Maneuvering extended object tracking based on constrained expectation maximization
This paper addresses the problem of maneuvering extended object tracking, in which the object extension (OE) and the turn rate are identified simultaneously. Due to its non-linearity with respect to the turn rate, the state transition is converted into a linear form of a newly defined hyper-parametr...
Ausführliche Beschreibung
Autor*in: |
Liu, Shun [verfasserIn] Liang, Yan [verfasserIn] Xu, Linfeng [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
Constrained expectation maximization |
---|
Übergeordnetes Werk: |
Enthalten in: Signal processing - Amsterdam [u.a.] : Elsevier, 1979, 201 |
---|---|
Übergeordnetes Werk: |
volume:201 |
DOI / URN: |
10.1016/j.sigpro.2022.108729 |
---|
Katalog-ID: |
ELV009162429 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV009162429 | ||
003 | DE-627 | ||
005 | 20231205154046.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230510s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.sigpro.2022.108729 |2 doi | |
035 | |a (DE-627)ELV009162429 | ||
035 | |a (ELSEVIER)S0165-1684(22)00268-7 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |a 000 |q DE-600 |
084 | |a 53.73 |2 bkl | ||
100 | 1 | |a Liu, Shun |e verfasserin |0 (orcid)0000-0002-7141-1013 |4 aut | |
245 | 1 | 0 | |a Maneuvering extended object tracking based on constrained expectation maximization |
264 | 1 | |c 2022 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a This paper addresses the problem of maneuvering extended object tracking, in which the object extension (OE) and the turn rate are identified simultaneously. Due to its non-linearity with respect to the turn rate, the state transition is converted into a linear form of a newly defined hyper-parametric vector by parameter substitution. For the hyper-parametric equality constraints (HECs) introduced in the transformation, a constrained expectation conditional maximization algorithm is designed. The HECs are projected onto the conditional expectation function for regularization, so as to realize the iterative identification of multi-parameter (i.e., OE and turn rate). The transformation and CECM optimization bring the advantage of avoiding nonlinear model approximation, which is important for the convergence and accuracy of state estimation. Finally, simulation results demonstrate the superiority of the proposed method in terms of both estimation accuracy and identification effectiveness. | ||
650 | 4 | |a Object extension | |
650 | 4 | |a Constrained expectation maximization | |
650 | 4 | |a Joint identification and estimation | |
650 | 4 | |a Maneuvering extended object tracking | |
700 | 1 | |a Liang, Yan |e verfasserin |0 (orcid)0000-0003-4798-4257 |4 aut | |
700 | 1 | |a Xu, Linfeng |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Signal processing |d Amsterdam [u.a.] : Elsevier, 1979 |g 201 |h Online-Ressource |w (DE-627)265784166 |w (DE-600)1466346-6 |w (DE-576)074891022 |7 nnns |
773 | 1 | 8 | |g volume:201 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 53.73 |j Nachrichtenübertragung |
951 | |a AR | ||
952 | |d 201 |
author_variant |
s l sl y l yl l x lx |
---|---|
matchkey_str |
liushunliangyanxulinfeng:2022----:aevrnetneojctaknbsdnosrieep |
hierarchy_sort_str |
2022 |
bklnumber |
53.73 |
publishDate |
2022 |
allfields |
10.1016/j.sigpro.2022.108729 doi (DE-627)ELV009162429 (ELSEVIER)S0165-1684(22)00268-7 DE-627 ger DE-627 rda eng 004 000 DE-600 53.73 bkl Liu, Shun verfasserin (orcid)0000-0002-7141-1013 aut Maneuvering extended object tracking based on constrained expectation maximization 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper addresses the problem of maneuvering extended object tracking, in which the object extension (OE) and the turn rate are identified simultaneously. Due to its non-linearity with respect to the turn rate, the state transition is converted into a linear form of a newly defined hyper-parametric vector by parameter substitution. For the hyper-parametric equality constraints (HECs) introduced in the transformation, a constrained expectation conditional maximization algorithm is designed. The HECs are projected onto the conditional expectation function for regularization, so as to realize the iterative identification of multi-parameter (i.e., OE and turn rate). The transformation and CECM optimization bring the advantage of avoiding nonlinear model approximation, which is important for the convergence and accuracy of state estimation. Finally, simulation results demonstrate the superiority of the proposed method in terms of both estimation accuracy and identification effectiveness. Object extension Constrained expectation maximization Joint identification and estimation Maneuvering extended object tracking Liang, Yan verfasserin (orcid)0000-0003-4798-4257 aut Xu, Linfeng verfasserin aut Enthalten in Signal processing Amsterdam [u.a.] : Elsevier, 1979 201 Online-Ressource (DE-627)265784166 (DE-600)1466346-6 (DE-576)074891022 nnns volume:201 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 53.73 Nachrichtenübertragung AR 201 |
