A multi-model data-fusion based deep transfer learning for improved remaining useful life estimation for IIOT based systems
Remaining useful life (RUL) estimation, a key component in predictive maintenance (PdM), aims to reduce maintenance cycles in the prognostic health of mechanical equipment(s). Research directions using deep-learning-based RUL estimation often suffer from limited availability of degradation signals r...
Ausführliche Beschreibung
Autor*in: |
Behera, Sourajit [verfasserIn] Misra, Rajiv [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Engineering applications of artificial intelligence - Amsterdam [u.a.] : Elsevier Science, 1988, 119 |
---|---|
Übergeordnetes Werk: |
volume:119 |
DOI / URN: |
10.1016/j.engappai.2022.105712 |
---|
Katalog-ID: |
ELV009172319 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | ELV009172319 | ||
003 | DE-627 | ||
005 | 20230524152202.0 | ||
007 | cr uuu---uuuuu | ||
008 | 230510s2022 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1016/j.engappai.2022.105712 |2 doi | |
035 | |a (DE-627)ELV009172319 | ||
035 | |a (ELSEVIER)S0952-1976(22)00702-3 | ||
040 | |a DE-627 |b ger |c DE-627 |e rda | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q DE-600 |
084 | |a 50.23 |2 bkl | ||
084 | |a 54.72 |2 bkl | ||
100 | 1 | |a Behera, Sourajit |e verfasserin |4 aut | |
245 | 1 | 0 | |a A multi-model data-fusion based deep transfer learning for improved remaining useful life estimation for IIOT based systems |
264 | 1 | |c 2022 | |
336 | |a nicht spezifiziert |b zzz |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Remaining useful life (RUL) estimation, a key component in predictive maintenance (PdM), aims to reduce maintenance cycles in the prognostic health of mechanical equipment(s). Research directions using deep-learning-based RUL estimation often suffer from limited availability of degradation signals resulting inaccurate predictions. Until now, state-of-the-art models trained on large sets of natural images to classify objects have not been re-used to improve regression-based RUL estimation accuracies of mechanical equipment. Actually, this is a rarely researched topic in PdM. Inspired by transfer learning, we showcase that the knowledge learned by popular pre-trained models can be transferred to improve industrial machinery-based-maintenance decision-making. Accordingly, this paper proposes a novel multi-model data-fusion-based deep transfer learning (MMF-DTL) framework for improved RUL estimation of rolling bearings through degradation images (DI) and pre-trained deep convolutional neural networks (CNNs). After procuring the degradation signals, we obtain DIs incorporating sufficient deterioration information using Markov Transition Fields. Next, these DIs are input into a DTL network comprising three pre-trained CNNs, i.e., DenseNet201, VGG16, and ResNet50, designed in a parallel fashion, where each constituent fine-tunes a different count of layers. Subsequently, features extracted from each component model are fused in a weighted manner and passed onto several fully connected layers. The effectiveness of the proposed framework is validated using the PHM Challenge 2012 bearing degradation dataset. Compared to several state-of-the-art works, our approach improves ∼ 12 . 57 % on error rate and ∼ 26 . 04 % on MAE, suggesting it is practically feasible to grasp transferable attributes from a general-purpose related dataset to another with minimal dataset size. | ||
650 | 4 | |a Remaining useful life (RUL) | |
650 | 4 | |a Rolling bearings | |
650 | 4 | |a Predictive maintenance (pdM) | |
650 | 4 | |a Convolutional Neural Network (CNN) | |
650 | 4 | |a Transfer learning (TL) | |
700 | 1 | |a Misra, Rajiv |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Engineering applications of artificial intelligence |d Amsterdam [u.a.] : Elsevier Science, 1988 |g 119 |h Online-Ressource |w (DE-627)308447832 |w (DE-600)1502275-4 |w (DE-576)094752524 |x 0952-1976 |7 nnns |
773 | 1 | 8 | |g volume:119 |
912 | |a GBV_USEFLAG_U | ||
912 | |a SYSFLAG_U | ||
912 | |a GBV_ELV | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
936 | b | k | |a 50.23 |j Regelungstechnik |j Steuerungstechnik |
936 | b | k | |a 54.72 |j Künstliche Intelligenz |
951 | |a AR | ||
952 | |d 119 |
author_variant |
s b sb r m rm |
---|---|
matchkey_str |
article:09521976:2022----::mlioedtfsobsdeprnfrerigoipoermiigsflies |
hierarchy_sort_str |
2022 |
bklnumber |
50.23 54.72 |
publishDate |
2022 |
allfields |
