowed determine the accuracy of the inverse solution were performed. The obtained results shows that the development of the boiling process on the surface covered with the oxidized layer is local. In the high impingement zone, the increase in the thickness of the oxidized layer from 0.018 to 0.035 mm significantly influences the changes of HF and HTC during each boiling phase. The increase in the thickness of the oxidized layer caused a shift of the maximum HF and the beginning of the transition boiling towards a higher surface temperature. Outside the high impingement zone the influence of the increase in the thickness of the oxidized layer is small during film boiling phase. The obtained results were compared with those obtained for the surface characterized by a low oxidation state, obtaining 35% lower maximum values of HF in relation to the oxidized surface. |
abstract_unstemmed |
The paper presents the changes in the heat transfer coefficient (HTC) and heat flux (HF) during the water spray cooling of the metal plate on the surface of which the thickness of the oxidized layer changed. The experimental investigations consisted in measuring the temperature changes inside the plate during spray cooling with water from 700 °C to the ambient temperature. The plate was made of the material (Armco iron), the surface of which had been oxidized during heating. Three measurements were made for three different thickness of the oxidized layer. The size of the area related with the directed impact of the spray water on the surface (high impingement zone) and the size of the secondary water flow zone (horizontal flow zone) that was placed beyond the high impingement zone were assessed. The distribution of the water flux density over the cooled surface was determined as well as the increase in the thickness of the oxidized layer with the heating time. The experimental investigations allowed identify HTC and HF by using the inverse method. The uncertainty tests that allowed determine the accuracy of the inverse solution were performed. The obtained results shows that the development of the boiling process on the surface covered with the oxidized layer is local. In the high impingement zone, the increase in the thickness of the oxidized layer from 0.018 to 0.035 mm significantly influences the changes of HF and HTC during each boiling phase. The increase in the thickness of the oxidized layer caused a shift of the maximum HF and the beginning of the transition boiling towards a higher surface temperature. Outside the high impingement zone the influence of the increase in the thickness of the oxidized layer is small during film boiling phase. The obtained results were compared with those obtained for the surface characterized by a low oxidation state, obtaining 35% lower maximum values of HF in relation to the oxidized surface. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2088 GBV_ILN_2106 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
title_short |
Influence of iron oxide layer on intensification of heat dissipation from the surface of a horizontal plate cooled with a water nozzle |
remote_bool |
true |
author2 |
Cebo-Rudnicka, Agnieszka Radziszewska, Agnieszka |
author2Str |
Cebo-Rudnicka, Agnieszka Radziszewska, Agnieszka |
ppnlink |
320505081 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.ijheatmasstransfer.2023.123852 |
up_date |
2024-07-06T22:12:28.695Z |
_version_ |
1803869433309954048 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV009161457</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231205154009.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230510s2023 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.ijheatmasstransfer.2023.123852</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV009161457</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0017-9310(23)00008-X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hadała, Beata</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Influence of iron oxide layer on intensification of heat dissipation from the surface of a horizontal plate cooled with a water nozzle</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2023</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The paper presents the changes in the heat transfer coefficient (HTC) and heat flux (HF) during the water spray cooling of the metal plate on the surface of which the thickness of the oxidized layer changed. The experimental investigations consisted in measuring the temperature changes inside the plate during spray cooling with water from 700 °C to the ambient temperature. The plate was made of the material (Armco iron), the surface of which had been oxidized during heating. Three measurements were made for three different thickness of the oxidized layer. The size of the area related with the directed impact of the spray water on the surface (high impingement zone) and the size of the secondary water flow zone (horizontal flow zone) that was placed beyond the high impingement zone were assessed. The distribution of the water flux density over the cooled surface was determined as well as the increase in the thickness of the oxidized layer with the heating time. The experimental investigations allowed identify HTC and HF by using the inverse method. The uncertainty tests that allowed determine the accuracy of the inverse solution were performed. The obtained results shows that the development of the boiling process on the surface covered with the oxidized layer is local. In the high impingement zone, the increase in the thickness of the oxidized layer from 0.018 to 0.035 mm significantly influences the changes of HF and HTC during each boiling phase. The increase in the thickness of the oxidized layer caused a shift of the maximum HF and the beginning of the transition boiling towards a higher surface temperature. Outside the high impingement zone the influence of the increase in the thickness of the oxidized layer is small during film boiling phase. The obtained results were compared with those obtained for the surface characterized by a low oxidation state, obtaining 35% lower maximum values of HF in relation to the oxidized surface.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Oxidized Armco iron plate cooling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Water spray cooling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Local heat transfer coefficient</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Local heat flux</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cebo-Rudnicka, Agnieszka</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-3614-4287</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Radziszewska, Agnieszka</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of heat and mass transfer</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1960</subfield><subfield code="g">204</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)320505081</subfield><subfield code="w">(DE-600)2012726-1</subfield><subfield code="w">(DE-576)096806575</subfield><subfield code="x">1879-2189</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:204</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.38</subfield><subfield code="j">Technische Thermodynamik</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">204</subfield></datafield></record></collection>
|
score |
7.401354 |