spelling |
10.1016/j.sigpro.2022.108729 doi (DE-627)ELV009162429 (ELSEVIER)S0165-1684(22)00268-7 DE-627 ger DE-627 rda eng 004 000 DE-600 53.73 bkl Liu, Shun verfasserin (orcid)0000-0002-7141-1013 aut Maneuvering extended object tracking based on constrained expectation maximization 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper addresses the problem of maneuvering extended object tracking, in which the object extension (OE) and the turn rate are identified simultaneously. Due to its non-linearity with respect to the turn rate, the state transition is converted into a linear form of a newly defined hyper-parametric vector by parameter substitution. For the hyper-parametric equality constraints (HECs) introduced in the transformation, a constrained expectation conditional maximization algorithm is designed. The HECs are projected onto the conditional expectation function for regularization, so as to realize the iterative identification of multi-parameter (i.e., OE and turn rate). The transformation and CECM optimization bring the advantage of avoiding nonlinear model approximation, which is important for the convergence and accuracy of state estimation. Finally, simulation results demonstrate the superiority of the proposed method in terms of both estimation accuracy and identification effectiveness. Object extension Constrained expectation maximization Joint identification and estimation Maneuvering extended object tracking Liang, Yan verfasserin (orcid)0000-0003-4798-4257 aut Xu, Linfeng verfasserin aut Enthalten in Signal processing Amsterdam [u.a.] : Elsevier, 1979 201 Online-Ressource (DE-627)265784166 (DE-600)1466346-6 (DE-576)074891022 nnns volume:201 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 53.73 Nachrichtenübertragung AR 201 |
allfields_unstemmed |
10.1016/j.sigpro.2022.108729 doi (DE-627)ELV009162429 (ELSEVIER)S0165-1684(22)00268-7 DE-627 ger DE-627 rda eng 004 000 DE-600 53.73 bkl Liu, Shun verfasserin (orcid)0000-0002-7141-1013 aut Maneuvering extended object tracking based on constrained expectation maximization 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper addresses the problem of maneuvering extended object tracking, in which the object extension (OE) and the turn rate are identified simultaneously. Due to its non-linearity with respect to the turn rate, the state transition is converted into a linear form of a newly defined hyper-parametric vector by parameter substitution. For the hyper-parametric equality constraints (HECs) introduced in the transformation, a constrained expectation conditional maximization algorithm is designed. The HECs are projected onto the conditional expectation function for regularization, so as to realize the iterative identification of multi-parameter (i.e., OE and turn rate). The transformation and CECM optimization bring the advantage of avoiding nonlinear model approximation, which is important for the convergence and accuracy of state estimation. Finally, simulation results demonstrate the superiority of the proposed method in terms of both estimation accuracy and identification effectiveness. Object extension Constrained expectation maximization Joint identification and estimation Maneuvering extended object tracking Liang, Yan verfasserin (orcid)0000-0003-4798-4257 aut Xu, Linfeng verfasserin aut Enthalten in Signal processing Amsterdam [u.a.] : Elsevier, 1979 201 Online-Ressource (DE-627)265784166 (DE-600)1466346-6 (DE-576)074891022 nnns volume:201 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 53.73 Nachrichtenübertragung AR 201 |
allfieldsGer |
10.1016/j.sigpro.2022.108729 doi (DE-627)ELV009162429 (ELSEVIER)S0165-1684(22)00268-7 DE-627 ger DE-627 rda eng 004 000 DE-600 53.73 bkl Liu, Shun verfasserin (orcid)0000-0002-7141-1013 aut Maneuvering extended object tracking based on constrained expectation maximization 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper addresses the problem of maneuvering extended object tracking, in which the object extension (OE) and the turn rate are identified simultaneously. Due to its non-linearity with respect to the turn rate, the state transition is converted into a linear form of a newly defined hyper-parametric vector by parameter substitution. For the hyper-parametric equality constraints (HECs) introduced in the transformation, a constrained expectation conditional maximization algorithm is designed. The HECs are projected onto the conditional expectation function for regularization, so as to realize the iterative identification of multi-parameter (i.e., OE and turn rate). The transformation and CECM optimization bring the advantage of avoiding nonlinear model approximation, which is important for the convergence and accuracy of state estimation. Finally, simulation results demonstrate the superiority of the proposed method in terms of both estimation accuracy and identification effectiveness. Object extension Constrained expectation maximization Joint identification and estimation Maneuvering extended object tracking Liang, Yan verfasserin (orcid)0000-0003-4798-4257 aut Xu, Linfeng verfasserin aut Enthalten in Signal processing Amsterdam [u.a.] : Elsevier, 1979 201 Online-Ressource (DE-627)265784166 (DE-600)1466346-6 (DE-576)074891022 nnns volume:201 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 53.73 Nachrichtenübertragung AR 201 |