10.1016/j.engappai.2022.105712 doi (DE-627)ELV009172319 (ELSEVIER)S0952-1976(22)00702-3 DE-627 ger DE-627 rda eng 004 DE-600 50.23 bkl 54.72 bkl Behera, Sourajit verfasserin aut A multi-model data-fusion based deep transfer learning for improved remaining useful life estimation for IIOT based systems 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Remaining useful life (RUL) estimation, a key component in predictive maintenance (PdM), aims to reduce maintenance cycles in the prognostic health of mechanical equipment(s). Research directions using deep-learning-based RUL estimation often suffer from limited availability of degradation signals resulting inaccurate predictions. Until now, state-of-the-art models trained on large sets of natural images to classify objects have not been re-used to improve regression-based RUL estimation accuracies of mechanical equipment. Actually, this is a rarely researched topic in PdM. Inspired by transfer learning, we showcase that the knowledge learned by popular pre-trained models can be transferred to improve industrial machinery-based-maintenance decision-making. Accordingly, this paper proposes a novel multi-model data-fusion-based deep transfer learning (MMF-DTL) framework for improved RUL estimation of rolling bearings through degradation images (DI) and pre-trained deep convolutional neural networks (CNNs). After procuring the degradation signals, we obtain DIs incorporating sufficient deterioration information using Markov Transition Fields. Next, these DIs are input into a DTL network comprising three pre-trained CNNs, i.e., DenseNet201, VGG16, and ResNet50, designed in a parallel fashion, where each constituent fine-tunes a different count of layers. Subsequently, features extracted from each component model are fused in a weighted manner and passed onto several fully connected layers. The effectiveness of the proposed framework is validated using the PHM Challenge 2012 bearing degradation dataset. Compared to several state-of-the-art works, our approach improves ∼ 12 . 57 % on error rate and ∼ 26 . 04 % on MAE, suggesting it is practically feasible to grasp transferable attributes from a general-purpose related dataset to another with minimal dataset size. Remaining useful life (RUL) Rolling bearings Predictive maintenance (pdM) Convolutional Neural Network (CNN) Transfer learning (TL) Misra, Rajiv verfasserin aut Enthalten in Engineering applications of artificial intelligence Amsterdam [u.a.] : Elsevier Science, 1988 119 Online-Ressource (DE-627)308447832 (DE-600)1502275-4 (DE-576)094752524 0952-1976 nnns volume:119 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.23 Regelungstechnik Steuerungstechnik 54.72 Künstliche Intelligenz AR 119 |
spelling |
10.1016/j.engappai.2022.105712 doi (DE-627)ELV009172319 (ELSEVIER)S0952-1976(22)00702-3 DE-627 ger DE-627 rda eng 004 DE-600 50.23 bkl 54.72 bkl Behera, Sourajit verfasserin aut A multi-model data-fusion based deep transfer learning for improved remaining useful life estimation for IIOT based systems 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Remaining useful life (RUL) estimation, a key component in predictive maintenance (PdM), aims to reduce maintenance cycles in the prognostic health of mechanical equipment(s). Research directions using deep-learning-based RUL estimation often suffer from limited availability of degradation signals resulting inaccurate predictions. Until now, state-of-the-art models trained on large sets of natural images to classify objects have not been re-used to improve regression-based RUL estimation accuracies of mechanical equipment. Actually, this is a rarely researched topic in PdM. Inspired by transfer learning, we showcase that the knowledge learned by popular pre-trained models can be transferred to improve industrial machinery-based-maintenance decision-making. Accordingly, this paper proposes a novel multi-model data-fusion-based deep transfer learning (MMF-DTL) framework for improved RUL estimation of rolling bearings through degradation images (DI) and pre-trained deep convolutional neural networks (CNNs). After procuring the degradation signals, we obtain DIs incorporating sufficient deterioration information using Markov Transition Fields. Next, these DIs are input into a DTL network comprising three pre-trained CNNs, i.e., DenseNet201, VGG16, and ResNet50, designed in a parallel fashion, where each constituent fine-tunes a different count of layers. Subsequently, features extracted from each component model are fused in a weighted manner and passed onto several fully connected layers. The effectiveness of the proposed framework is validated using the PHM Challenge 2012 bearing degradation dataset. Compared to several state-of-the-art works, our approach improves ∼ 12 . 57 % on error rate and ∼ 26 . 04 % on MAE, suggesting it is practically feasible to grasp transferable attributes from a general-purpose related dataset to another with minimal dataset size. Remaining useful life (RUL) Rolling bearings Predictive maintenance (pdM) Convolutional Neural Network (CNN) Transfer learning (TL) Misra, Rajiv verfasserin aut Enthalten in Engineering applications of artificial intelligence Amsterdam [u.a.] : Elsevier Science, 1988 119 Online-Ressource (DE-627)308447832 (DE-600)1502275-4 (DE-576)094752524 0952-1976 nnns volume:119 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.23 Regelungstechnik Steuerungstechnik 54.72 Künstliche Intelligenz AR 119 |
allfields_unstemmed |
10.1016/j.engappai.2022.105712 doi (DE-627)ELV009172319 (ELSEVIER)S0952-1976(22)00702-3 DE-627 ger DE-627 rda eng 004 DE-600 50.23 bkl 54.72 bkl Behera, Sourajit verfasserin aut A multi-model data-fusion based deep transfer learning for improved remaining useful life estimation for IIOT based systems 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Remaining useful life (RUL) estimation, a key component in predictive maintenance (PdM), aims to reduce maintenance cycles in the prognostic health of mechanical equipment(s). Research directions using deep-learning-based RUL estimation often suffer from limited availability of degradation signals resulting inaccurate predictions. Until now, state-of-the-art models trained on large sets of natural images to classify objects have not been re-used to improve regression-based RUL estimation accuracies of mechanical equipment. Actually, this is a rarely researched topic in PdM. Inspired by transfer learning, we showcase that the knowledge learned by popular pre-trained models can be transferred to improve industrial machinery-based-maintenance decision-making. Accordingly, this paper proposes a novel multi-model data-fusion-based deep transfer learning (MMF-DTL) framework for improved RUL estimation of rolling bearings through degradation images (DI) and pre-trained deep convolutional neural networks (CNNs). After procuring the degradation signals, we obtain DIs incorporating sufficient deterioration information using Markov Transition Fields. Next, these DIs are input into a DTL network comprising three pre-trained CNNs, i.e., DenseNet201, VGG16, and ResNet50, designed in a parallel fashion, where each constituent fine-tunes a different count of layers. Subsequently, features extracted from each component model are fused in a weighted manner and passed onto several fully connected layers. The effectiveness of the proposed framework is validated using the PHM Challenge 2012 bearing degradation dataset. Compared to several state-of-the-art works, our approach improves ∼ 12 . 57 % on error rate and ∼ 26 . 04 % on MAE, suggesting it is practically feasible to grasp transferable attributes from a general-purpose related dataset to another with minimal dataset size. Remaining useful life (RUL) Rolling bearings Predictive maintenance (pdM) Convolutional Neural Network (CNN) Transfer learning (TL) Misra, Rajiv verfasserin aut Enthalten in Engineering applications of artificial intelligence Amsterdam [u.a.] : Elsevier Science, 1988 119 Online-Ressource (DE-627)308447832 (DE-600)1502275-4 (DE-576)094752524 0952-1976 nnns volume:119 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.23 Regelungstechnik Steuerungstechnik 54.72 Künstliche Intelligenz AR 119 |
allfieldsGer |
10.1016/j.engappai.2022.105712 doi (DE-627)ELV009172319 (ELSEVIER)S0952-1976(22)00702-3 DE-627 ger DE-627 rda eng 004 DE-600 50.23 bkl 54.72 bkl Behera, Sourajit verfasserin aut A multi-model data-fusion based deep transfer learning for improved remaining useful life estimation for IIOT based systems 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Remaining useful life (RUL) estimation, a key component in predictive maintenance (PdM), aims to reduce maintenance cycles in the prognostic health of mechanical equipment(s). Research directions using deep-learning-based RUL estimation often suffer from limited availability of degradation signals resulting inaccurate predictions. Until now, state-of-the-art models trained on large sets of natural images to classify objects have not been re-used to improve regression-based RUL estimation accuracies of mechanical equipment. Actually, this is a rarely researched topic in PdM. Inspired by transfer learning, we showcase that the knowledge learned by popular pre-trained models can be transferred to improve industrial