allfieldsSound |
10.1016/j.sigpro.2022.108729 doi (DE-627)ELV009162429 (ELSEVIER)S0165-1684(22)00268-7 DE-627 ger DE-627 rda eng 004 000 DE-600 53.73 bkl Liu, Shun verfasserin (orcid)0000-0002-7141-1013 aut Maneuvering extended object tracking based on constrained expectation maximization 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier This paper addresses the problem of maneuvering extended object tracking, in which the object extension (OE) and the turn rate are identified simultaneously. Due to its non-linearity with respect to the turn rate, the state transition is converted into a linear form of a newly defined hyper-parametric vector by parameter substitution. For the hyper-parametric equality constraints (HECs) introduced in the transformation, a constrained expectation conditional maximization algorithm is designed. The HECs are projected onto the conditional expectation function for regularization, so as to realize the iterative identification of multi-parameter (i.e., OE and turn rate). The transformation and CECM optimization bring the advantage of avoiding nonlinear model approximation, which is important for the convergence and accuracy of state estimation. Finally, simulation results demonstrate the superiority of the proposed method in terms of both estimation accuracy and identification effectiveness. Object extension Constrained expectation maximization Joint identification and estimation Maneuvering extended object tracking Liang, Yan verfasserin (orcid)0000-0003-4798-4257 aut Xu, Linfeng verfasserin aut Enthalten in Signal processing Amsterdam [u.a.] : Elsevier, 1979 201 Online-Ressource (DE-627)265784166 (DE-600)1466346-6 (DE-576)074891022 nnns volume:201 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 53.73 Nachrichtenübertragung AR 201 |
language |
English |
source |
Enthalten in Signal processing 201 volume:201 |
sourceStr |
Enthalten in Signal processing 201 volume:201 |
format_phy_str_mv |
Article |
bklname |
Nachrichtenübertragung |
institution |
findex.gbv.de |
topic_facet |
Object extension Constrained expectation maximization Joint identification and estimation Maneuvering extended object tracking |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Signal processing |
authorswithroles_txt_mv |
Liu, Shun @@aut@@ Liang, Yan @@aut@@ Xu, Linfeng @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
265784166 |
dewey-sort |
14 |
id |
ELV009162429 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV009162429</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231205154046.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230510s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.sigpro.2022.108729</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV009162429</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0165-1684(22)00268-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="a">000</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.73</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Shun</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-7141-1013</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Maneuvering extended object tracking based on constrained expectation maximization</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper addresses the problem of maneuvering extended object tracking, in which the object extension (OE) and the turn rate are identified simultaneously. Due to its non-linearity with respect to the turn rate, the state transition is converted into a linear form of a newly defined hyper-parametric vector by parameter substitution. For the hyper-parametric equality constraints (HECs) introduced in the transformation, a constrained expectation conditional maximization algorithm is designed. The HECs are projected onto the conditional expectation function for regularization, so as to realize the iterative identification of multi-parameter (i.e., OE and turn rate). The transformation and CECM optimization bring the advantage of avoiding nonlinear model approximation, which is important for the convergence and accuracy of state estimation. Finally, simulation results demonstrate the superiority of the proposed method in terms of both estimation accuracy and identification effectiveness.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Object extension</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Constrained expectation maximization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Joint identification and estimation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Maneuvering extended object tracking</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liang, Yan</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-4798-4257</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Linfeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Signal processing</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1979</subfield><subfield code="g">201</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)265784166</subfield><subfield code="w">(DE-600)1466346-6</subfield><subfield code="w">(DE-576)074891022</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:201</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.73</subfield><subfield code="j">Nachrichtenübertragung</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">201</subfield></datafield></record></collection>
|
author |
Liu, Shun |
spellingShingle |
Liu, Shun ddc 004 bkl 53.73 misc Object extension misc Constrained expectation maximization misc Joint identification and estimation misc Maneuvering extended object tracking Maneuvering extended object tracking based on constrained expectation maximization |
authorStr |
Liu, Shun |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)265784166 |
format |
electronic Article |
dewey-ones |
004 - Data processing & computer science 000 - Computer science, information & general works |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
004 000 DE-600 53.73 bkl Maneuvering extended object tracking based on constrained expectation maximization Object extension Constrained expectation maximization Joint identification and estimation Maneuvering extended object tracking |
topic |
ddc 004 bkl 53.73 misc Object extension misc Constrained expectation maximization misc Joint identification and estimation misc Maneuvering extended object tracking |
topic_unstemmed |
ddc 004 bkl 53.73 misc Object extension misc Constrained expectation maximization misc Joint identification and estimation misc Maneuvering extended object tracking |
topic_browse |
ddc 004 bkl 53.73 misc Object extension misc Constrained expectation maximization misc Joint identification and estimation misc Maneuvering extended object tracking |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Signal processing |
hierarchy_parent_id |
265784166 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Signal processing |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)265784166 (DE-600)1466346-6 (DE-576)074891022 |
title |
Maneuvering extended object tracking based on constrained expectation maximization |
ctrlnum |
(DE-627)ELV009162429 (ELSEVIER)S0165-1684(22)00268-7 |
title_full |
Maneuvering extended object tracking based on constrained expectation maximization |
author_sort |
Liu, Shun |
journal |
Signal processing |
journalStr |
Signal processing |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
author_browse |
Liu, Shun Liang, Yan Xu, Linfeng |
container_volume |
201 |
class |
004 000 DE-600 53.73 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Liu, Shun |
doi_str_mv |
10.1016/j.sigpro.2022.108729 |
normlink |
(ORCID)0000-0002-7141-1013 (ORCID)0000-0003-4798-4257 |
normlink_prefix_str_mv |
(orcid)0000-0002-7141-1013 (orcid)0000-0003-4798-4257 |
dewey-full |
004 000 |
author2-role |
verfasserin |
title_sort |
maneuvering extended object tracking based on constrained expectation maximization |
title_auth |
Maneuvering extended object tracking based on constrained expectation maximization |
abstract |
This paper addresses the problem of maneuvering extended object tracking, in which the object extension (OE) and the turn rate are identified simultaneously. Due to its non-linearity with respect to the turn rate, the state transition is converted into a linear form of a newly defined hyper-parametric vector by parameter substitution. For the hyper-parametric equality constraints (HECs) introduced in the transformation, a constrained expectation conditional maximization algorithm is designed. The HECs are projected onto the conditional expectation function for regularization, so as to realize the iterative identification of multi-parameter (i.e., OE and turn rate). The transformation and CECM optimization bring the advantage of avoiding nonlinear model approximation, which is important for the convergence and accuracy of state estimation. Finally, simulation results demonstrate the superiority of the proposed method in terms of both estimation accuracy and identification effectiveness. |
abstractGer |