machinery-based-maintenance decision-making. Accordingly, this paper proposes a novel multi-model data-fusion-based deep transfer learning (MMF-DTL) framework for improved RUL estimation of rolling bearings through degradation images (DI) and pre-trained deep convolutional neural networks (CNNs). After procuring the degradation signals, we obtain DIs incorporating sufficient deterioration information using Markov Transition Fields. Next, these DIs are input into a DTL network comprising three pre-trained CNNs, i.e., DenseNet201, VGG16, and ResNet50, designed in a parallel fashion, where each constituent fine-tunes a different count of layers. Subsequently, features extracted from each component model are fused in a weighted manner and passed onto several fully connected layers. The effectiveness of the proposed framework is validated using the PHM Challenge 2012 bearing degradation dataset. Compared to several state-of-the-art works, our approach improves ∼ 12 . 57 % on error rate and ∼ 26 . 04 % on MAE, suggesting it is practically feasible to grasp transferable attributes from a general-purpose related dataset to another with minimal dataset size. Remaining useful life (RUL) Rolling bearings Predictive maintenance (pdM) Convolutional Neural Network (CNN) Transfer learning (TL) Misra, Rajiv verfasserin aut Enthalten in Engineering applications of artificial intelligence Amsterdam [u.a.] : Elsevier Science, 1988 119 Online-Ressource (DE-627)308447832 (DE-600)1502275-4 (DE-576)094752524 0952-1976 nnns volume:119 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.23 Regelungstechnik Steuerungstechnik 54.72 Künstliche Intelligenz AR 119 |
allfieldsSound |
10.1016/j.engappai.2022.105712 doi (DE-627)ELV009172319 (ELSEVIER)S0952-1976(22)00702-3 DE-627 ger DE-627 rda eng 004 DE-600 50.23 bkl 54.72 bkl Behera, Sourajit verfasserin aut A multi-model data-fusion based deep transfer learning for improved remaining useful life estimation for IIOT based systems 2022 nicht spezifiziert zzz rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Remaining useful life (RUL) estimation, a key component in predictive maintenance (PdM), aims to reduce maintenance cycles in the prognostic health of mechanical equipment(s). Research directions using deep-learning-based RUL estimation often suffer from limited availability of degradation signals resulting inaccurate predictions. Until now, state-of-the-art models trained on large sets of natural images to classify objects have not been re-used to improve regression-based RUL estimation accuracies of mechanical equipment. Actually, this is a rarely researched topic in PdM. Inspired by transfer learning, we showcase that the knowledge learned by popular pre-trained models can be transferred to improve industrial machinery-based-maintenance decision-making. Accordingly, this paper proposes a novel multi-model data-fusion-based deep transfer learning (MMF-DTL) framework for improved RUL estimation of rolling bearings through degradation images (DI) and pre-trained deep convolutional neural networks (CNNs). After procuring the degradation signals, we obtain DIs incorporating sufficient deterioration information using Markov Transition Fields. Next, these DIs are input into a DTL network comprising three pre-trained CNNs, i.e., DenseNet201, VGG16, and ResNet50, designed in a parallel fashion, where each constituent fine-tunes a different count of layers. Subsequently, features extracted from each component model are fused in a weighted manner and passed onto several fully connected layers. The effectiveness of the proposed framework is validated using the PHM Challenge 2012 bearing degradation dataset. Compared to several state-of-the-art works, our approach improves ∼ 12 . 57 % on error rate and ∼ 26 . 04 % on MAE, suggesting it is practically feasible to grasp transferable attributes from a general-purpose related dataset to another with minimal dataset size. Remaining useful life (RUL) Rolling bearings Predictive maintenance (pdM) Convolutional Neural Network (CNN) Transfer learning (TL) Misra, Rajiv verfasserin aut Enthalten in Engineering applications of artificial intelligence Amsterdam [u.a.] : Elsevier Science, 1988 119 Online-Ressource (DE-627)308447832 (DE-600)1502275-4 (DE-576)094752524 0952-1976 nnns volume:119 GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 50.23 Regelungstechnik Steuerungstechnik 54.72 Künstliche Intelligenz AR 119 |
language |
English |
source |
Enthalten in Engineering applications of artificial intelligence 119 volume:119 |
sourceStr |
Enthalten in Engineering applications of artificial intelligence 119 volume:119 |
format_phy_str_mv |
Article |
bklname |
Regelungstechnik Steuerungstechnik Künstliche Intelligenz |
institution |
findex.gbv.de |
topic_facet |
Remaining useful life (RUL) Rolling bearings Predictive maintenance (pdM) Convolutional Neural Network (CNN) Transfer learning (TL) |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Engineering applications of artificial intelligence |
authorswithroles_txt_mv |
Behera, Sourajit @@aut@@ Misra, Rajiv @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
308447832 |
dewey-sort |
14 |
id |
ELV009172319 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV009172319</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524152202.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230510s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.engappai.2022.105712</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV009172319</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0952-1976(22)00702-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.23</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.72</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Behera, Sourajit</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A multi-model data-fusion based deep transfer learning for improved remaining useful life estimation for IIOT based systems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Remaining useful life (RUL) estimation, a key component in predictive maintenance (PdM), aims to reduce maintenance cycles in the prognostic health of mechanical equipment(s). Research directions using deep-learning-based RUL estimation often suffer from limited availability of degradation signals resulting inaccurate predictions. Until now, state-of-the-art models trained on large sets of natural images to classify objects have not been re-used to improve regression-based RUL estimation accuracies of mechanical equipment. Actually, this is a rarely researched topic in PdM. Inspired by transfer learning, we showcase that the knowledge learned by popular pre-trained models can be transferred to improve industrial machinery-based-maintenance decision-making. Accordingly, this paper proposes a novel multi-model data-fusion-based deep transfer learning (MMF-DTL) framework for improved RUL estimation of rolling bearings through degradation images (DI) and pre-trained deep convolutional neural networks (CNNs). After procuring the degradation signals, we obtain DIs incorporating sufficient deterioration information using Markov Transition Fields. Next, these DIs are input into a DTL network comprising three pre-trained CNNs, i.e., DenseNet201, VGG16, and ResNet50, designed in a parallel fashion, where each constituent fine-tunes a different count of layers. Subsequently, features extracted from each component model are fused in a weighted manner and passed onto several fully connected layers. The effectiveness of the proposed framework is validated using the PHM Challenge 2012 bearing degradation dataset. Compared to several state-of-the-art works, our approach improves ∼ 12 . 57 % on error rate and ∼ 26 . 04 % on MAE, suggesting it is practically feasible to grasp transferable attributes from a general-purpose related dataset to another with minimal dataset size.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Remaining useful life (RUL)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rolling bearings</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Predictive maintenance (pdM)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convolutional Neural Network (CNN)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transfer learning (TL)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Misra, Rajiv</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Engineering applications of artificial intelligence</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1988</subfield><subfield code="g">119</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)308447832</subfield><subfield code="w">(DE-600)1502275-4</subfield><subfield code="w">(DE-576)094752524</subfield><subfield code="x">0952-1976</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.23</subfield><subfield code="j">Regelungstechnik</subfield><subfield code="j">Steuerungstechnik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.72</subfield><subfield code="j">Künstliche Intelligenz</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">119</subfield></datafield></record></collection>
|
author |
Behera, Sourajit |
spellingShingle |