This paper addresses the problem of maneuvering extended object tracking, in which the object extension (OE) and the turn rate are identified simultaneously. Due to its non-linearity with respect to the turn rate, the state transition is converted into a linear form of a newly defined hyper-parametric vector by parameter substitution. For the hyper-parametric equality constraints (HECs) introduced in the transformation, a constrained expectation conditional maximization algorithm is designed. The HECs are projected onto the conditional expectation function for regularization, so as to realize the iterative identification of multi-parameter (i.e., OE and turn rate). The transformation and CECM optimization bring the advantage of avoiding nonlinear model approximation, which is important for the convergence and accuracy of state estimation. Finally, simulation results demonstrate the superiority of the proposed method in terms of both estimation accuracy and identification effectiveness. |
abstract_unstemmed |
This paper addresses the problem of maneuvering extended object tracking, in which the object extension (OE) and the turn rate are identified simultaneously. Due to its non-linearity with respect to the turn rate, the state transition is converted into a linear form of a newly defined hyper-parametric vector by parameter substitution. For the hyper-parametric equality constraints (HECs) introduced in the transformation, a constrained expectation conditional maximization algorithm is designed. The HECs are projected onto the conditional expectation function for regularization, so as to realize the iterative identification of multi-parameter (i.e., OE and turn rate). The transformation and CECM optimization bring the advantage of avoiding nonlinear model approximation, which is important for the convergence and accuracy of state estimation. Finally, simulation results demonstrate the superiority of the proposed method in terms of both estimation accuracy and identification effectiveness. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
Maneuvering extended object tracking based on constrained expectation maximization |
remote_bool |
true |
author2 |
Liang, Yan Xu, Linfeng |
author2Str |
Liang, Yan Xu, Linfeng |
ppnlink |
265784166 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.sigpro.2022.108729 |
up_date |
2024-07-06T22:12:40.687Z |
_version_ |
1803869445883428864 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV009162429</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20231205154046.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230510s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.sigpro.2022.108729</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV009162429</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0165-1684(22)00268-7</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="a">000</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.73</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Shun</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-7141-1013</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Maneuvering extended object tracking based on constrained expectation maximization</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper addresses the problem of maneuvering extended object tracking, in which the object extension (OE) and the turn rate are identified simultaneously. Due to its non-linearity with respect to the turn rate, the state transition is converted into a linear form of a newly defined hyper-parametric vector by parameter substitution. For the hyper-parametric equality constraints (HECs) introduced in the transformation, a constrained expectation conditional maximization algorithm is designed. The HECs are projected onto the conditional expectation function for regularization, so as to realize the iterative identification of multi-parameter (i.e., OE and turn rate). The transformation and CECM optimization bring the advantage of avoiding nonlinear model approximation, which is important for the convergence and accuracy of state estimation. Finally, simulation results demonstrate the superiority of the proposed method in terms of both estimation accuracy and identification effectiveness.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Object extension</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Constrained expectation maximization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Joint identification and estimation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Maneuvering extended object tracking</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liang, Yan</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-4798-4257</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, Linfeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Signal processing</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier, 1979</subfield><subfield code="g">201</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)265784166</subfield><subfield code="w">(DE-600)1466346-6</subfield><subfield code="w">(DE-576)074891022</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:201</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.73</subfield><subfield code="j">Nachrichtenübertragung</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">201</subfield></datafield></record></collection>
|
score |
7.401086 |