Behera, Sourajit ddc 004 bkl 50.23 bkl 54.72 misc Remaining useful life (RUL) misc Rolling bearings misc Predictive maintenance (pdM) misc Convolutional Neural Network (CNN) misc Transfer learning (TL) A multi-model data-fusion based deep transfer learning for improved remaining useful life estimation for IIOT based systems |
authorStr |
Behera, Sourajit |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)308447832 |
format |
electronic Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
elsevier |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
0952-1976 |
topic_title |
004 DE-600 50.23 bkl 54.72 bkl A multi-model data-fusion based deep transfer learning for improved remaining useful life estimation for IIOT based systems Remaining useful life (RUL) Rolling bearings Predictive maintenance (pdM) Convolutional Neural Network (CNN) Transfer learning (TL) |
topic |
ddc 004 bkl 50.23 bkl 54.72 misc Remaining useful life (RUL) misc Rolling bearings misc Predictive maintenance (pdM) misc Convolutional Neural Network (CNN) misc Transfer learning (TL) |
topic_unstemmed |
ddc 004 bkl 50.23 bkl 54.72 misc Remaining useful life (RUL) misc Rolling bearings misc Predictive maintenance (pdM) misc Convolutional Neural Network (CNN) misc Transfer learning (TL) |
topic_browse |
ddc 004 bkl 50.23 bkl 54.72 misc Remaining useful life (RUL) misc Rolling bearings misc Predictive maintenance (pdM) misc Convolutional Neural Network (CNN) misc Transfer learning (TL) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Engineering applications of artificial intelligence |
hierarchy_parent_id |
308447832 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Engineering applications of artificial intelligence |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)308447832 (DE-600)1502275-4 (DE-576)094752524 |
title |
A multi-model data-fusion based deep transfer learning for improved remaining useful life estimation for IIOT based systems |
ctrlnum |
(DE-627)ELV009172319 (ELSEVIER)S0952-1976(22)00702-3 |
title_full |
A multi-model data-fusion based deep transfer learning for improved remaining useful life estimation for IIOT based systems |
author_sort |
Behera, Sourajit |
journal |
Engineering applications of artificial intelligence |
journalStr |
Engineering applications of artificial intelligence |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
zzz |
author_browse |
Behera, Sourajit Misra, Rajiv |
container_volume |
119 |
class |
004 DE-600 50.23 bkl 54.72 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Behera, Sourajit |
doi_str_mv |
10.1016/j.engappai.2022.105712 |
dewey-full |
004 |
author2-role |
verfasserin |
title_sort |
a multi-model data-fusion based deep transfer learning for improved remaining useful life estimation for iiot based systems |
title_auth |
A multi-model data-fusion based deep transfer learning for improved remaining useful life estimation for IIOT based systems |
abstract |
Remaining useful life (RUL) estimation, a key component in predictive maintenance (PdM), aims to reduce maintenance cycles in the prognostic health of mechanical equipment(s). Research directions using deep-learning-based RUL estimation often suffer from limited availability of degradation signals resulting inaccurate predictions. Until now, state-of-the-art models trained on large sets of natural images to classify objects have not been re-used to improve regression-based RUL estimation accuracies of mechanical equipment. Actually, this is a rarely researched topic in PdM. Inspired by transfer learning, we showcase that the knowledge learned by popular pre-trained models can be transferred to improve industrial machinery-based-maintenance decision-making. Accordingly, this paper proposes a novel multi-model data-fusion-based deep transfer learning (MMF-DTL) framework for improved RUL estimation of rolling bearings through degradation images (DI) and pre-trained deep convolutional neural networks (CNNs). After procuring the degradation signals, we obtain DIs incorporating sufficient deterioration information using Markov Transition Fields. Next, these DIs are input into a DTL network comprising three pre-trained CNNs, i.e., DenseNet201, VGG16, and ResNet50, designed in a parallel fashion, where each constituent fine-tunes a different count of layers. Subsequently, features extracted from each component model are fused in a weighted manner and passed onto several fully connected layers. The effectiveness of the proposed framework is validated using the PHM Challenge 2012 bearing degradation dataset. Compared to several state-of-the-art works, our approach improves ∼ 12 . 57 % on error rate and ∼ 26 . 04 % on MAE, suggesting it is practically feasible to grasp transferable attributes from a general-purpose related dataset to another with minimal dataset size. |
abstractGer |
Remaining useful life (RUL) estimation, a key component in predictive maintenance (PdM), aims to reduce maintenance cycles in the prognostic health of mechanical equipment(s). Research directions using deep-learning-based RUL estimation often suffer from limited availability of degradation signals resulting inaccurate predictions. Until now, state-of-the-art models trained on large sets of natural images to classify objects have not been re-used to improve regression-based RUL estimation accuracies of mechanical equipment. Actually, this is a rarely researched topic in PdM. Inspired by transfer learning, we showcase that the knowledge learned by popular pre-trained models can be transferred to improve industrial machinery-based-maintenance decision-making. Accordingly, this paper proposes a novel multi-model data-fusion-based deep transfer learning (MMF-DTL) framework for improved RUL estimation of rolling bearings through degradation images (DI) and pre-trained deep convolutional neural networks (CNNs). After procuring the degradation signals, we obtain DIs incorporating sufficient deterioration information using Markov Transition Fields. Next, these DIs are input into a DTL network comprising three pre-trained CNNs, i.e., DenseNet201, VGG16, and ResNet50, designed in a parallel fashion, where each constituent fine-tunes a different count of layers. Subsequently, features extracted from each component model are fused in a weighted manner and passed onto several fully connected layers. The effectiveness of the proposed framework is validated using the PHM Challenge 2012 bearing degradation dataset. Compared to several state-of-the-art works, our approach improves ∼ 12 . 57 % on error rate and ∼ 26 . 04 % on MAE, suggesting it is practically feasible to grasp transferable attributes from a general-purpose related dataset to another with minimal dataset size. |
abstract_unstemmed |
Remaining useful life (RUL) estimation, a key component in predictive maintenance (PdM), aims to reduce maintenance cycles in the prognostic health of mechanical equipment(s). Research directions using deep-learning-based RUL estimation often suffer from limited availability of degradation signals resulting inaccurate predictions. Until now, state-of-the-art models trained on large sets of natural images to classify objects have not been re-used to improve regression-based RUL estimation accuracies of mechanical equipment. Actually, this is a rarely researched topic in PdM. Inspired by transfer learning, we showcase that the knowledge learned by popular pre-trained models can be transferred to improve industrial machinery-based-maintenance decision-making. Accordingly, this paper proposes a novel multi-model data-fusion-based deep transfer learning (MMF-DTL) framework for improved RUL estimation of rolling bearings through degradation images (DI) and pre-trained deep convolutional neural networks (CNNs). After procuring the degradation signals, we obtain DIs incorporating sufficient deterioration information using Markov Transition Fields. Next, these DIs are input into a DTL network comprising three pre-trained CNNs, i.e., DenseNet201, VGG16, and ResNet50, designed in a parallel fashion, where each constituent fine-tunes a different count of layers. Subsequently, features extracted from each component model are fused in a weighted manner and passed onto several fully connected layers. The effectiveness of the proposed framework is validated using the PHM Challenge 2012 bearing degradation dataset. Compared to several state-of-the-art works, our approach improves ∼ 12 . 57 % on error rate and ∼ 26 . 04 % on MAE, suggesting it is practically feasible to grasp transferable attributes from a general-purpose related dataset to another with minimal dataset size. |
collection_details |
GBV_USEFLAG_U SYSFLAG_U GBV_ELV GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_150 GBV_ILN_151 GBV_ILN_224 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2008 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2027 GBV_ILN_2034 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2056 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2088 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2118 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2336 GBV_ILN_2470 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4393 |
title_short |
A multi-model data-fusion based deep transfer learning for improved remaining useful life estimation for IIOT based systems |
remote_bool |
true |
author2 |
Misra, Rajiv |
author2Str |
Misra, Rajiv |
ppnlink |
308447832 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1016/j.engappai.2022.105712 |
up_date |
2024-07-06T22:14:46.199Z |
_version_ |
1803869577492299776 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">ELV009172319</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230524152202.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">230510s2022 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1016/j.engappai.2022.105712</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)ELV009172319</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELSEVIER)S0952-1976(22)00702-3</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">DE-600</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.23</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.72</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Behera, Sourajit</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A multi-model data-fusion based deep transfer learning for improved remaining useful life estimation for IIOT based systems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">nicht spezifiziert</subfield><subfield code="b">zzz</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Remaining useful life (RUL) estimation, a key component in predictive maintenance (PdM), aims to reduce maintenance cycles in the prognostic health of mechanical equipment(s). Research directions using deep-learning-based RUL estimation often suffer from limited availability of degradation signals resulting inaccurate predictions. Until now, state-of-the-art models trained on large sets of natural images to classify objects have not been re-used to improve regression-based RUL estimation accuracies of mechanical equipment. Actually, this is a rarely researched topic in PdM. Inspired by transfer learning, we showcase that the knowledge learned by popular pre-trained models can be transferred to improve industrial machinery-based-maintenance decision-making. Accordingly, this paper proposes a novel multi-model data-fusion-based deep transfer learning (MMF-DTL) framework for improved RUL estimation of rolling bearings through degradation images (DI) and pre-trained deep convolutional neural networks (CNNs). After procuring the degradation signals, we obtain DIs incorporating sufficient deterioration information using Markov Transition Fields. Next, these DIs are input into a DTL network comprising three pre-trained CNNs, i.e., DenseNet201, VGG16, and ResNet50, designed in a parallel fashion, where each constituent fine-tunes a different count of layers. Subsequently, features extracted from each component model are fused in a weighted manner and passed onto several fully connected layers. The effectiveness of the proposed framework is validated using the PHM Challenge 2012 bearing degradation dataset. Compared to several state-of-the-art works, our approach improves ∼ 12 . 57 % on error rate and ∼ 26 . 04 % on MAE, suggesting it is practically feasible to grasp transferable attributes from a general-purpose related dataset to another with minimal dataset size.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Remaining useful life (RUL)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rolling bearings</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Predictive maintenance (pdM)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convolutional Neural Network (CNN)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transfer learning (TL)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Misra, Rajiv</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Engineering applications of artificial intelligence</subfield><subfield code="d">Amsterdam [u.a.] : Elsevier Science, 1988</subfield><subfield code="g">119</subfield><subfield code="h">Online-Ressource</subfield><subfield code="w">(DE-627)308447832</subfield><subfield code="w">(DE-600)1502275-4</subfield><subfield code="w">(DE-576)094752524</subfield><subfield code="x">0952-1976</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_U</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ELV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.23</subfield><subfield code="j">Regelungstechnik</subfield><subfield code="j">Steuerungstechnik</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.72</subfield><subfield code="j">Künstliche Intelligenz</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">119</subfield></datafield></record></collection>
|
score |
7.400505 |